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• Sequence based methods: 
– Two main categories:   

• Character based methods: Trees are constructed by 
comparing the characters of the corresponding sequences. 
Characters are mainly molecular (nucleotides in homologous 
DNA). 
• Distance based methods: Input is a square symmetric 
distance matrix. Seeks trees (edge-weighted) best-describing 
these distances. 

• Supertree methods: 
– Construct small (reliable) trees form any data and 
combine it to a complete tree by combinatorial 
algorithms. 
– Quartet based methods. 

Introduction to Phylogenetics II 
Character based methods – Maximum Parsimony 
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Sequence Evolution 
(substantially simplified) 
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Reconstructing the Tree 

Unrooted trees! 



Character Based Methods 
species C1 C

2 C3 C4 … C
m 

dog A A C A G G T C T T C G A G G C C C 

horse A A C A G G C C T A T G A G A C C C 

frog A A C A G G T C T T T G A G T C C C 

human A A C A G G T C T T T G A T G A C C 

pig A A C A G T T C T T C G A T G G C C 

* * * * * * * * * * * 

1.  Input: A n*m matrix. 

2. Each character (column) is processed independently. 

3. Task: Find a tree that best explains simultaneously all 
characters. 



Maximum Parsimony 
•  Introduced at 1971 by Walter Fitch: Fitch, Toward 

defining the course of evolution: minimum change for a 
specific tree topology, 1971. 

•  based on the "Occam's Razor" principle that 
evolution is parsimonious. 

•  A combinatorial, non-parametric method. 
•  Seeks for the tree that minimizes the number of 

changes along the tree branches. 
•  A very widespread technique in biology. 
•  “If you know only one method for phylogenetics, 

MP should be the one” 



The Parsimony Criterion on Trees 
 •  Given a tree (topology) with equal length sequences 

labeling its nodes. 
•  The parsimony score: The number of changes along the 

edges of the tree. 
•  Can be thought of as the sum of Hamming distances 

along the edges. 
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The Maximum Parsimony Problem  
 

•  Input: A set of sequences (representing some gene at a 
group of species). 

•  Task: Find a topology leaf labeled by the input sequences, 
and labeling to internal nodes minimizing the parsimony 
score. 

•  Decomposes into two problems: 
–  A Small Problem: Given a topology leaf labeled by a set 

of sequences, find internal nodes labeling minimizing the 
parsimony score. 

–  A Big Problem: Find a topology under which the small 
problem is minimized. 



The Small MP problem on Trees 
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Fitch Algorithm for Small MP on Trees 

•  A classical DP style algorithm. 
•  Works separately on each column. 
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Fitch Algorithm (example) 
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Fitch Algorithm (example) 
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Fitch Algorithm (example) 
Second phase: 
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Fitch Algorithm 

Claim: Fitch algorithm solves small MP 

•  Optimality for single character (simple 
induction). 

•  Global optimum (change summation order). 



The Big MP problem on Trees 
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•  Input: A set of 
sequences. 

•  Task: Find a topology 
over the sequences 
under which the small 
problem minimizes. 



Number of trees 
•  Binary unrooted trees 
•  First cuont number of edges 
•  Divide into  

–  External edges (always n). 
–  Internal edges. 

•  New taxons are always added in a 
middle of an existing edge. 

•  Observation: adding a taxon splits an 
existing edge, creating a new internal 
edge. 

•  Summarizing: adding a new taxon adds 2 
edges – the new internal edge and the 
external edge leading to that taxon. 

•  As for n=3 we have no internal edges, we 
obtain |En| = 2n-3 



Number of trees 
•  Back to number of trees, Nu. 
•  For n=3 we have Nu(3) = 1 
•  We can insert the new taxon 4 on any 

existing edge 1 
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Number of trees 
•  Back to nomber of trees, Nu. 
•  For n=3 we have Nu(3) = 1 
•  We can insert the new taxon 4 on any 

existing edge 
•  Therefore we get  

–  Nu(n+1) = Nu(n) |En| = Nu(n) (2n-3) 
–  Or Nu(n+1)/Nu(n)= 2n-3 
–  Or Nu(n)/Nu(n-1)= 2n-5 
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Solving NP-hard problems 
exactly is … unlikely 

•  Number of 
(unrooted) binary 
trees on n leaves is 
(2n-5)!! =  
 (2n-5)!/[2n-3(n-3)!]  

•  If each tree on 1000 
taxa could be 
analyzed in 0.001 
seconds, we would 
find the best tree in 

      2890 millennia 
•  NP-hard in general. 
•  Heuristics use 

branch and bound 
techniques. 

#leaves #trees 
4 3 
5 15 
6 105 
7 945 
8 10395 
9 135135 

10 2027025 
20 2.2 x 1020 

100 4.5 x 10190 

1000 2.7 x 102900 



Statistical performance issues 

•  An estimation method is statistically consistent under a 
model if the probability that the method returns the true 
tree goes to 1 as the sequence length goes to infinity. 

•  Convergence rate: the amount of data that a method 
needs to return the true tree with high probability, as a 
function of the model tree. 



Statistical consistency and 
convergence rates 



Absolute fast convergence vs. 
exponential convergence 



Parsimony can be inconsistent 
•  Felsenstein (1978) developed a simple phylogeny model including four 

taxa and a mixture of short and long branches, p and q, indicating low 
and high substitution probabilities resp. 

•  Under this model parsimony will give the wrong tree. 

•  The assumption is that p,q < ½ as these actually derived from rate of 
substitutions  and by definition cannot exceed ½. 

•  With more data the certainty that parsimony will give the wrong tree 
increases - so that parsimony is statistically inconsistent. 
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Parsimony can be inconsistent 

•  Parsimony does not care of branch lengths (non parametric). 
•  Aims to minimize mutations (changes) over branches. 
•  That means putting together (nearby) taxa with same state. 
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Parsimony inconsistency 
•  Our alphaet is {0,1} (can 

indicate purines/pyrimidines) 

•  Let Cxyxy be the case when 
leaves A,C get different values 
than B,D. 

•  Note that in this case, 
parsimony will return AC|BD. 

•  That is, parsimony errs! 

•  Equivalently, define Cxxyy to 
be the case when leaves A,B 
get different values than C,D. 
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•  Let us calculate P(Cxxyy): the probability seeing Cxxyy seeing  
    (note, species names were removed, but topology is A,B|C,D) 

  

Parsimony inconsistency 
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•  We get P(Cxxyy)= (1-p)(1-q)2pq+(1-p)2(1-q)2q+p2q3+(1-p)(1-q)2pq 



•  Let us calculate P(Cxyxy): the probability seeing Cxyxy 

Parsimony inconsistency 
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•  We get P(Cxyxy)= (1-q)(1-p)2pq+(1-p)(1-q)pq2+ (1-q)(1-p)pq2 +(1-q)3p2 



Parsimony inconsistency 

1. P(Cxyxy) - P(Cxxyy)=(1-2q)[q2(1-p)2+(1-q)2p2] 

2. This is always  positive as q<1/2. 
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r 

•  More intuitively: 
q  B and C will mostly have r’s 

state (no mutation). 

q  Whatever states A and D take 
is either uninformative for mp 
or misleading. 



Long-branch Attraction 
•  Is all this realistic? Very much!!! 
•  Advocates of parsimony initially 

responded by claiming that 
Felsenstein’s result showed only that 
his model was unrealistic. 

•  It is now recognised that the long-
branch attraction (in the 
Felsenstein Zone) is one of the most 
serious problems in phylogenetic 
inference. 


