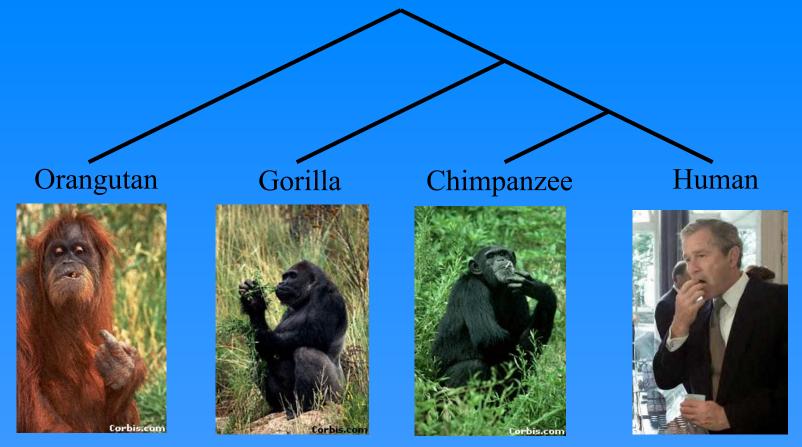
Introduction to Phylogenetics III



From the Tree of the Life Website, University of Arizona

Sagi Snir

Dept. of Evol. Env. Biol. and The Inst. of Evolution,

University of Haifa

Introduction to Phylogenetics Distance Based Methods – Neighbor Joining

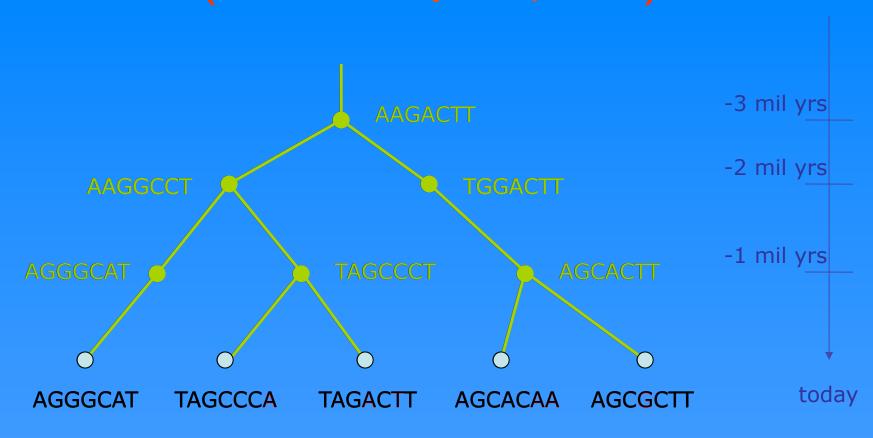
•Sequence based methods:

- -Two main categories:
 - •Character based methods: Trees are constructed by comparing the characters of the corresponding sequences. Characters are mainly molecular (nucleotides in homologous DNA).
 - •Distance based methods: Input is a square symmetric distance matrix. Seeks trees (edge-weighted) best-describing these distances.

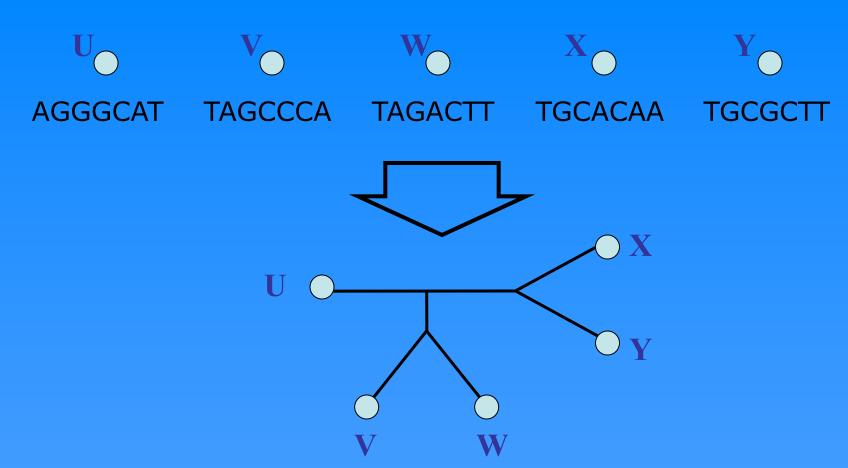
•Supertree methods:

- –Construct small (reliable) trees form any data and combine it to a complete tree by combinatorial algorithms.
- Quartet based methods.

Sequence Evolution (substantially simplified)



Reconstructing the Tree



Unrooted trees!

Distance-based Methods for Constructing Phylogenies

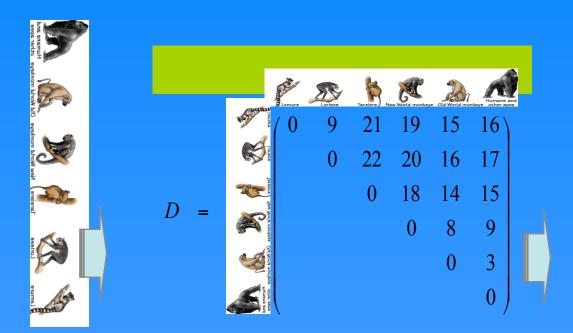
This approach attempts to overcome the two weaknesses of maximum parsimony:

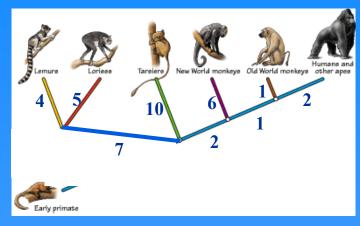
- 1. It start by estimating inter-taxa distances from a well defined statistical model of evolution (distances correspond to probability of changes)
- 2. It provides efficient algorithms for the big problem.

Basic idea: The differences between species (usually represented by sequences of characters) are transformed to numerical distances, and an *edge* weighted tree realizing these distances is constructed.

Distance-Based Reconstruction

- · Compute distances between all taxon-pairs
- Find a tree (edge-weighted) best-describing the distances





Distance-based methods for constructing phylogenies

Common issues:

- •Evolutionary model: molecular clocks vs. variable rates of evolution
- Algorithms for exact distances: do not handle real data.
- Algorithms for noisy distances.

Tree Metric (aka Additive Distances)

A distance metric on a set M of L objects is a function

$$d: M \times M \rightarrow R^+$$

(represented by a symmetric matrix) satisfying:

- $\bullet d(i,i)=0$, and for $i\neq j$, d(i,j)>0
- $\bullet d(i,j) = d(j,i).$
- For all i,j,k it holds that $d(i,k) \le d(i,j) + d(j,k)$.

If there is a weighted tree which *realizes* these distances, then the distance form a tree-metric.

Additive Distances

Definition: A distance metric d is **additive** if there is a tree T with <u>positive</u> weights on the edges, such that for all i,j, $d(i,j) = d_T(i,j)$, the length of the path from i to j in T.

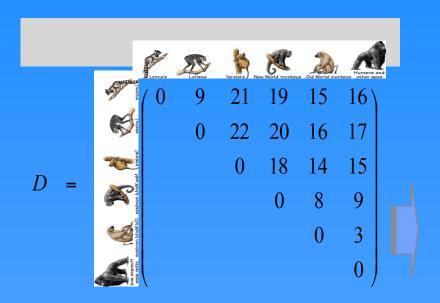
Related topics:

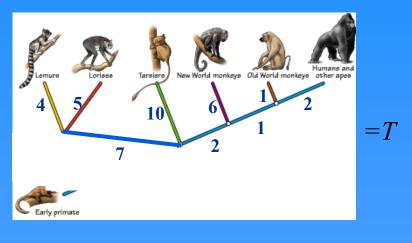
- 1. Characterize the additive metrics.
- 2. Given additive metric, construct a tree which realizes its distances.
- 3. Given a non-additive metric, construct a tree which "approximates" it
- We'll start with 2 and then discuss 1.

The Reconstruction Task

• Input: a Distance matrix *D*.

•Output: If *D* is additive, return a tree which realize its distances.





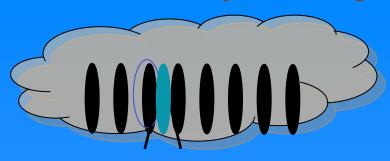
Requirement from Distance-based Tree-Reconstruction Algorithms

- 1. Consistency: If the input metric is **additive**, i.e. fits a tree metric, the returned tree should be the (unique) tree which fits this metric.
- 2. Efficiency: poly-time, preferably no more than $O(n^3)$ (as opposed to MaxPars that is exponential)
- 3. Robustness: if the input matrix is "close" to additive, the algorithm should return the correct tree. We distinguish between
 - Robust in theory
 - Robust in practice (eg in simulations)

A natural family of algorithms which satisfy 1 and 2 is called "Neighbor Joining".

The Neighbor Joining Tree-Reconstruction Scheme

Start with *n* singletons, and each iteration join two neighboring leaves (**cherries**):

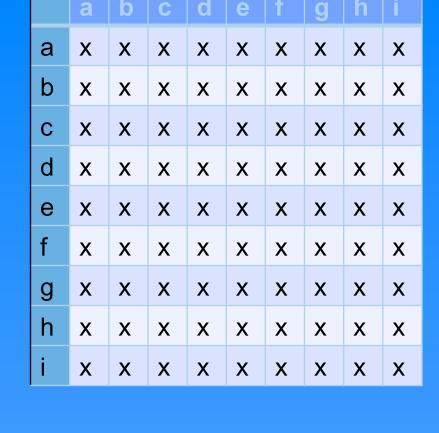


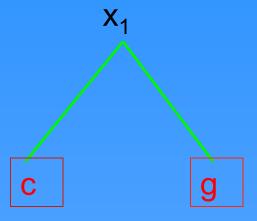
- Select pair i,j and replace them by a new vertex v
- Make *v* the parent of the cherries *i,j*
- Remove *i,j* and insert *v* to the distance matrix
- Method recursively applied on reduced matrix

Two issues:

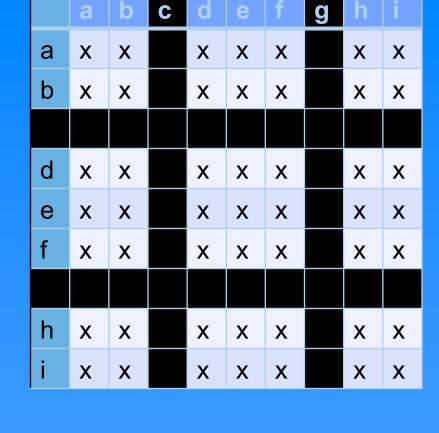
- \longrightarrow How do we find i,j which are indeed cherries?
 - How do we compute distances from the new vertex v?

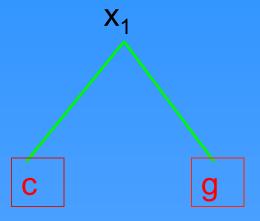
- Selected c and g.
- A cherry on c and g in the tree is created.



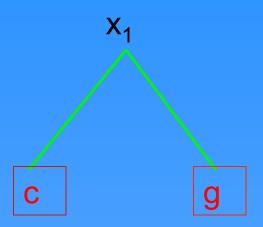


- Selected c and g.
- A cherry on c and g in the tree is created.
- Rows and columns of c and g are removed.



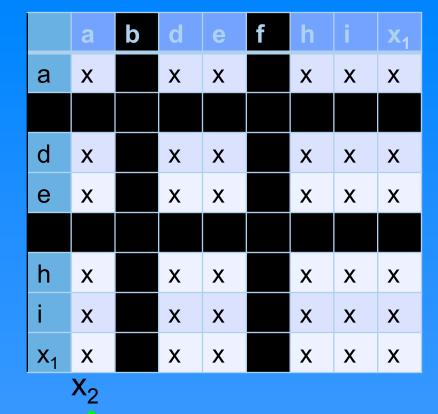


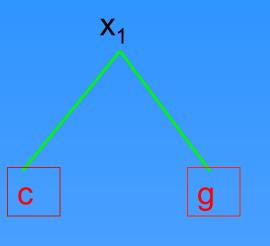
- Selected c and g.
- A cherry on c and g in the tree is created.
- Rows and columns of c and g are removed.
- Distances from x₁ to c and g
 (in the tree) are computed.
- Distances from x₁ to all taxa still in the table are computed.

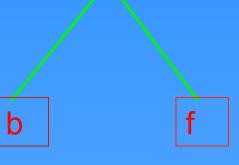


	a	b	d	е	f	h	i	X ₁
а	Х	X	X	X	X	X	X	X
b	X	X	X	Х	X	X	X	X
d	X	X	X	X	X	X	X	X
е	X	X	X	Х	X	X	X	X
f	X	X	X	X	X	X	X	X
h	Х	X	X	X	X	Х	X	X
i	Х	X	X	Х	X	Х	X	X
x ₁	X	X	X	Х	X	X	X	X

- Selected b and f.
- A cherry on b and f in the tree is created.
- Rows and columns of b and f are removed.
- Distances from x₂ to b and f (in the tree) are computed.
- Distances from x₂ to all taxa still in the table are computed.

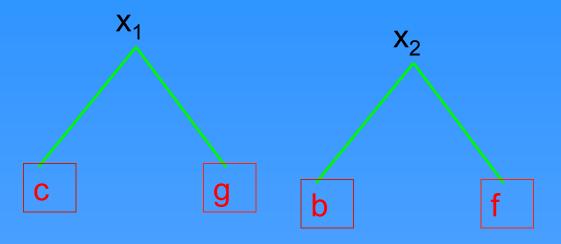




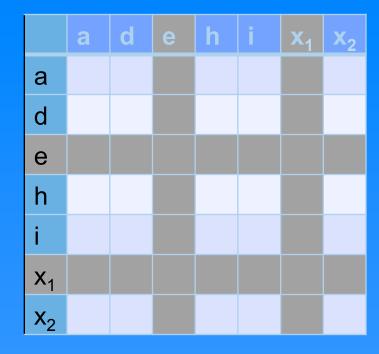


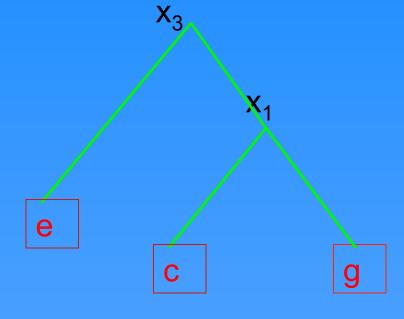
- Selected b and f.
- A cherry on b and f in the tree is created.
- Rows and columns of b and f are removed.
- Distances from x₂ to b and f (in the tree) are computed.
- Distances from x₂ to all taxa still in the table are computed.

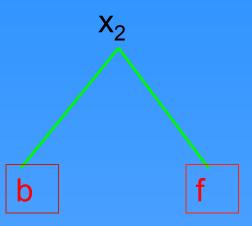
	a	d	е	h	i	X ₁	X ₂
а	X	X	X	Х	X	X	X
d	Х	X	X	X	Х	X	X
е	X	X	X	X	X	X	X
h	Х	X	X	Х	Х	X	X
i	Х	X	X	X	X	X	X
X ₁	Х	X	X	Х	Х	X	X
X_2	X	X	X	X	X	X	X



Selected e and x₁ and x₃ is created.

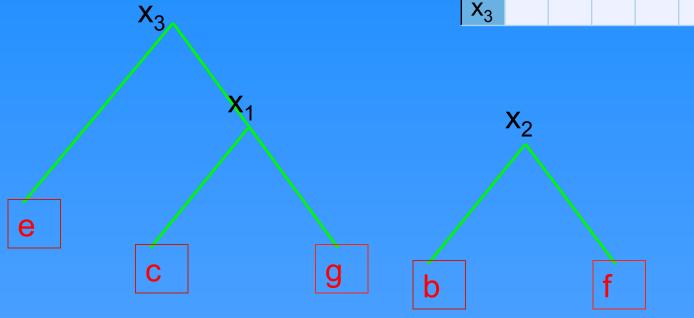






Selected e and x₁ and x₃ is created.

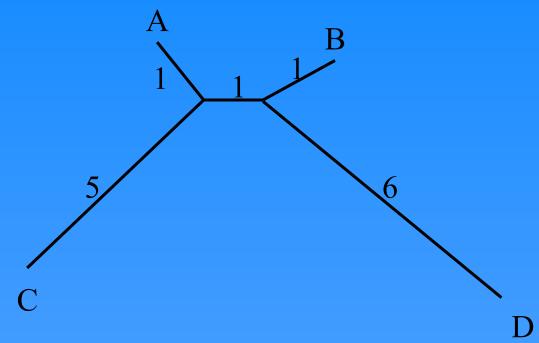
	а	d	h	i	X ₂	X ₃
а						
d						
h						
i						
X ₂						
X ₂ X ₃						



Neighbor Selecting

How can we find (from distances alone) a pair of nodes which are neighboring leaves ("cherries")?

Unlike in ultrametric trees, closest nodes aren't necessarily cherries.



Saitou & Nei's Neighbor Joining Algorithm (1987)

- ~13,000 citations (Science Citation Index)
- Implemented in numerous phylogenetic packages
- Fastest implementation $\theta(n^3)$
- Usually referred to as "the NJ algorithm"
- Identified by its neigbor selection criterion

select
$$i, j$$
 which maximize the sum
$$Q(i, j) = \sum_{r} D(r, i) + \sum_{r} D(r, j) - (n - 2)D(i, j)$$

Saitou & Nei's

neighbor-selection

criterion

Saitou & Nei's NJ Algorithm (since 1987)

$$\max_{i,j} \left\{ \sum_{r} D(r,i) + \sum_{r} D(r,j) - (L-2)D(i,j) \right\}$$
Saitou & Nei's

representation

criterion

- What makes Saitou&Nei's neighbor selection criterion so good?
- > Is there any simpler consistent criterion?
- V Numerous papers studying virtues of NJ

 [" Why does NJ work? ", Mihaescu, Levy and Pachter '06]

 [" Neighbor-Joining Revealed ", Gascuel and Steel '06]
- ✓ No other consistent, symmetric and linear neighbor selection criterion [Charleston et al '93] [Bryant '05]

Saitou & Nei's neighbor-selection Criterion

Select i,j which maximize

$$Q(i,j) = \sum_{r} D(r,i) + \sum_{r} D(r,j) - (n-2)D(i,j)$$

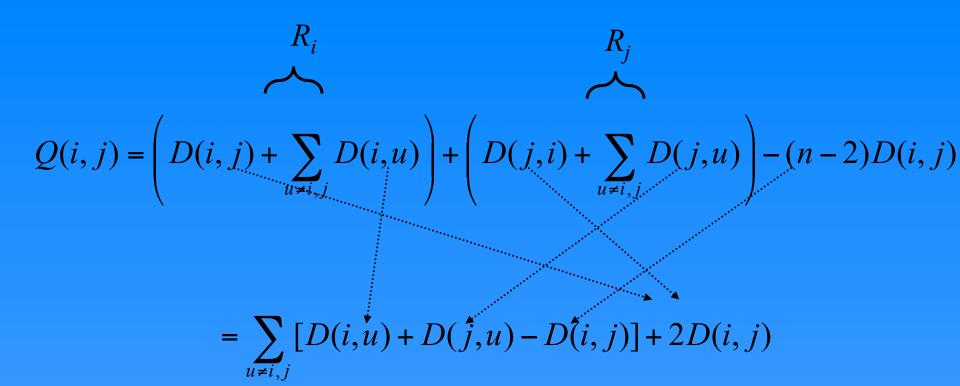
Intuition: NJ "tries" to select taxon-pairs which are *farthest* from all the rest.

Next we prove the criterion finds a cherry.

Let us denote
$$R_i = \sum_r D_{i,r}$$

Hence:
$$Q(i, j) = R_i + R_j - (n-2)D(i, j)$$

Proof of equality



Seitou&Nei proof (cont.)

It remains to show that

$$Q(i,j) = \sum_{u \neq i,j} [D(i,u) + D(j,u) - D(i,j)] + 2D(i,j)$$

is maximized only when i,j are cherries.

Note that [D(i,u)+D(j,u)-D(i,j)] is twice (the length of) the path emanating from path(i,j) going to leaf u.

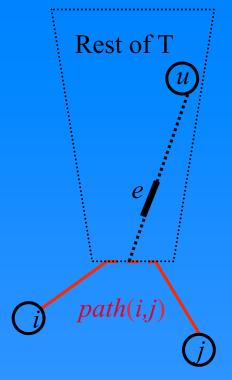
For a vertex i, and an edge e we define:

$$N_i(e) = |\{u : e \text{ is on } path(i,u)\}|$$

Then:

$$2D(i,j) \sum_{u \neq i,j} [D(i,u) + D(j,u) - D(i,j)]$$

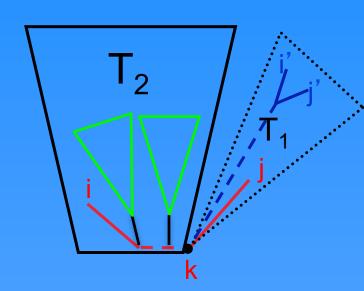
$$Q(i,j) = 2\sum_{e \in path(i,j)} w(e) + 2\sum_{e \notin path(i,j)} N_i(e)w(e)$$



Could also be $N_j(e)w(e)$

Seitou&Nei Proof Idea

- We decompose the tree as follows.
- T₂ is larger than T₁.
- There must be i', j' that are cherries in T₁(may be i' or j' equals j).
- The proof shows that Q(i',j') > Q(i,j).

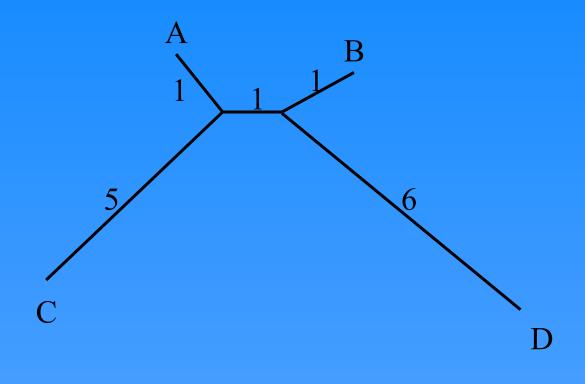


Felsenstein example

	Α	В	С	D
Α	0	3	6	8
В	3	0	7	7
С	6	7	0	12
D	8	7	12	0

	Α	В	С	D
R	17	17	25	27

		Α	В	C	D
	Α	0	28	30	28
Q	В		0	28	30
	С			0	28
	D				0



The Complete NJ Algorithm

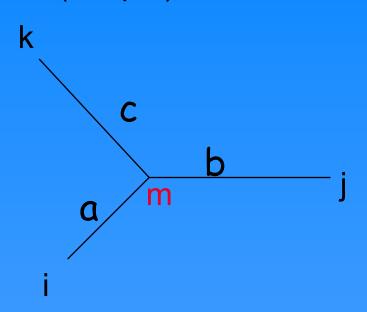
- For each taxon *i*, $R_i = \sum_{k \neq i} D_{i,k}$
- ♦ While the matrix > 3x3
 - For i,j s.t. $(R_i + R_j (n-2)D_{i,j})$ is the largest,
 - ★Create a node *u* with two leaves *i,j*.

*Set
$$d_{u,i} \leftarrow \frac{1}{2}D_{i,j} + \frac{R_i - R_j}{2(n-2)}$$

*Replace i,j in the matrix D with u with distances $(D_{i,k}+D_{i,k}-D_{i,j})/2$ for every entry k.

A characterization of additive metrics: the 4 points condition

Distances on 3 objects are always realizable by a (unique) tree with one internal node.



_	
$\vdash \cap r$	instance
1 01	Hotarioo

	l	J	K
i	0	a+b	a+c
j		0	b+c
k			0

$$d(i, j) = a + b$$

$$d(i, k) = a + c$$

$$d(j, k) = b + c$$

ce
$$c = d(k,m) = \frac{1}{2}[d(i,k) + d(j,k) - d(i,j)] \ge 0$$

How about four objects?

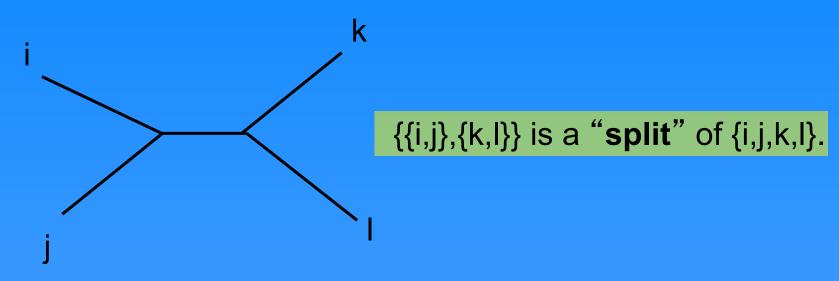
L=4: Not all distance metrics on 4 objects are additive: eg, there is no tree which realizes the below distances.

	i	j	k	l
i	0	2	2	2
j		0	2	2
k			0	3
l				0

The Four Points Condition

A necessary condition for distances on four objects to be additive: its objects can be labeled i,j,k,l so that:

$$d(i,k) + d(j,l) = d(i,l) + d(k,j) \ge d(i,j) + d(k,l)$$

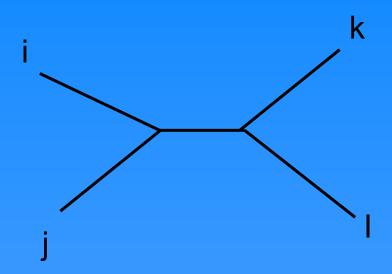


Proof: By the figure...

The Four Points Condition

<u>Definition</u>: A distance metric satisfies the four points condition iff *any* subset of four objects can be labeled i,j,k,l so that:

$$d(i,k) + d(j,l) = d(i,l) + d(k,j) \ge d(i,j) + d(k,l)$$



Theorem: A distance matrix D on a set M is additive iff D satisfies the four points condition for all quartets in M.

Proof: \rightarrow trivial, from the figure.

 \leftarrow By a straightforward construction (quartet algorithm).

The Complete NJ Algorithm

- For each taxon *i*, $R_i = \sum_{k \neq i} D_{i,k}$
- ♦ While the matrix > 3x3
 - For i,j s.t. $(R_i + R_j (n-2)D_{i,j})$ is the largest, ★Create a node u with two leaves i,j.
 - *Set $d_{u,i} \leftarrow \frac{1}{2}D_{i,j} + \frac{(R_i R_j)}{2(n-2)}$
 - ★Replace *i,j* in the matrix D with u with distances $(D_{i,k}+D_{i,k}-D_{i,j})/2$ for every entry k.

Claim: The distances from u to its children are correct.

We will show for a single node *k*.

Recall
$$d_{u,i} \leftarrow \frac{1}{2}D_{i,j} + \frac{(R_i - R_j)}{2(n-2)}$$

Now:

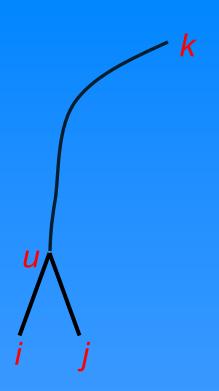
$$\begin{split} R_{i} - R_{j} &= \\ D_{i,j} + \Sigma_{k^{1}j} D_{i,k} - (D_{j,i} + \Sigma_{k^{1}i} D_{j,k}) &= \\ (n-2)(D_{i,u} - D_{j,u}) + \Sigma_{k^{1}i,j} (D_{u,k} - D_{u,k}) &= \\ (n-2)(D_{i,u} - D_{j,u}). \end{split}$$

On the other side:

$$\frac{1}{2}D_{i,j} + \frac{(R_i - R_j)}{2(n-2)} = \frac{(n-2)(D_{i,u} - D_{j,u})}{2(n-2)} =$$

$$\frac{1}{2} * D_{i,j} + \frac{1}{2} (D_{i,u} - D_{j,u}) =$$

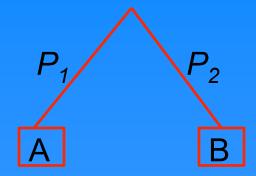
$$\frac{1}{2} (D_{i,u} + D_{j,u} + D_{i,u} - D_{j,u}) = D_{i,u}$$



The claim regarding the distances from u to all other remaining leaves k, $(D_{i,k}+D_{i,k}-D_{i,i})/2$ is straightforward.

Where distances come from?

- We spoke about distances.
- Where distances come from?
- In reality we have probabilities on tree branches.



These in turn induce differences between the sequences at the leaves.

Molecular Evolutionary Models

- We started with edge substitution probabilities matrices (recall the evolutionary model)
- We then spoke about distances and algorithms converting a distance matrix to a tree realizing the matrix's distances
- We now link between the two terms by introducing another term – substitution rate, that will put things in the proper context.

Simulating a changing sequence

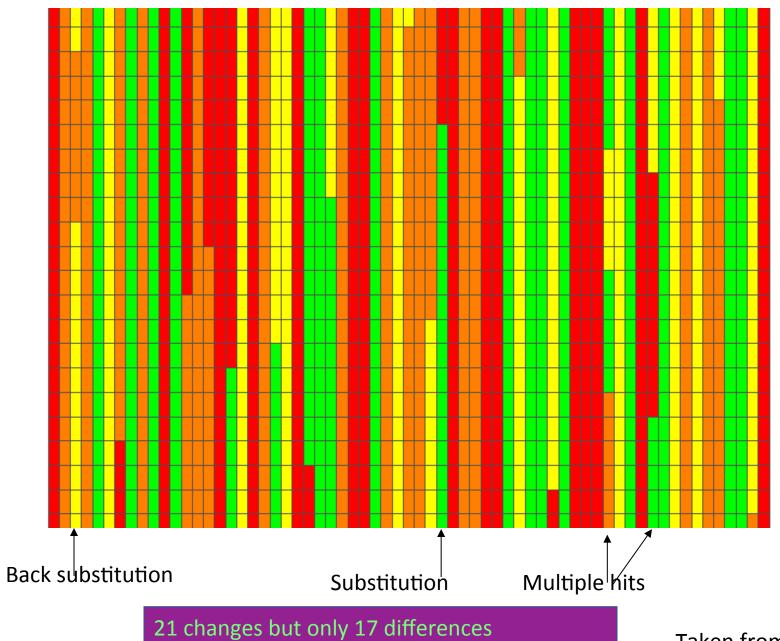
1. Begin with a sequence of 10,000 nucleotides.

TCAGAAAAACAGTTTATTTTTTTTTTTTTTGAGAGAGAGGGTCTTATTTTGTTGCCCAGGCTGGTGTGCAATGGTGCA

2. Choose a nucleotide at random and mutate it to another nucleotide.

3. Repeat 10,000 times. How many differences accumulate?

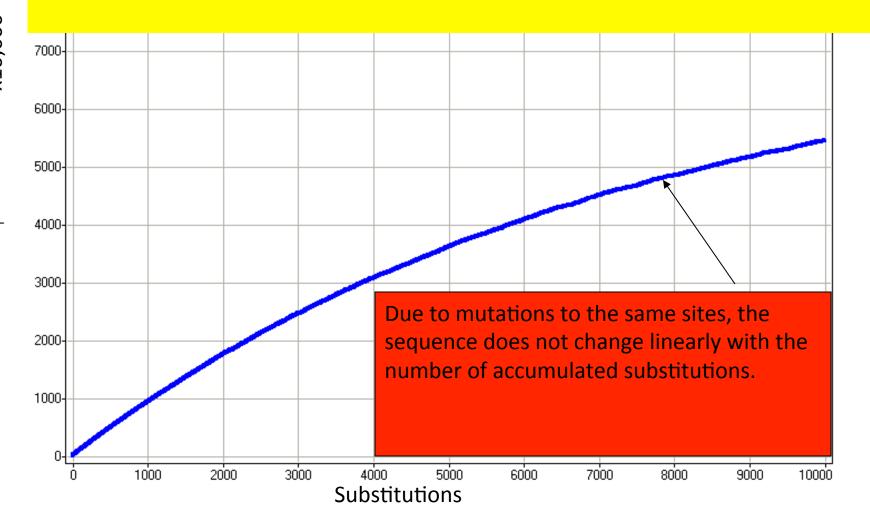
A sequence mutating at random



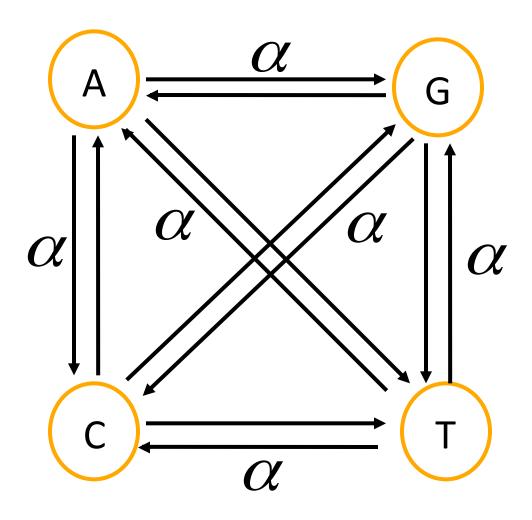
Taken from Itai Yanai

Simulating a changing sequence

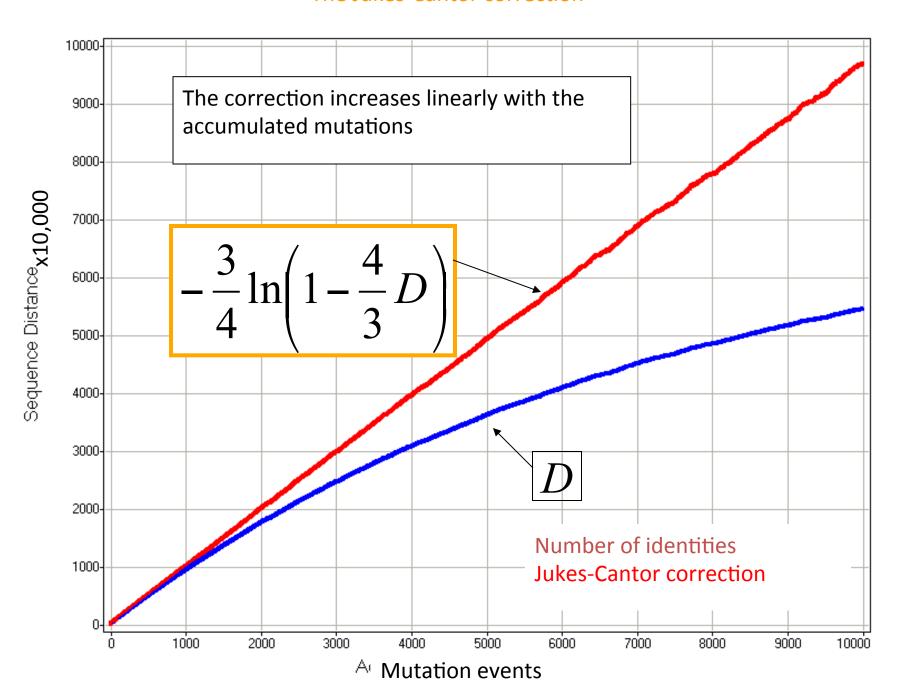
- 1) Begin with a DNA sequence of 10,000 basepairs.
- 2) Pick one basepair at random and substitute it to another basepair.
- 3) Repeat 10,000 times.



Sequence Distance x10,000

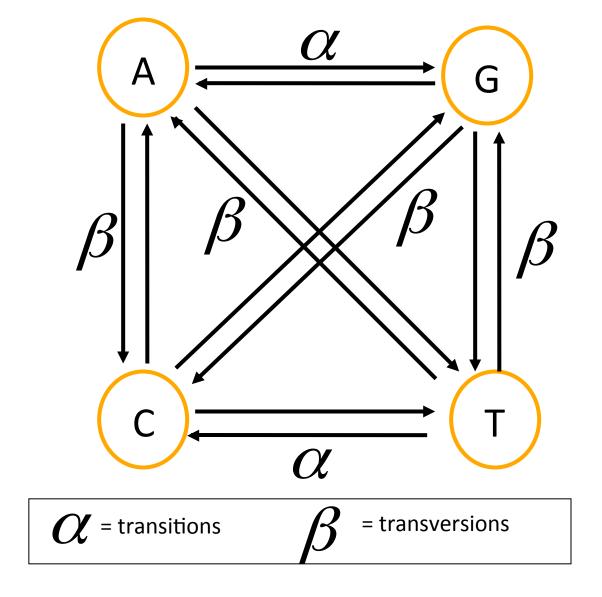


In this simulation we assumed that all changes occur at equal probabilities

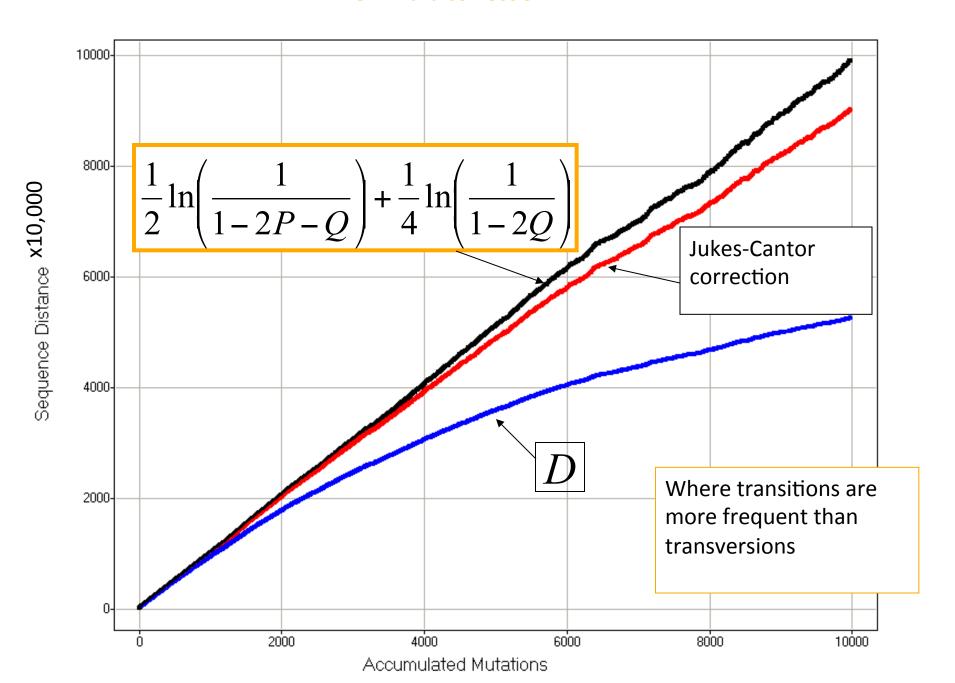


Kimura model

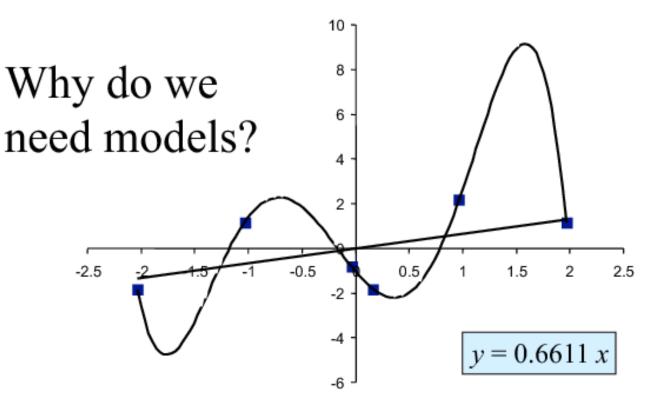
A more realistic simulation represents different probabilities for transitions than to transversions



The Kimura correction



$$y = -1.5972 x^5 + 23.167 x^4 - 126.18 x^3 + 319.17 x^2 - 369.22 x + 155.67$$



Models

- Models help us intelligently interpolate between our observations for purposes of making predictions
- Adding parameters to a model generally increases its fit to the data
- Underparameterized models lead to poor fit to observed data points
- Overparameterized models lead to poor prediction of future observations
- Criteria for choosing models include likelihood ratio tests, AIC, BIC, Bayes Factors, etc.
 - all provide a way to choose a model that is neither underparameterized nor overparameterized

Evolutionary Model Parameters

- Mutation Rate between every two bases
- Base frequency at each node
- Time duration between two nodes

Simplifying Assumptions

- Same rate on all branches
- Same rates between sets of bases
- Uniform base frequency

Substitution Models

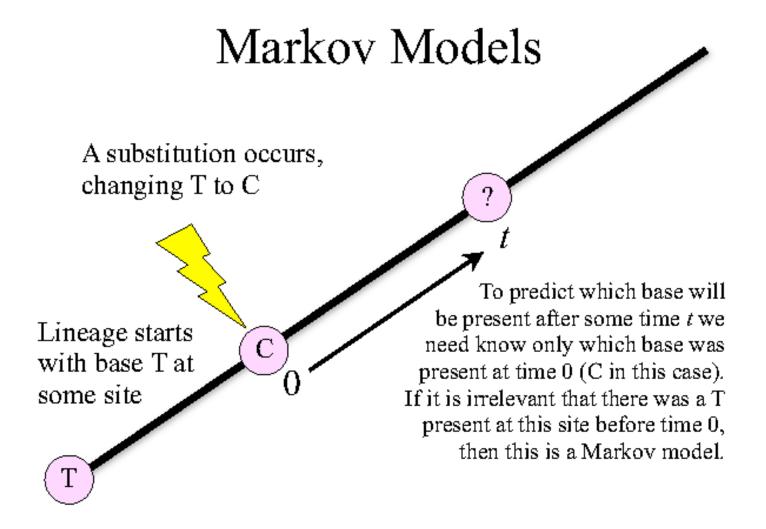
If an edge is relatively long, then one or both of these is true: the substitution rate was high the lineage was in existence for a long time.

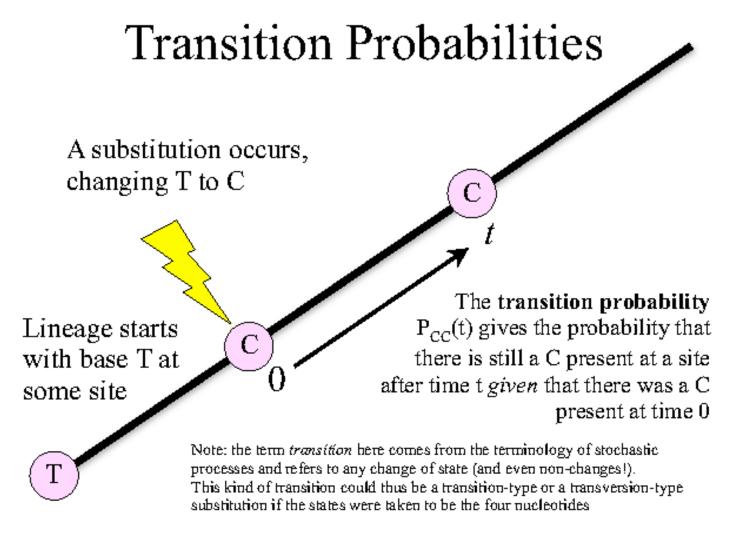
Each edge length is itself a function of substitution rate (α) and time (t)

$$v = 3 \alpha t$$

(Jukes-Cantor model)

Each edge length (ν) is a parameter in the model





JC Transition Probability

Here is the probability that a site starting in state T will end up in state G after time t when the substitution rate is α :

$$P_{TG}(t) = \frac{1}{4} \left(1 - e^{-4\alpha t} \right)$$

The JC model has only 1 parameter: αt (the symbol e is the base of the natural logarithms and is thus a constant: 2.718281828459045...)

Where does a transition probability formula such as this come from?

"Univents" vs. substitutions

When a *univent** occurs, any base can appear in a sequence. The rate at which any If the base that particular substitution appears is different occurs will be 1/4 the from the base that univent rate was already there, then a substitution event has occurred.

^{*}You will not find the word univent in the literature; however, this concept plays an important role in a technique called uniformization, which hold some promise for making complex models more practical. We will discuss uniformization later in the semester.

Poisson Processes

$$\Pr(x \text{ events } | \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Suppose the events we were interested in were accidents at Four Corners, CT. Suppose accidents occur at a rate of $\mu = 0.2$ /day and let's consider a time period of t = 7 days. λ is the expected number of accidents per week: $\lambda = \mu$ t = 1.4. The probability of seeing exactly one accident (i.e. x = 1) in a week is thus:

$$Pr(1 \text{ event } | \lambda = 1.4) = \frac{(1.4)^1 e^{-1.4}}{1!} = 0.345$$

Poisson Processes

$$\Pr(0 \text{ events } | \lambda) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda}$$

$$\Pr(\text{at least 1 event} | \lambda) = 1 - e^{-\lambda}$$

Deriving a transition probabilities

Calculate the probability that a site currently T will change to G over time t when the rate of this particular substitution is α :

$$Pr(zero univents) = e^{-\mu t}$$

Copyright © 2009 Paul O. Lewis

JC69 model

- Bases are assumed to be equally frequent (all 0.25)
- Assumes rate of substitution (α) is the same for all possible substitutions
- Usually described as a 1-parameter model (the parameter being αt)
- Remember, however, that each edge in a tree can have its own αt, so there are really as many parameters in the model as there are edges in the tree!

Transition Probabilities: Remarks

$$P_{TA}(t) = 0.25 (1 - e^{-4\alpha t})$$

 $P_{TC}(t) = 0.25 (1 - e^{-4\alpha t})$
 $P_{TG}(t) = 0.25 (1 - e^{-4\alpha t})$
 $P_{TT}(t) = 0.25 (1 - e^{-4\alpha t})$
 $= 1 - e^{-4\alpha t}$

Oops! Should be 1.0 because T must either stay the same or change to A, C or G. What are we forgetting?

Transition Probabilities: Remarks

$$P_{TA}(t) = 0.25 (1 - e^{-4\alpha t})$$

 $P_{TC}(t) = 0.25 (1 - e^{-4\alpha t})$
 $P_{TG}(t) = 0.25 (1 - e^{-4\alpha t})$
 $P_{TT}(t) = e^{-4\alpha t} + 0.25 (1 - e^{-4\alpha t})$
 $= e^{-4\alpha t} + (1 - e^{-4\alpha t})$
 $= 1$

Forgot to account for the possibility that the base could stay the same even if there were *no* disruptions over time *t*

More on Transition Probabilities

$$P_{ij}(t) = 0.25 (1 - e^{-4\alpha t})$$

 $P_{ii}(t) = 0.25 + 0.75 e^{-4\alpha t}$

Consider an edge representing an amount of time t and a substitution rate α .

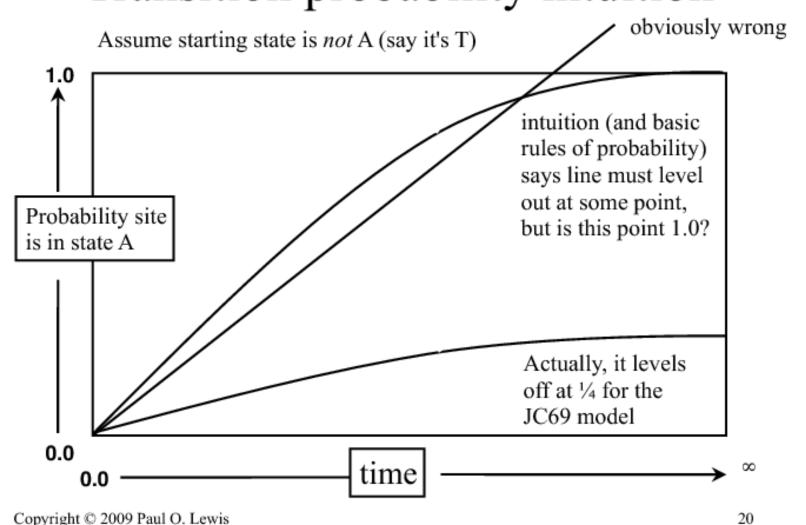
What are the transition probabilities if $t = \infty$?

$$P_{ij}(\infty) = P_{ii}(\infty) = 0.25$$

What are the transition probabilities if t = 0?

$$P_{ij}(0) = 0.0, P_{ii}(0) = 1.0$$

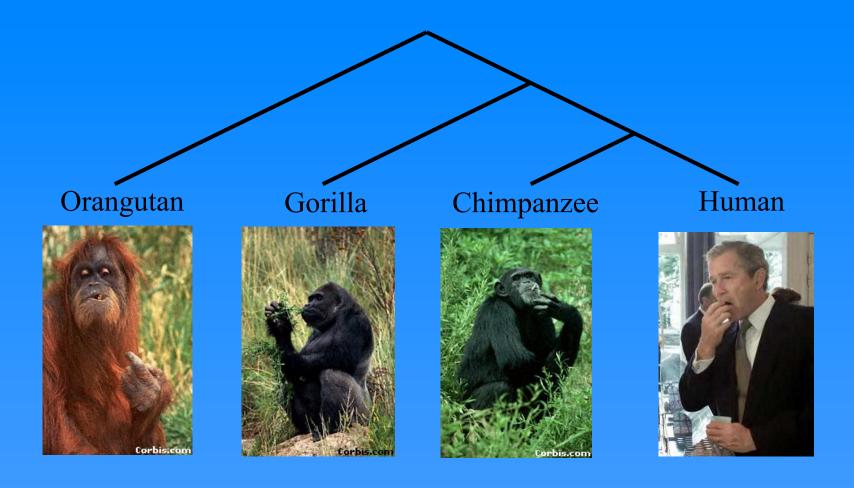
Transition probability intuition



Closing Remarks

- We started with probabilities by which we could simulate evolution on a tree.
- These probabilities were derived from a rate (Poisson) process occurring in nature.
- In order to apply distance approaches, that are consistent and efficient, we transformed the non linear process to linear distances.
- All this space is basically Maximum Likelihood.

Introduction to Phylogenetics



Thank You