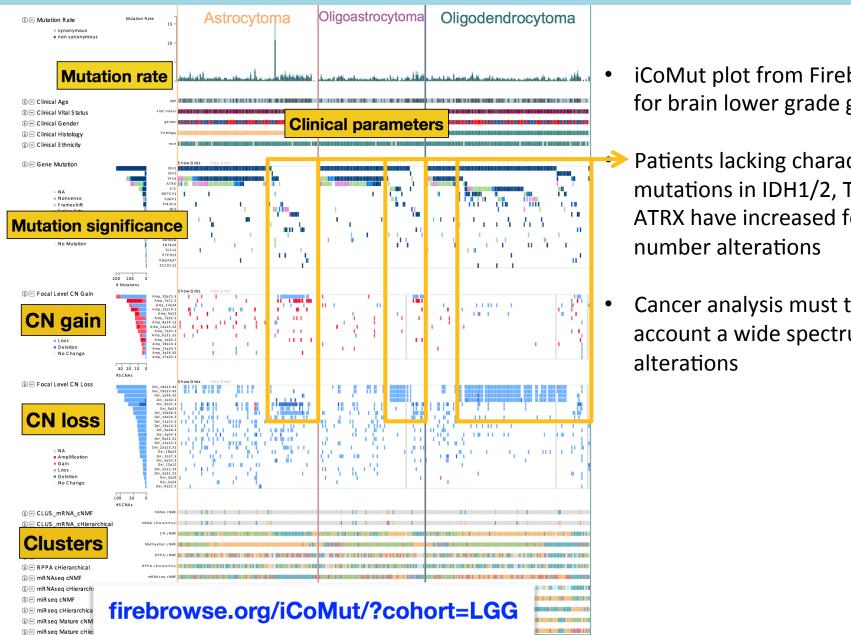


Somatic SNV and Indel Discovery

New in GATK 3.5 - MuTect2 beta


Somatic variant discovery with GATK

- 1. Cancer background refresher
- 2. Cross sample contamination estimation with ContEst
- 3. SNV and indel calling with MuTect2
- 4. [Copy number alteration calling with CNV] *next talk*

SOMATIC VARIANT DISCOVERY

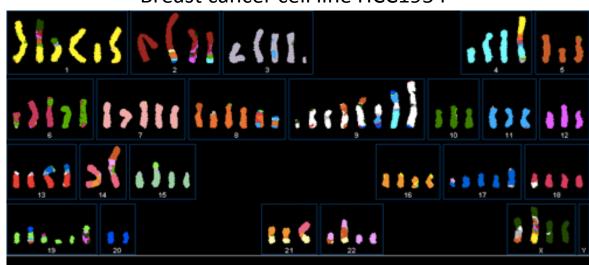
A REFRESHER ON CANCER BACKGROUND

A cancer's genomic alterations are multilayered

iCoMut plot from Firebrowse for brain lower grade glioma

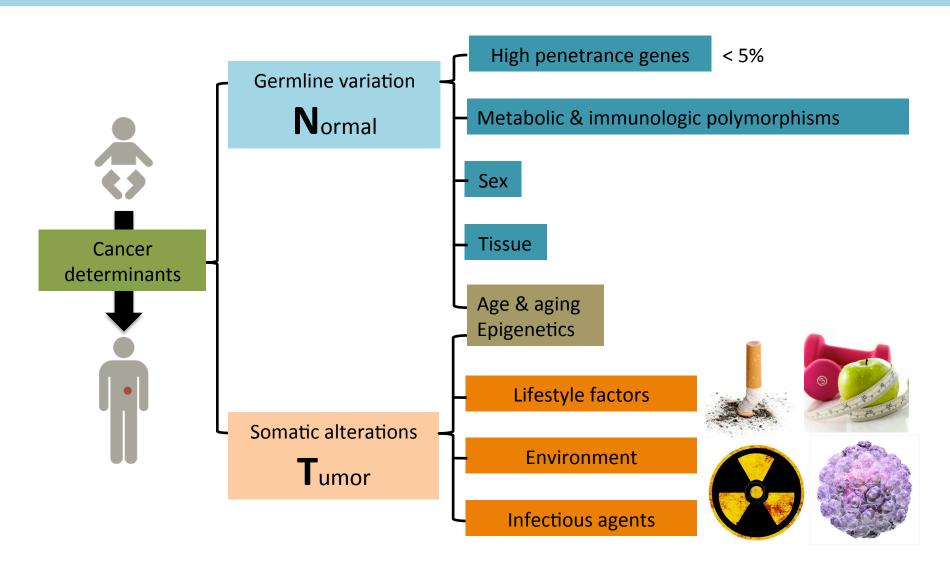
- Patients lacking characteristic mutations in IDH1/2, TP53 and ATRX have increased focal copy
- Cancer analysis must take into account a wide spectrum of

Some ballpark metrics for cancer mutations

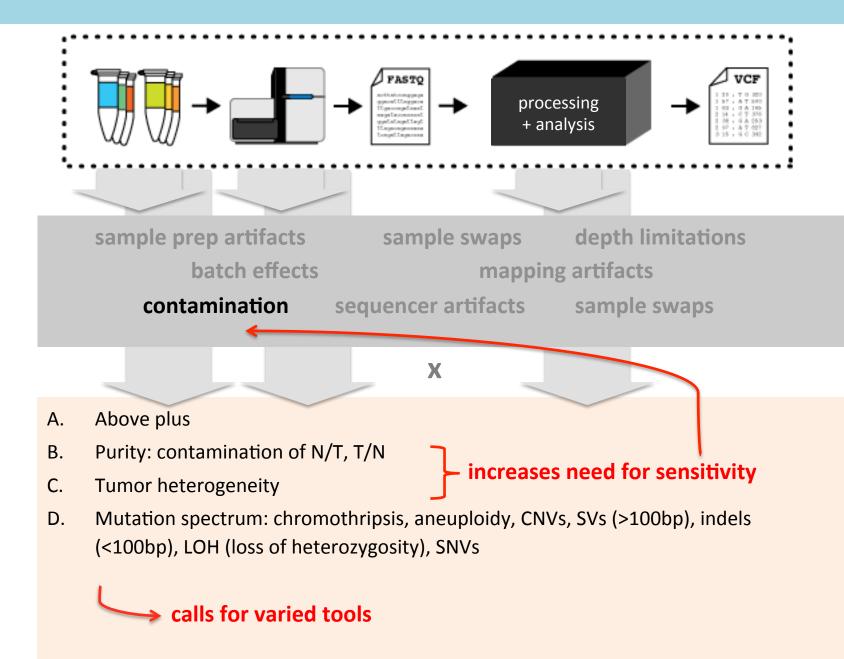

per genome (3 x 10 ⁹ bp)	per Mbp	somatic alteration type	acronym
1000s to 10,000s	** 1 ** (0.33 to >1000)	single nucleotide	SNV
100s to 1,000s	< 1	small insertions & deletions	Indel
100s to 1,000s	< 1	structural	SV
100s to 1,000s	< 1	copy number	CNA or CNV

Lawrence et al. Nature 2013

Normal cell


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Breast cancer cell line HCC1954

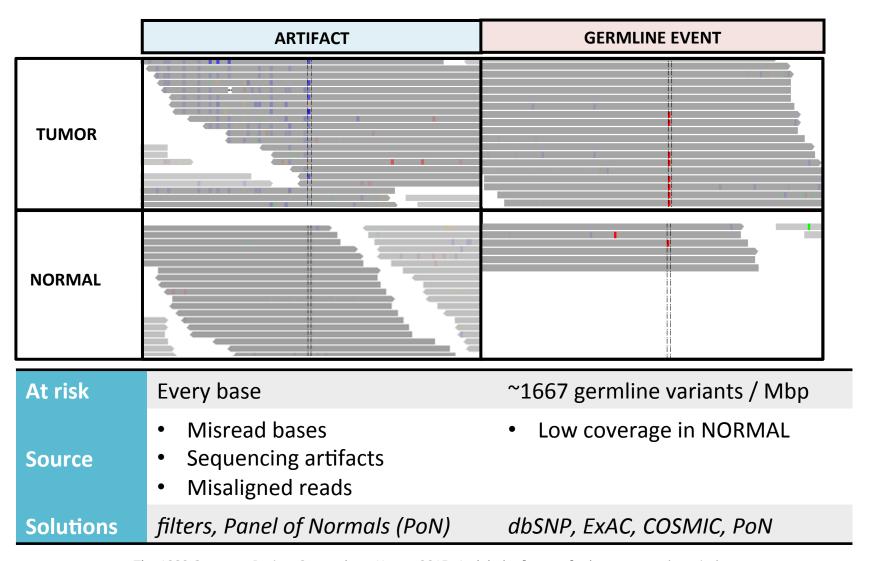

Spectral karyotyping paints each chromosome pair with a color

Cohorts of paired data to detect drivers of cancer

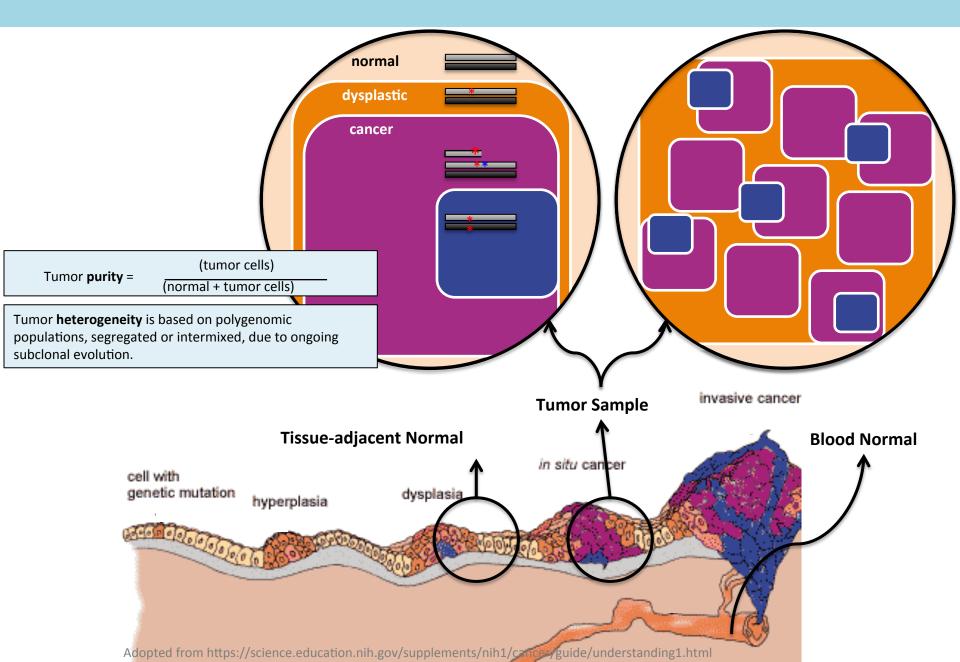
Having a cohort of matched sets empowers detection of driver mutations

Cancer-specific challenges confound analyses

N


T

noise


germ

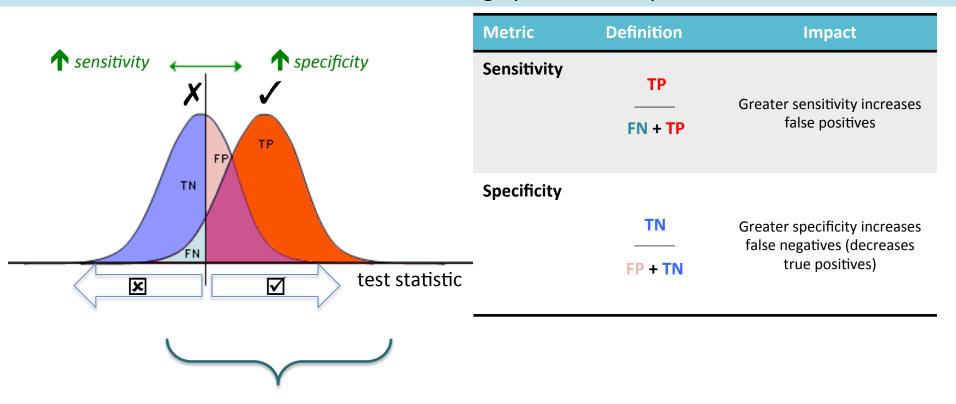
False positives come from artifacts and germline variation

Somatic point mutations occur ~1 / Mbp

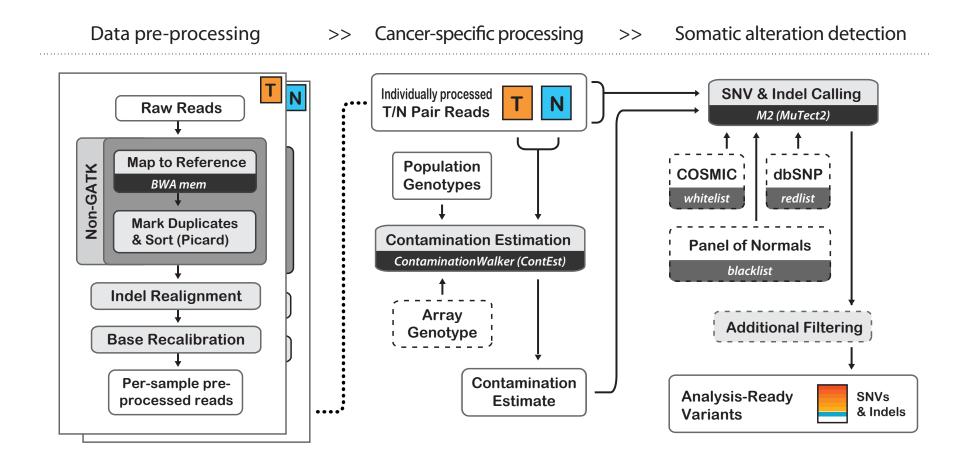


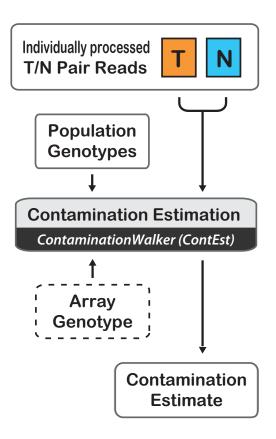
Tumor samples are heterogeneous and often contain normal cells

Multiple metrics measure callset quality


To detect somatic mutations, we need highly sensitive & specific mutation callers

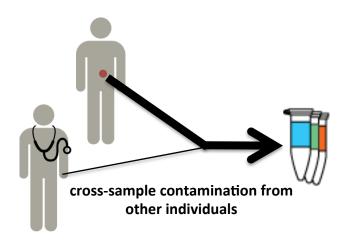
Metric	Definition	Example
Sensitivity	TP FN+TP	5000 7500 = 67%
Specificity	TN FP+TN	3E9 - 9000 3E9 - 7500 = 99.99995%
Precision	TP+FP	5000 = 77%
FPR	FP/[TN+FP]	0.5 FP mutations / Mbp
Balanced accuracy	[Sensitivity + Precision] / 2	[77% + 67%]/2 = 72%


Multiple metrics measure callset quality


To detect somatic mutations, we need highly sensitive & specific mutation callers

Take these and apply filters to remove FPs

GATK workflow for somatic SNV and Indel detection



CONTAMINATION ESTIMATION

FOR CROSS-SAMPLE CONTAMINATION

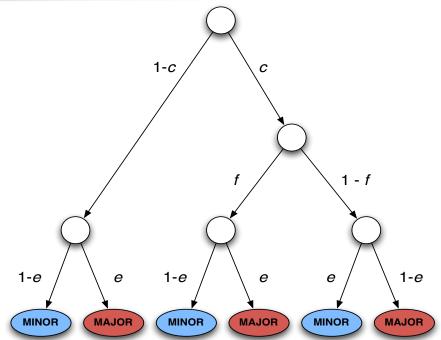
Low levels of cross-sample contamination is common

TCGA Ovarian cohort ~10% samples have > 1.5% contamination (N=206)				
Errors per sample	~0.2 errors / Mbp			
Somatic point mutation rate = 1 / Mbp				
Fraction false positives	~20%			

- ContEst performs cross-sample contamination estimation
 - Not intended for stromal nor cross-species contamination
- Accurate estimates even with low average coverage (< 5x) for WES and WGS
- Determine % contamination of input bam by sample, by lane or in aggregate across all reads
- Output is text file of estimated percent contamination and 95% confidence interval

Contaminant sites vary from patient homozygous sites

- Population file to pick a limited # of variant sites (uniform priors)
- Use subset homozygous variant in patient
 - Use genotype from matched normal over that from tumor as cancers have loss of heterozygosity (LOH) events
- Take lower bound of those not homozygous variant in tumor sample
 - Mismatching reads reflect part of true total contamination based on variation in population allele frequency
- Calculate probabilities of contamination from common germline SNPs



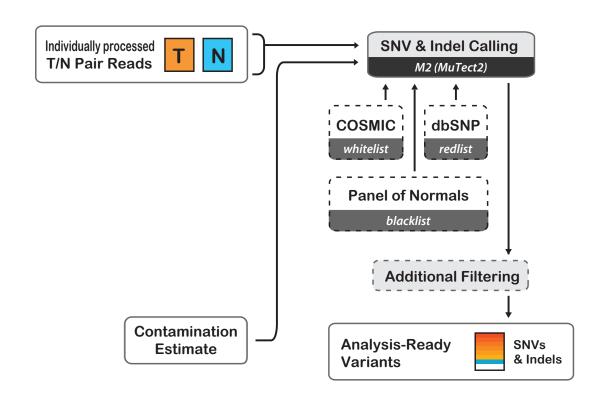
Underlying algorithm uses Bayesian approach

c: contamination

f: minor allele frequency

e: sequencing error rate

)

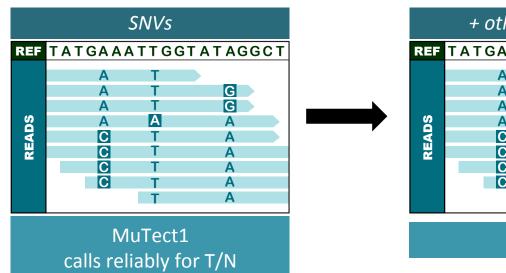

P(MINOR I genotype) = (1-c)(1-e) + cf(1-e) + c(1-f)(e)P(MAJOR I genotype) = (1-c)(e) + cf(e) + c(1-f)(1-e) Bayesian approach to calculate the **posterior probability** of the contamination level and determine the **maximum a posteriori probability** (MAP) estimate of the contamination level

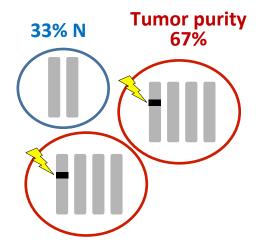
ContEst is GATK's ContaminationWalker

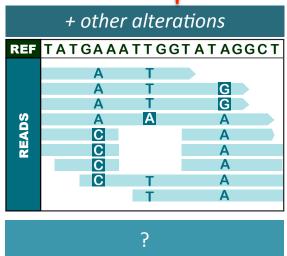
Example command to estimate cross-sample contamination:

Data interpretation guidelines:

Contamination	Label	Recommendation
0–2%	Fine	
2–5%	Slight contamination	Follow up if odd downstream results
5–15%	Moderate contamination	Salvageable; expect manual review
15-50%	Heavy contamination	Remove sample; follow up with project manager
>50%	Heavy contamination or sample swap	Consider sample swap as you approach 100%

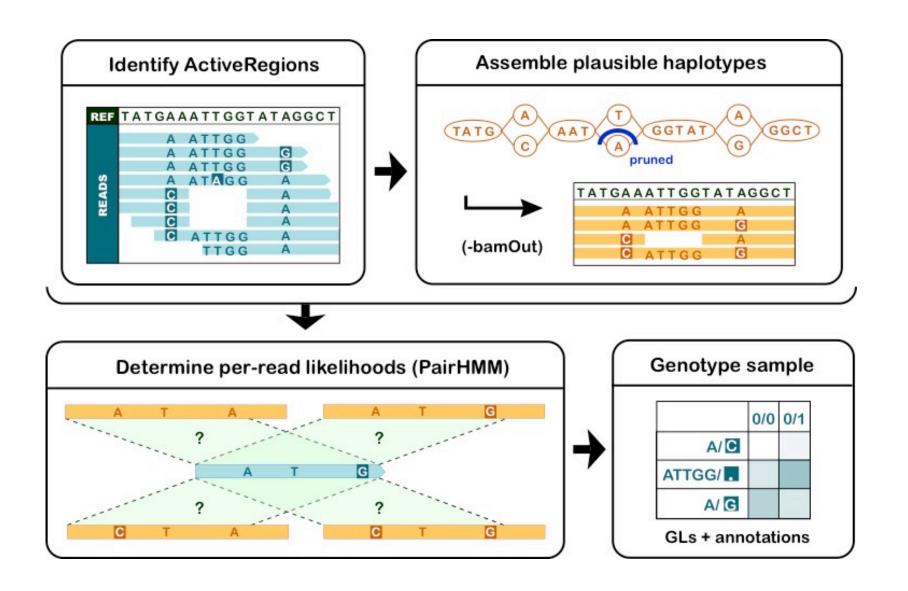

SNV AND INDEL DISCOVERY

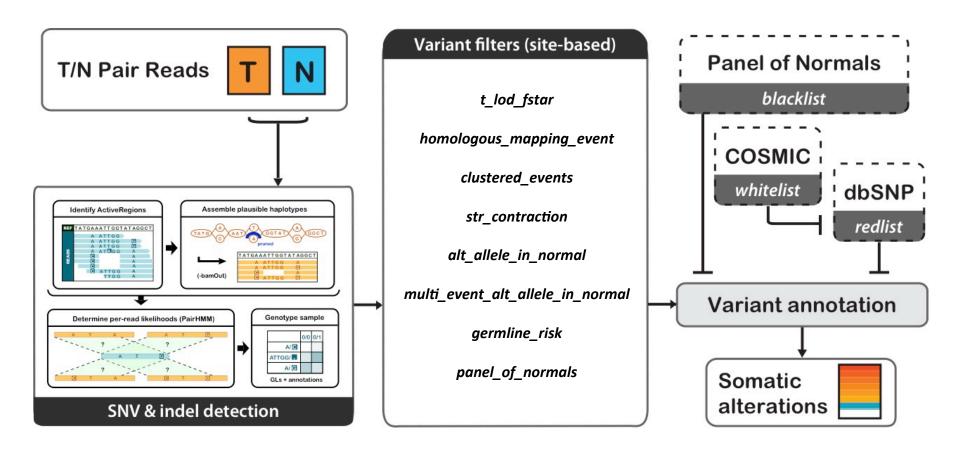

WITH MUTECT2 BETA



Tool is still in process of finalization DO NOT USE IN PRODUCTION

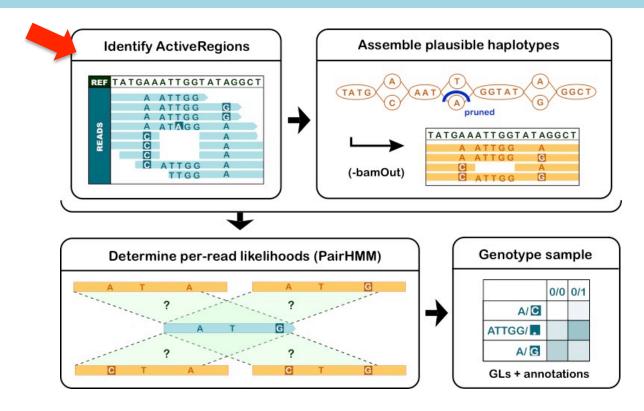
Challenges of somatic calling: Indels, CNVs & SVs




- Hard to call even in germline
- Rare events compared to SNPs
- Compounded by allele fraction
 - Tumor local ploidy = 4
 - Tumor # of mutated copies per cell = 1
 - \rightarrow Allelic fraction AF= 2/10 = 0.2
- We have a tool that calls indels

HaplotypeCaller

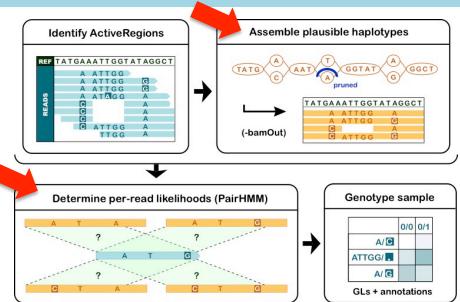
MuTect was hybridized with HaplotypeCaller to call somatic SNVs & indels

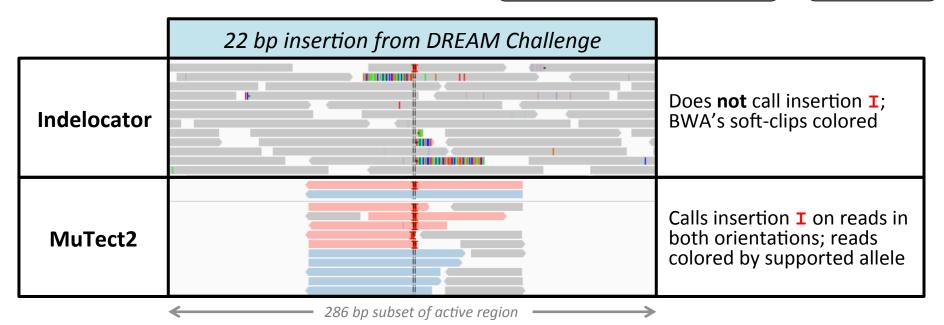


MuTect2 applies filters as VCF annotations

- HaplotypeCaller's reassembly method detects both SNVs and indels
- Built-in filters eliminate false positives, increasing specificity
- Optional filters screen for artifacts and germline events
- VCF annotations include new metrics

MuTect2 identifies Active Regions

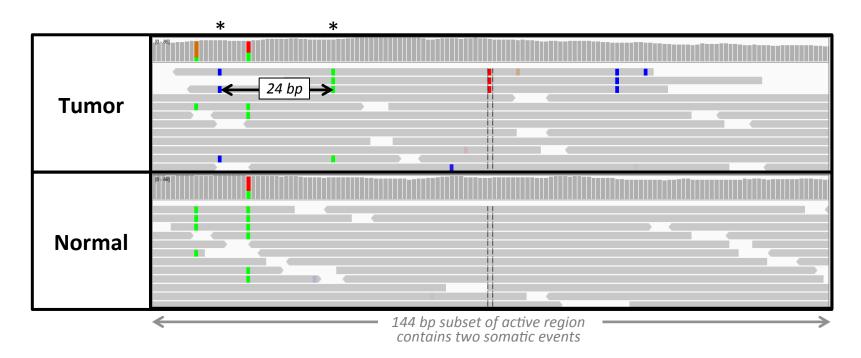

- Modified statistic threshold for somatic scenario uses LOD ≥ 4.0 in favor of the reference model
- Reads differentially filtered:
 - Tumor is strict: MAPQ ≥ Q20; discard discrepant overlapping reads
 - Normal is permissive: MAPQ ≥ Q0; keep alternate read from discrepant overlapping reads

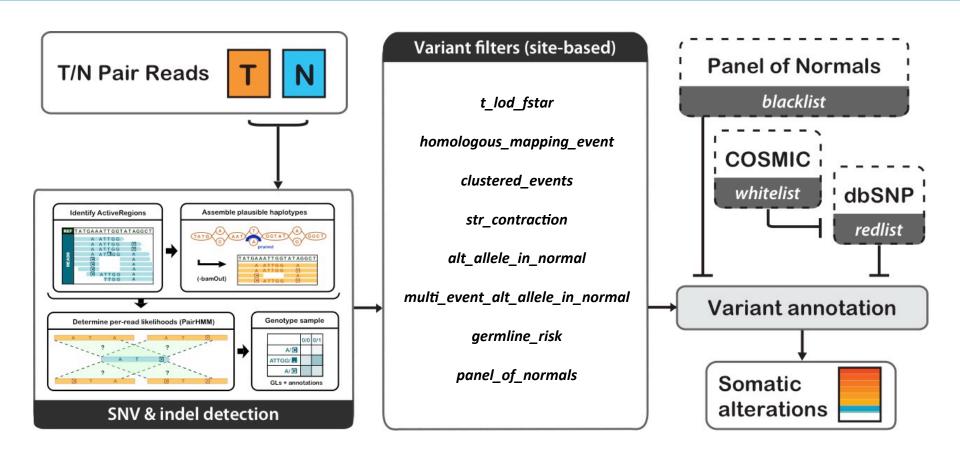

MuTect2 assembles haplotypes and runs PairHMM

 Reassembles reads into possible haplotypes using only high quality reads

 Minor technical change lowers tolerance for discarding reads

> For somatic events that are rare and at low allele fractions

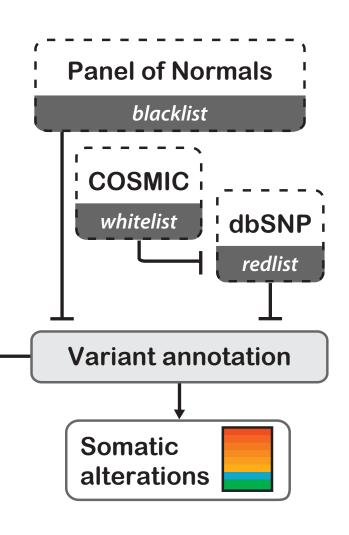



MuTect2 calls genotypes using M1 logic + PairHMM likelihoods

- Uses PairHMM likelihoods (like HC) instead of base quality scores (like M1)
- Also produces new metrics for each active region:

	New metric	Description	Example region
ECNT	Event Count	# of events in the haplotype	6
MIN_ED	Min Event Distance	Minimum distance between events	24 bp*
MAX_ED	Max Event Distance	Maximum distance between events	131 bp

MuTect2 applies filters as VCF annotations


MuTect2's built-in filters mark false positives, increase specificity

Downstream hard-filters allow upstream sensitivity

Mutect2 filter field	Description of filter	Evidence source
t_lod_fstar	Tumor does not meet likelihood threshold	PairHMM likelihoods
homologous_mapping_event	More than 3 events were observed in the tumor	Tumor
clustered_events new	Clustered events (≥2) observed in the tumor (with distance between ≥3)	Tumor
str_contraction new	Site filtered due to contraction of short tandem repeat region.	Tumor
alt_allele_in_normal	Evidence seen in the normal sample	Normal
multi_event_alt_allele_in_normal	Multiple events observed in tumor and normal	Normal
germline_risk	Evidence indicates this site is germline, not somatic	Normal, dbSNP/COSMIC
panel_of_normals	Seen in at least 2 samples in the panel of normals	PoN

Optional filters screen for noise & germline events

M2 annotates filtered calls found in PoN or dbSNP

If site is in PoN (≥ 2 samples), reject

- VCF FILTER field: panel_of_normals
- VCF INFO field: PON = #, where # is the count from the PoN

If a variant is in dbSNP but not in COSMIC, reject

- VCF FILTER field: germline_risk
- Flag in VCF INFO field: DB
- M2 increases threshold for evidence of variant from the normal sample to prove not germline

MuTect2 is in GATK v3.5

Example command for T/N variant calling:

```
java -jar GenomeAnalysisTK.jar \
   -T MuTect2 \
   -R reference.fasta \
   -I:tumor tumor.bam \
   -I:normal normal.bam \
   [--dbsnp dbSNP.vcf] \
   [--cosmic COSMIC.vcf] \
   [-L targets.interval_list] \
   -o output.vcf
```

For a recalibrated BAM:

```
-bamout bamout.bam
```

To specify a PON:

```
-PON m2_pon.vcf
```

To specify cross-patient contamination file:

```
-contaminationFile contamination.txt
```

Tab-separated file containing fraction of contamination in sequencing data (per sample) to remove. Format should be "<SampleID><TAB><Contamination>" per line.

Create your own panel of normals (PoN) in 2 steps

1. Create a sample-level PoN per sample using HaplotypeCaller:

2. Combined PoN retains variants called in at least two samples:

Benchmark MuTect2 against various data & tools

Project	Project Data		Variant	Count (other tools)
⊗ ICGC-TCGA DREAM	DREAM Synthetic Challenges 4 & 5 WG	lun avva	SNV	24,218
	pre-aligned data of mixed purity & heterogeneity made with Bamsurgeon	known	Indel	22,221
درد الله من الدي من الله الأباع كالكواد المراد الم	Consensus data of 5 sequencing runs (2	(partially)	SNV	37,532
HCC iii.	Agilent, 1 ICE, 2 WGS) for breast cancer cell lines HCC1143 & HCC1954	unknown	Indel	594
The Cancer Genome Atlas	Large callsets (no indels) of real cancer samples from TCGA GBM, LUAD, STAD, & THCA cohorts	unknown	SNV	289,306
NIA 4 2070	WG sample used widely as the gold	(mostly)	SNV	36,587
NA12878	standard for germline tools	known	Indel	2,801

MuTect2 performance goals:

- As good as MuTect1 (gold standard) on SNVs
- Better than *Indelocator* on indels

DREAM: MuTect1 ranked highly in SNV calling

- Broad's M1 workflow ranked highly in all 4 DREAM synthetic challenges
- Each challenge varies in purity and cancer cell fraction (CCF)
- 3 of 4 other top teams used M1 in workflow

simulation	Rank	Sensitivity	Precision	False Positive Rate (mutations per Mb)	Balanced Accuracy
100% purity	1 st	0.967	0.984	0.021	0.975
80% purity	1 st	0.961	0.992	0.010	0.977
100% purity 50%,33%,20% CCF	2 nd	0.918	0.981	0.038	0.949
80% purity 50%,35%, CCF	1 st	0.741	0.983	0.051	0.862

MuTect1 excels at accurately detecting low allele fraction mutations, hence uniquely suited for studying impure and heterogeneous tumors

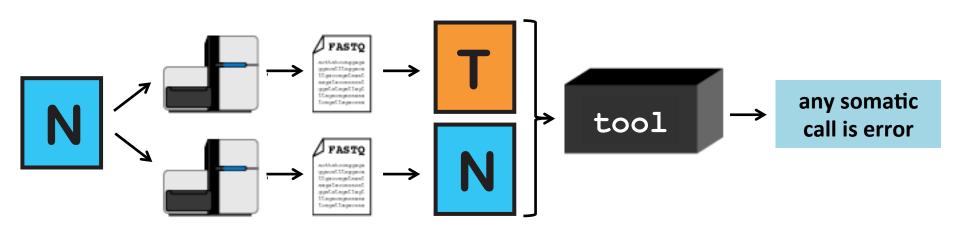
HCC & TCGA: MuTect2 calls SNVs as well as M1

Differences in sensitivity rates range from -3.96 to +1.73%

MuTect1

Project	Dataset	%FN/TP (FN count)	False positives	True positives	Sensitivity	Precision	Balanced Accuracy
HCC	HCC1143	HCC1143 1 (154) 33		18690	0.99	0.998	0.995
	HCC1954	6 (1004)	49	17151	0.94	0.997	0.971
TCGA	GBM	24 (4943)		20849	0.81		
	LUAD	4 (2949)		76989	0.96		
	STAD	3 (2166)		62063	0.97		
	THCA	22 (840)		3827	0.82		
		1					

MuTect2


Project	Dataset	%FN/TP (FN count)	False positives	True positives	Sensitivity	Precision	Balanced Accuracy
HCC	HCC1143	4 (655)	11	18189	0.97	0.999	0.982
	HCC1954	8 (1319)	15	16836	0.93	0.999	0.963
TCGA	GBM	29 (5768)		20024	0.78		
	LUAD	7 (5329)		74609	0.93		
	STAD	6 (3700)		60529	0.94		
	THCA	20 (774)		3893	0.83		
				avg ∆ -2%	+0.16%	-1.03%	

MuTect2 specificity is similar to M1 for SNVs

False Positive Rate (errors/Mbp) @ ~0.24 (M1) & ~0.25 (M2)

	SNVs errors/Mbp	Indels errors/Mbp
MuTect1	0.238 ± 0.002	N/A
MuTect2	0.247 ± 0.001	0.071± 0.002

To measure specificity, need to know the truth. We approximate:

DREAM: M2 calls SNVs as well as M1, Indels better than Indelocator

DREAM_Synthetic_4: BWA MEM, 80% purity, 50 & 35% subclones

Mode	ID	Submission Name	Team	# of Calls	Sensitivity	Precision	Balanced Accuracy *
SNV	2559951	MuTect-RSp2	Broad SMC	12272	0.741	0.983	0.862
	2549704	MuTect-RSp	Broad SMC	12282	0.741	0.982	0.862
	2528605	MuTect-R	Broad SMC	12288	0.741	0.981	0.861
	2510567	MuTectStock	Broad SMC	12879	0.754	0.952	0.853
	2550741	EmTooS	Broad SMC	14972	0.740	0.804	0.772
	2559911	novoBreak_indel	Ken_Chen_Lab	12059	0.788	0.928	0.858
	2556244	EmTooNVDBS	Broad SMC	11907	0.772	0.921	0.846
	2559878	novoBreak_indel	Ken_Chen_Lab	11341	0.751	0.940	0.845
Indel	2550739	EmTooS	Broad SMC	12168	0.776	0.906	0.841
	2550981	EmTooS	Broad SMC	12127	0.774	0.906	0.840
	2551191	EmTooSH2	Broad SMC	12068	0.772	0.908	0.840
	2519991	IndelStock	Broad SMC	4805	0.186	0.549	0.368

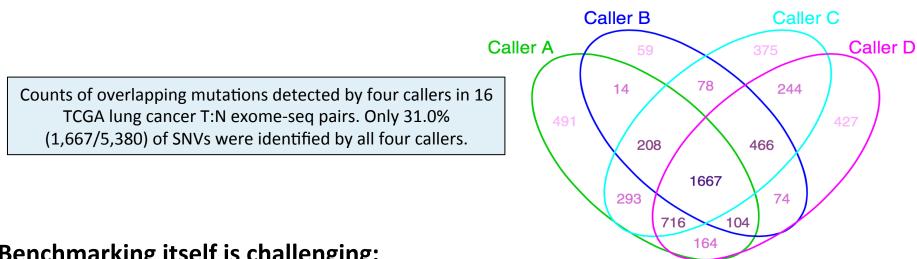
DREAM_Synthetic_5_leaderboard: Novoalign v3.02.05, 80% purity, 50% subclone

Mode	ID	Submission Name	Team	# of Calls	TPs	FNs	Sensitivity	Precision	Balanced Accuracy *
SNV	4869621	CASpoint.BIG-Cancerevo	Cancerevo	45356	45269	114	0.998	0.998	0.998
	4868623	EMILY_0.0001	BinaTeam	45374	45228	155	0.997	0.997	0.997
	3154033	ADA0.3iFilter_M0.35	BinaTeam	42707	42705	2678	0.941	1.000	0.971
	3160884	M2-stock	Broad SMC	42337	42324	3059	0.933	1.000	0.966
	3160968	MuTect-stock	Broad SMC	42106	42100	3283	0.928	1.000	0.964
	2924453	mutect <i>default</i>	SMCAdmins	41820	41810	3573	0.921	1.000	0.961
Indel	4868651	ETHAN_0.8	BinaTeam	15915	11576	4852	0.705	0.727	0.716
	4771022	ADRIAN_0.5	BinaTeam	16008	11606	4822	0.707	0.725	0.716
	3160888	M2-stock	Broad SMC	14999	11005	5423	0.670	0.734	0.702
	812846	LoFreq Somatic indel: v2.1.2 default	LoFreq Somatic - GIS	10436	8426	8002	0.513	0.807	0.660
	3160993	Indl-stock	Broad SMC	5853	0	16428	0.000	0.000	0.000

Cheat sheet of MuTect1 vs. MuTect2 features

	MuTect1	MuTect2				
Names	Originally <i>µTector</i> (2009)	GATK v3.5 jar's MuTect2				
Reference	Cibulskis et al. Nature Biotech, 2013	β-release				
Detects	SNV only	SNVs and indels				
Core statistical model	Locus-based and reliant on original alignment. Bayesian classifier, for both detection & classification of SNV	HaplotypeCaller's local reassembly engine in active region detects SNVs and indels and uses PairHMM per-read likelihoods				
	$P(b_i e_i, r, m, f) = \begin{cases} f^{e_i}/3 + (1-f)(1-e_i) & \text{if } b_i = r \\ f(1-e_i) + (1-f)^{e_i}/3 & \text{if } b_i = m \\ e_i/3 & \text{otherwise} \end{cases}$					
Genotyping	By evaluating likelihood based on base quality scores of candidate SNVs	M1's extended to handle indels				
Filtering	Pragmatic, hard-filters (6) to control FP rate: Proximal gap, poor mapping, triallelic site, observed in control, strand bias, clustered position	No VQSR yet. Hard-filters: Alt_allele_in_normal, multi_event_alt_allele_in_normal, germline_risk, clustered_events, homologous_mapping_event, panel_of_normals, str_contraction, t_lod_fstar				
Performance	The benchmark for somatic SNV calling	 As good as <i>MuTect1</i> on SNVs Better than <i>Indelocator</i> on indels 				
Formats	Callstats file	VCF with new annotations				

Further reading


http://www.broadinstitute.org/gatk/best-practices

New documentation will be posted for MuTect2 and the somatic workflow in the near future

Bonus slides follow

Before examining M2's performance, review benchmarking

Benchmarking itself is challenging:

- Variant-calling algorithms are highly parameterized a.
- Sequencing error profiles can vary between & within centers b.
- Validation data from independent tech or higher-depth sequencing undergo C. routines prone to same errors, e.g. alignment artifacts
- Most research has focused on coding aberrations, restricting validation to <2% d. of genome

Field moves forward by sharing and iteration

Benchmarking approaches are self-limiting

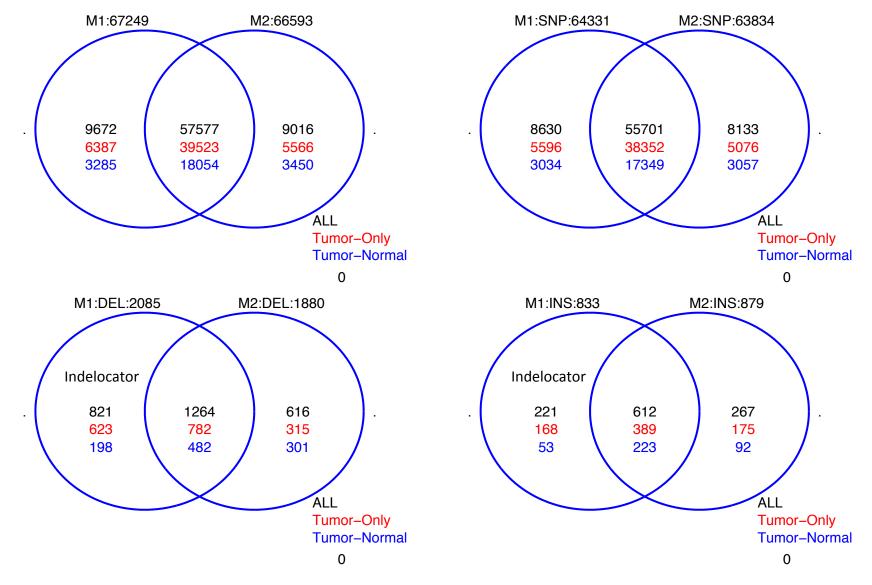
Cannot model full diversity of nonrandom sequencing errors

Unknown ground truth

Experimental validation expensive & impractical for general application. *E.g.* To confirm clonal events:

- study several metastases from same patient
- ultra-deep sequencing
- sequence very small numbers of single cells

E.g. Virtual tumors method


- We know all true mutations with certainty
- Simulate somatic mutations at controlled allelic fractions
- Limitations: simulates somatic mutations using germline events, which differ from somatic mutations in nucleotide substitution frequencies and context

E.g. Downsampling

- Subset reads of validated somatic mutations to measure sensitivity of caller on known mutations at various simulated depths of coverage
- Limitations: larger error for sensitivity estimate, only previously validated allele fractions considered, excludes mutations not originally detected thereby overestimating true sensitivity, specificity cannot be measured

Conclusion: use multiple benchmarking approaches

DLBCL Venns (PoN + alt 2 indelocator filter)

M2 VCF output

Header:

- a. File format specified
- b. Filters described
- c. FORMAT field tags described
- d. INFO field items described
- e. Input sample files
- f. Contigs listed per row
- g. Reference fasta

1	##fileformat=VCFv4.1
2	##FILTER= <id=alt_allele_in_normal,description="evidence in="" normal="" sample"="" seen="" the=""></id=alt_allele_in_normal,description="evidence>
3	##FILTER= <id=clustered_events,description="clustered events="" in="" observed="" the="" tumor"=""></id=clustered_events,description="clustered>
4	##FILTER= <id=germline_risk,description="evidence germline,="" indicates="" is="" not="" site="" somatic"="" this=""></id=germline_risk,description="evidence>
5	##FILTER= <id=homologous event,description="More than three events were observed in the tumor" mapping=""></id=homologous>
6	##FILTER= <id=multi_event_alt_allele_in_normal,description="multiple and="" events="" in="" normal"="" observed="" time="" tumor=""></id=multi_event_alt_allele_in_normal,description="multiple>
7	##FILTER= <id=maid_event_ait_aliele_in_normal, and="" description="Multiple" events="" in="" normal="" observed="" tumor=""> ##FILTER=<id=panel description="Seen in at least 2 samples in the panel of normals" normals,="" of=""></id=panel></id=maid_event_ait_aliele_in_normal,>
8	##FILTER= <id=panel_or_normals,description="site contraction="" due="" filtered="" of="" region"="" repeat="" short="" tandem="" to=""></id=panel_or_normals,description="site>
9	##FILTER= <id=str_contraction, description="Site intered due to contraction of short tandem repeat region > ##FILTER=<ID=t_lod_fstar, Description=" does="" likelihood="" meet="" not="" threshold"="" tumor=""></id=str_contraction,>
10	##FORMAT= <id=c_lod_istar,description="tumor does="" likelinood="" meet="" not="" threshold"=""> ##FORMAT=<id=ad,number=.,type=integer,description="allelic alleles="" alt="" and="" depths="" for="" in="" listed"="" order="" ref="" the=""></id=ad,number=.,type=integer,description="allelic></id=c_lod_istar,description="tumor>
	##FORMAT= <id=ad,number=.,type=integer,description="allele event="" fraction="" in="" of="" the="" tumor"=""></id=ad,number=.,type=integer,description="allele>
	##FORMAT= <id=af,number=1,type=float,description="allele event="" in="" of="" the="" traction="" tumor"=""> ##FORMAT=<id=alt_f1r2,number=1,type=integer,description="count f1r2="" in="" of="" orientation="" pair="" reads="" supporting="" td="" the<=""></id=alt_f1r2,number=1,type=integer,description="count></id=af,number=1,type=float,description="allele>
	##FORMAT= <id=alt_f2r1,number=1,type=integer,description="count f2r1="" in="" of="" orientation="" pair="" reads="" supporting="" td="" the<=""></id=alt_f2r1,number=1,type=integer,description="count>
	##FORMAT= <id=dp,number=1,type=integer,description="approximate (reads="" bad="" depth="" ma<="" mq="255" or="" read="" td="" with=""></id=dp,number=1,type=integer,description="approximate>
	##FORMAT= <id=foxog,number=1,type=float,description="fraction alt="" error"="" indicating="" of="" oxog="" reads=""></id=foxog,number=1,type=float,description="fraction>
	##FORMAT= <id=gq,number=1,type=integer,description="genotype quality"=""></id=gq,number=1,type=integer,description="genotype>
	##FORMAT= <id=gt,number=1,type=string,description="genotype"></id=gt,number=1,type=string,description="genotype">
	##FORMAT= <id=pgt,number=1,type=string,description="physical a<="" describing="" haplotype="" how="" information,="" phasing="" td="" the=""></id=pgt,number=1,type=string,description="physical>
	##FORMAT= <id=pid,number=1,type=string,description="physical each="" id="" information,="" phasing="" td="" unique="" where="" within<=""></id=pid,number=1,type=string,description="physical>
	##FORMAT= <id=pl,number=g,type=integer,description="normalized, as="" defined<="" for="" genotypes="" likelihoods="" phred-scaled="" td=""></id=pl,number=g,type=integer,description="normalized,>
	##FORMAT= <id=qss,number=a,type=integer,description="sum allele"="" base="" each="" for="" of="" quality="" scores=""></id=qss,number=a,type=integer,description="sum>
	##FORMAT= <id=ref_f1r2,number=1,type=integer,description="count f1r2="" in="" of="" orientation="" pair="" reads="" supporting="" td="" the<=""></id=ref_f1r2,number=1,type=integer,description="count>
	##FORMAT= <id=ref_f2r1,number=1,type=integer,description="count f2r1="" in="" of="" orientation="" pair="" reads="" supporting="" td="" the<=""></id=ref_f2r1,number=1,type=integer,description="count>
	##GATKCommandLine.M2= <id=m2,version=3.4-33-g9cd2cd4,date="tue 2015",epoch="14381311452</td" 20:52:25="" 28="" edt="" jul=""></id=m2,version=3.4-33-g9cd2cd4,date="tue>
25	##INFO= <id=db,number=0,type=flag,description="dbsnp membership"=""></id=db,number=0,type=flag,description="dbsnp>
26	##INFO= <id=ecnt,number=1,type=string,description="number events="" haplotype"="" in="" of="" this=""></id=ecnt,number=1,type=string,description="number>
	##INFO= <id=hcnt,number=1,type=string,description="number haplotypes="" of="" support="" that="" this="" variant"=""></id=hcnt,number=1,type=string,description="number>
	##INFO= <id=max_ed,number=1,type=integer,description="maximum active="" between="" distance="" events="" in="" region"="" this=""></id=max_ed,number=1,type=integer,description="maximum>
	##INFO= <id=min_ed,number=1,type=integer,description="minimum active="" between="" distance="" events="" in="" region"="" this=""></id=min_ed,number=1,type=integer,description="minimum>
	##INFO= <id=nlod,number=1,type=string,description="normal lod="" score"=""></id=nlod,number=1,type=string,description="normal>
	##INFO= <id=pon,number=1,type=string,description="count from="" normals"="" of="" panel=""></id=pon,number=1,type=string,description="count>
32	##INFO= <id=rpa,number=.,type=integer,description="number allele<="" each="" for="" is="" of="" repeat="" repeated,="" tandem="" td="" times="" unit=""></id=rpa,number=.,type=integer,description="number>
33	##INFO= <id=ru,number=1,type=string,description="tandem (bases)"="" repeat="" unit=""></id=ru,number=1,type=string,description="tandem>
34	##INFO= <id=str,number=0,type=flag,description="variant a="" is="" repeat"="" short="" tandem=""></id=str,number=0,type=flag,description="variant>
35	##INFO= <id=tlod,number=1,type=string,description="tumor lod="" score"=""></id=tlod,number=1,type=string,description="tumor>
36	##SAMPLE= <id=normal,file= c500="" picard_aggregation="" seq="" tcga-cf-a8hy-10a-01d-a362-08="" tcga-cf-a8hy-10a-<="" td="" v1=""></id=normal,file=>
37	##SAMPLE= <id=tumor,file= c500="" picard_aggregation="" seq="" tcga-cf-a8hy-01a-11d-a364-08="" tcga-cf-a8hy-01a-1<="" td="" v1=""></id=tumor,file=>
38	##contig= <id=1,length=249250621></id=1,length=249250621>
22	##contig= <id=nc_007605,length=171823></id=nc_007605,length=171823>
23	##reference=file:///seq/references/Homo_sapiens_assembly19/v1/Homo_sapiens_assembly19.fasta

11 Data columns:

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	TUMOR	NORMAL
2	25469291		Т	С		t_lod_fstar	ECNT=1;HCNT	GT:AD:AF:ALT	0/1:32,2:0.05	0/0:31,0:0.00:
6	32816998	rs12527715	Т	С		germline_risk	DB;ECNT=1;H	GT:AD:AF:ALT	0/1:1,3:0.750	0/0:4,0:0.00:0