Introduction to Phylogenetics ||

From the Tree of the Life Website,
University of Arizona
Sagi Snir
Dept. of Evol. Env. Biol. and The Inst. of Evolution, University of Haifa

Introduction to Phylogenetics II

-Sequence based methods:
-Two main categories:
: Trees are constructed by comparing the characters of the corresponding sequences. Characters are mainly molecular (nucleotides in homologous DNA).
Distance based nrethod': Input is a square symmetric distance matrix. Seeks trees (edge-weighted) best-describing these distances.

- Supertree methods:
-Construct small (reliable) trees form any data and combine it to a complete tree by combinatorial algorithms.
-Quartet based methods.

species	C	C	C	C	\cdots													C
dog	A	A	C	A	G	G	T	C	T	T	C	G	A	G	G	C	C	C
horse	A	A	C	A	G	G	C	C	T	A	T	G	A	G	A	C	C	C
frog	A	A	C	A	G	G	T	C	T	T	T	G	A	G	T	C	C	C
human	A	A	C	A	G	G	T	C	T	T	T	G	A	T	G	A	C	C
pig	A	A	C	A	G	T	T	C	T	T	C	G	A	T	G	G	C	C
	$*$	$*$	$*$	$*$	$*$			$*$	$*$			$*$	$*$				$*$	$*$

1. Input: A n ${ }^{*} m$ matrix.
2. Each character (column) is processed independently.
3. Task: Find a tree that best explains simultaneously all characters.

- Introduced at 1971 by Walter Fitch: Fitch, Toward defining the course of evolution: minimum change for a specific tree topology, 1971.
- based on the "Occam's Razor" principle that evolution is parsimonious.
- A combinatorial, non-parametric method.
- Seeks for the tree that minimizes the number of
 changes along the tree branches.
- A very widespread technique in biology.
- "If you know only one method for phylogenetics, MP should be the one"

The Parsimony Criterion on Trees

- Given a tree (topology) with equal length sequences labeling its nodes.
- The parsimony score: The number of changes along the edges of the tree.
- Can be thought of as the sum of Hamming distances along the edges.

The Maximum Parsimony Problem

- Input: A set of sequences (representing some gene at a group of species).
- Task: Find a topology leaf labeled by the input sequences, and labeling to internal nodes minimizing the parsimony score.
- Decomposes into two problems:
- A Small Problem: Given a topology leaf labeled by a set of sequences, find internal nodes labeling minimizing the parsimony score.
- A Big Problem: Find a topology under which the small problem is minimized.

The Small MP problem on Trees

Task: finding internal labeling.

Score=2

Score=4

Score=3

Fitch Algorithm for Small MP on Trees

- A classical DP style algorithm.
- Works separately on each column.

First Phase: bottom up (v_{1} and v_{2} are children of v):
$A(v)=\left\{\begin{array}{lc}A\left(v_{1}\right) \cap A\left(v_{2}\right) & \text { if } A\left(v_{1}\right) \cap A\left(v_{2}\right) \neq \phi \\ A\left(v_{1}\right) \cup A\left(v_{2}\right) & \text { otherwise }\end{array}\right.$
Second Phase: top down $(f(v)$ is a parent of $v)$:

$$
B(v)=\left\{\begin{array}{cc}
\sigma \in A(v) \cap A(f(v)) & \text { if } A(v) \cap A(f(v)) \neq \phi \\
\sigma \in A(v) & \text { otherwise }
\end{array}\right.
$$

Fitch Algorithm (example)

Fitch Algorithm (example)

First phase:

Fitch Algorithm (example)

Second phase:

Fitch Algorithm (example)

Second phase:

Fitch Algorithm (example)

Second phase:

Fitch Algorithm

Claim: Fitch algorithm solves small MP

- Optimality for single character (simple induction).
- Global optimum (change summation order).

The Big MP problem on Trees

- Input: A set of sequences.

- Task: Find a topology over the sequences under which the small problem minimizes.

Number of trees

- Binary unrooted trees
- First cuont number of edges
- Divide into

- External edges (always n).
- Internal edges.
- New taxons are always added in a middle of an existing edge.
- Observation: adding a taxon splits an existing edge, creating a new intemal edge.
- Summarizing: adding a new taxon adds 2 edges - the new intema edge and the external edge leading to that taxon.

Number of trees

- Back to number of trees, N_{u}.
- For $n=3$ we have $N_{u}(3)=1$
- We can insert the new taxon 4 on any existing edge

Number of trees

- Back to nomber of trees, N_{u}.
- For $n=3$ we have $N_{u}(3)=1$
- We can insert the new taxon 4 on any existing edge

Number of trees

- Back to nomber of trees, N_{u}
- For $n=3$ we have $N_{u}(3)=1$
- We can insert the new taxon 4 on any existing edge

Number of trees

- Back to nomber of trees, N_{u}.
- For $n=3$ we have $N_{u}(3)=1$
- We can insert the new taxon 4 on any existing edge
- Therefore we get
$-N_{u}(n+1)=N_{u}(n)\left|E_{n}\right|=N_{u}(n)(2 n-3)$
- $\operatorname{Or} N_{u}(n+1) / N_{u}(n)=2 n-3$
- $\operatorname{Or} N_{u}(n) / N_{u}(n-1)=2 n-5$
$\frac{(2 n-5)!}{2 * 4 * 6 * 8 * 10}=\frac{(2 n-5)!}{\prod_{n-3} 2 i}=\frac{(2 n-5)!}{2^{n-3}(n-3)!}$

Solving NP-hard problems exactly is ... unlikely

- Number of (unrooted) binary trees on n leaves is (2n-5)!! = $(2 n-5)!/\left[2^{n-3}(n-3)!\right]$
- If each tree on 1000 taxa could be analyzed in 0.001 seconds, we would find the best tree in 2890 millennia
- NP-hard in general.
- Heuristics use branch and bound techniques.

\#leaves	\#trees
4	3
5	15
6	105
7	945
8	10395
9	135135
10	2027025
20	2.2×10^{20}
100	4.5×10^{190}
1000	2.7×10^{2900}

- An estimation method is statistically consistent under a model if the probability that the method returns the true tree goes to 1 as the sequence length goes to infinity.
- Convergence rate: the amount of data that a method needs to return the true tree with high probability, as a function of the model tree.

Statistical consistency and convergence rates

- Felsenstein (1978) developed a simple phylogeny model including four taxa and a mixture of short and long branches, p and q, indicating low and high substitution probabilities resp.
- Under this model parsimony will give the wrong tree.

- The assumption is that $\boldsymbol{p , q} \boldsymbol{q} 1 / 2$ as these actually derived from rate of substitutions and by definition cannot exceed $1 / 2$.
- With more data the certainty that parsimony will give the wrong tree increases - so that parsimony is statistically inconsistent.

- Parsimony does not care of branch lengths (non parametric).
- Aims to minimize mutations (changes) over branches.
- That means putting together (nearby) taxa with same state.

A change from 1 to 0

- Our alphaet is $\{0,1\}$ (can indicate purines/pyrimidines)
- Let $C_{x y x y}$ be the case when leaves A,C get different values than B, D.
- Note that in this case, parsimony will return AC|BD.

- That is, parsimony errs!
- Equivalently, define $C_{x x y y}$ to be the case when leaves A, B get different values than C,D.

- Let us calculate $P\left(\mathrm{C}_{x x y y}\right)$: the probability seeing $\mathrm{C}_{x \times y y}$ seeing (note, species names were removed, but topology is $\mathrm{A}, \mathrm{B} \mid \mathrm{C}, \mathrm{D}$)

- We get $P\left(C_{x x y y}\right)=(1-p)(1-q)^{2} p q+(1-p)^{2}(1-q) 2 q+p^{2} q^{3}+(1-p)(1-q)^{2} p q$
- Let us calculate $P\left(\mathrm{C}_{\mathrm{xy} x \mathrm{y}}\right)$: the probability seeing $\mathrm{C}_{\mathrm{xyxy}}$

- We get $P\left(C_{x y x y}\right)=(1-q)(1-p)^{2} p q+(1-p)(1-q) p q^{2}+(1-q)(1-p) p q^{2}+(1-q)^{3} p^{2}$

1. $P($ Cxyxy $)-P(C x x y y)=(1-2 q)\left[q^{2}(1-p)^{2}+(1-q)^{2} p^{2}\right]$

2. This is always positive as $q<1 / 2$.

- More intuitively:
- B and C will mostly have 's state (no mutation).
- Whatever states A and D take is either uninformative for mp or misleading.

Very much!!!

- Advocates of parsimony initially responded by claiming that Felsenstein's result showed only that his model was unrealistic.
- It is now recognised that the
branch attraction (in the
Felsenstein Zone) is one of the most serious problems in phylogenetic inference.

