Introduction to Phylogenetics II

From the Tree of the Life Website, University of Arizona

Sagi Snir Dept. of Evol. Env. Biol. and The Inst. of Evolution, University of Haifa

Introduction to Phylogenetics II

Character based methods – Maximum Parsimony

•Sequence based methods:

-Two main categories:

•Character based methods: Trees are constructed by comparing the characters of the corresponding sequences. Characters are mainly molecular (nucleotides in homologous DNA).

•Distance based methods: Input is a square symmetric distance matrix. Seeks trees (edge-weighted) best-describing these distances.

•Supertree methods:

-Construct small (reliable) trees form any data and combine it to a complete tree by combinatorial algorithms.

-Quartet based methods.

Character Based Methods

species	C1	C 2	C3	C4														C m
dog	Α	A	С	A	G	G	Т	С	Т	Т	С	G	Α	G	G	С	С	С
horse	А	A	С	Α	G	G	С	С	Т	Α	Т	G	Α	G	А	С	С	С
frog	Α	A	С	Α	G	G	Т	С	Т	Т	Т	G	Α	G	Т	С	С	С
human	Α	A	С	Α	G	G	Т	С	Т	Т	Т	G	Α	Т	G	A	С	С
pig	Α	A	С	A	G	Т	Т	С	Т	Т	С	G	A	Т	G	G	С	С
	*	*	*	*	*			*	*			*	*				*	*

- 1. Input: A n*m matrix.
- 2. Each character (column) is processed independently.
- 3. Task: Find a tree that best explains simultaneously all characters.

Maximum Parsimony

- Introduced at 1971 by Walter Fitch: Fitch, Toward defining the course of evolution: minimum change for a specific tree topology, 1971.
- based on the "Occam's Razor" principle that evolution is parsimonious.
- A combinatorial, non-parametric method.
- Seeks for the tree that minimizes the number of changes along the tree branches.
- A very widespread technique in biology.
- "If you know only one method for phylogenetics, MP should be the one"

The Parsimony Criterion on Trees

- Given a tree (topology) with *equal length* sequences labeling its nodes.
- The *parsimony score*: The number of changes along the edges of the tree.
- Can be thought of as the sum of *Hamming distances* along the edges.

The Maximum Parsimony Problem

- Input: A set of sequences (representing some gene at a group of species).
- Task: Find a topology leaf labeled by the input sequences, and labeling to internal nodes *minimizing the parsimony score*.
- Decomposes into two problems:
 - A Small Problem: Given a topology leaf labeled by a set of sequences, find internal nodes labeling minimizing the parsimony score.
 - A *Big Problem*: Find a topology under which the small problem is minimized.

The Small MP problem on Trees

Fitch Algorithm for Small MP on Trees

- A classical DP style algorithm.
- Works separately on each column.

First Phase: bottom up (v_1 and v_2 are children of v):

 $A(v) = \begin{cases} A(v_1) \cap A(v_2) & \text{if } A(v_1) \cap A(v_2) \neq \phi \\ A(v_1) \cup A(v_2) & \text{otherwise} \end{cases}$ Second Phase: top down (f(v) is a parent of v): $B(v) = \begin{cases} \sigma \in A(v) \cap A(f(v)) & \text{if } A(v) \cap A(f(v)) \neq \phi \\ \sigma \in A(v) & \text{otherwise} \end{cases}$

Second phase:

Second phase:

Fitch Algorithm

Claim: Fitch algorithm solves small MP

- Optimality for single character (simple induction).
- Global optimum (change summation order).

The Big MP problem on Trees

- Input: A set of sequences.
- Task: Find a topology over the sequences under which the *small problem minimizes*.

- Binary unrooted trees
- First cuont number of edges
- Divide into
 - External edges (always n).
 - Internal edges.
- New taxons are always added in a middle of an existing edge.
- Observation: adding a taxon splits an existing edge, creating a new internal edge.
- Summarizing: adding a new taxon adds 2 edges – the new internal edge and the external edge leading to that taxon.
- As for n=3 we have no internal edges, we obtain $|E_n| = 2n-3$

- Back to number of trees, N_{u} .
- For n=3 we have $N_u(3) = 1$
- We can insert the new taxon 4 on any existing edge

- Back to nomber of trees, N_u .
- For n=3 we have $N_u(3) = 1$
- We can insert the new taxon 4 on any existing edge

- Back to nomber of trees, N_{u} .
- For n=3 we have $N_u(3) = 1$
- We can insert the new taxon 4 on any existing edge

- Back to nomber of trees, N_{u} .
- For n=3 we have $N_u(3) = 1$
- We can insert the new taxon 4 on any existing edge
- Therefore we get
 - $N_u(n+1) = N_u(n) |E_n| = N_u(n) (2n-3)$
 - Or $N_u(n+1)/N_u(n)=2n-3$
 - Or $N_u(n)/N_u(n-1)=2n-5$

$$\frac{(2n-5)!}{2*4*6*8*10} = \frac{(2n-5)!}{\prod_{n-3} 2i} = \frac{(2n-5)!}{2^{n-3}(n-3)!}$$

Solving NP-hard problems exactly is unlikely

- Number of (unrooted) binary trees on *n* leaves is (2n-5)!! = (2n-5)!/[2ⁿ⁻³(n-3)!]
- If each tree on 1000 taxa could be analyzed in 0.001 seconds, we would find the best tree in 2890 millennia
- NP-hard in general.
- Heuristics use branch and bound techniques.

#leaves	#trees						
4	3						
5	15						
6	105						
7	945						
8	10395						
9	135135						
10	2027025						
20	2.2 x 10 ²⁰						
100	4.5 x 10 ¹⁹⁰						
1000	2.7 x 10 ²⁹⁰⁰						

Statistical performance issues

- An estimation method is statistically consistent under a model if the probability that the method returns the true tree goes to 1 as the sequence length goes to infinity.
- Convergence rate: the amount of data that a method needs to return the true tree with high probability, as a function of the model tree.

Statistical consistency and convergence rates

Absolute fast convergence vs. exponential convergence

Parsimony can be inconsistent

- Felsenstein (1978) developed a simple phylogeny model including four taxa and a mixture of short and long branches, *p* and *q*, indicating low and high substitution probabilities resp.
- Under this model parsimony will give the wrong tree.

- The assumption is that $p,q < \frac{1}{2}$ as these actually derived from *rate of substitutions* and by definition cannot exceed $\frac{1}{2}$.
- With more data the certainty that parsimony will give the wrong tree increases so that parsimony is statistically inconsistent.

- Parsimony does not care of branch lengths (non parametric).
- Aims to minimize mutations (changes) over branches.
- That means putting together (nearby) taxa with same state.

A change from 1 to 0

- Our alphaet is {0,1} (can indicate purines/pyrimidines)
- Let C_{xyxy} be the case when leaves A,C get different values than B,D.
- Note that in this case, parsimony will return AC|BD.
- That is, parsimony errs!
- Equivalently, define C_{xxyy} to be the case when leaves A, B get different values than C, D.

 Let us calculate P(C_{xxyy}): the probability seeing C_{xxyy} seeing (note, species names were removed, but topology is A,B|C,D)

• We get $P(C_{xxyy}) = (1-p)(1-q)^2pq+(1-p)^2(1-q)2q+p^2q^3+(1-p)(1-q)^2pq$

• Let us calculate $P(C_{xyxy})$: the probability seeing C_{xyxy}

• We get $P(C_{xyxy}) = (1-q)(1-p)^2pq+(1-p)(1-q)pq^2+(1-q)(1-p)pq^2+(1-q)^3p^2$

1. $P(Cxyxy) - P(Cxxyy) = (1-2q)[q^2(1-p)^2+(1-q)^2p^2]$ 2. This is always positive as q<1/2.

- More intuitively:
 - B and C will mostly have r's state (no mutation).
 - Whatever states A and D take is either uninformative for mp or misleading.

Long-branch Attraction

- Is all this realistic? Very much!!!
- Advocates of parsimony initially responded by claiming that Felsenstein's result showed only that his model was unrealistic.
- It is now recognised that the *long-branch attraction* (in the Felsenstein Zone) is one of the most serious problems in phylogenetic inference.

