An Introduction to MATLAB

Day 2
Simon Mitchell
Simon.Mitchell@ucla.edu
Day 1:

* The development environment
* Variables
* Arithmetic operators
* Logical operators
* The command window
* Writing and running scripts
* if else statements
* for loops
While loops

while <expression>
<statements>
end
Same result with for loop and while loop

```matlab
whileLoop.m

1 - a = 10;
   % while loop execution
2 - while(a < 20)
3 -   fprintf('value of a: %d\n', a);
4 -   a = a + 1;
5 - end
6 - % for loop execution
7 - for b=10:20
8 -   fprintf('value of b: %d\n',b);
9 - end
```
break statements

```matlab
whileLoop.m

1 - a = 10;
2- % while loop execution
3 - while (a < 20)
4 - fprintf('value of a: %d\n', a);
5 - a = a+1;
6 - if (a > 15)
7 - % terminate the loop using break statement
8 - break;
9 - end
10 - end

Command Window

>> whileLoop
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

fx >> |
```
A little more about vectors

Reference the ‘i’th element of a vector with
$v(i)$
A little more about vectors

\(v(\cdot) \)

Gets all elements in the vector

\(V(3:6) \)

Gets the 3\(^{rd}\) to the 6\(^{th}\) element
v(m,n)
Gets the element at mth row and nth column
A little more about matrices

Indexing can be combined with ':'

Command Window

```
a =
1   2   3   4   5
2   3   4   5   6
3   4   5   6   7
4   5   6   7   8

>> a(:,4)
ans =
    4
    5
    6
    7

>> a(4,:)
ans =
        4
        5
        6
        7
```

```
>> a(2:3,2:3)
ans =
    3   4
    4   5
```
Convenient matrix creation

```matlab
>> zeros(3)
ans =
    0     0     0
    0     0     0
    0     0     0

>> ones(2,4)
ans =
    1     1     1     1
    1     1     1     1
```
Higher dimensional Matrices

>> myMatrix=zeros(4,4,3)
myMatrix(:,:,1) =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
myMatrix(:,:,2) =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
myMatrix(:,:,3) =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
Higher dimensional Matrices

How would you change this element to a 7?
Higher dimensional Matrices

What does myMatrix look like after this command?

```
>> myMatrix(4,3,2)=7
myMatrix(:,:,1) =
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
myMatrix(:,:,2) =
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
myMatrix(:,:,3) =
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
   0   0   0   0
```
Higher dimensional Matrices

```matlab
>> myMatrix(:,:,3)=ones(4)

myMatrix(:,:,1) =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0

myMatrix(:,:,2) =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     7     0

myMatrix(:,:,3) =
     1     1     1     1
     1     1     1     1
     1     1     1     1
     1     1     1     1
```
Sorting

```matlab
>> sortingTest

v =
23  45  12  9  5  0 19 17

ans =
0  5  9 12 17 19 23 45

m =
2  6  4
5  3  9
2  0  1

ans =
2  0  1
2  3  4
5  6  9

ans =
2  4  6
3  5  9
0  1  2
```
Cell Arrays – like matrices but more awesome

We’ve seen an example before!

Why did we use a cell array for gene names here?
Cell Arrays – like matrices but more awesome

Matrices are bad for Strings

```matlab
>> geneNames = ['IL1A', 'NFKBIA', 'BCL2', 'STAT5A', 'CCL5']
geneNames =
IL1ANFKBIABCL2STAT5ACCL5

>> geneNames = ['IL1A'; 'NFKBIA'; 'BCL2'; 'STAT5A'; 'CCL5']
Error using vertcat
Dimensions of matrices being concatenated are not consistent.

>> geneNames = ['IL1A '; 'NFKBIA'; 'BCL2 ' ; 'STAT5A'; 'CCL5 ']
geneNames =
IL1A
NFKBIA
BCL2
STAT5A
CCL5
Cell Arrays – like matrices but more awesome

Can be initiated with

```matlab
>> c = cell(2, 5);
>> c = {'IL1A', 'NFKBIA', 'BCL2', 'STAT5A', 'CCL5'; 4,56,21,12,39}
c =
 'IL1A' 'NFKBIA' 'BCL2' 'STAT5A' 'CCL5'
 [4] [56] [21] [12] [39]
```
Cell Arrays – beware of the difference between () and {}.

```matlab
>> c =
 'IL1A' 'NFKBIA' 'BCL2' 'STAT5A' 'CCL5'
 [4] [56] [21] [12] [39]

ans =
 NFKBIA

>> c(:,2:3)
ans =
 'NFKBIA' 'BCL2'
 [56] [21]

ans =
 BCL2

ans =
 56

>> c{2:3}
ans =
 NFKBIA

ans =
 BCL2

ans =
 21
```

c(m,n) refers to sets of cells

c{m,n} refers to the data within the cells
String Comparisons

```matlab
exp1Genes = {'IL1A','NFkBIA','BCL2','IRF1','STAT5A','CCL5','MYC'};
exp1Results = [4,56,21,3,12,39,21];
threshold = 20;
geneOfInterest='IRF1';
for i=1:length(exp1Results)
 if(exp1Results(i)>threshold)
 fprintf('Gene %s expression %d\n',exp1Genes{i},exp1Results(i));
 end
 if(strcmp(exp1Genes{i},geneOfInterest))
 fprintf('Expression of %s: %d\n',geneOfInterest,exp1Results(i));
 end
end
fprintf('Expression of %s: %d\n',geneOfInterest,exp1Results(i));
```

Command Window

```
>> forLoops
Gene NFkBIA expression 56
Gene BCL2 expression 21
Expression of IRF1: 3
Gene CCL5 expression 39
Gene MYC expression 21
Expression of IRF1: 21
```
Time for Functions!

3 Ways of running code
- Command Window
- Scripts
- Functions
function [outputs] = functionName (inputs)

Sometimes inputs are called “arguments”.

Our First Function

```matlab
function outSeq = reverseSeq(seq)
 %This function returns the reverse of an input sequence
 outSeq = seq(end:-1:1);
```

Command Window

```
>> edit reverseSeq.m
>> reverseSeq('TCGCG')

ans =
 GCGCT
```
Convert our Script to a Function

```matlab
exp1Genes = {'IL1A', 'NFkBIA', 'BCL2', 'IRF1', 'STAT5A', 'CCL5', 'MYC'};
exp1Results = [4, 56, 21, 3, 12, 39, 21];
threshold = 20;
geneOfInterest = 'IRF1';

for i = 1:length(exp1Results)
 if (exp1Results(i) > threshold)
 fprintf('Gene %s expression %d
', exp1Genes{i}, exp1Results(i));
 end
 if (strcmp(exp1Genes{i}, geneOfInterest))
 fprintf('Expression of %s: %d
', geneOfInterest, exp1Results(i));
 end
end
fprintf('Expression of %s: %d
', geneOfInterest, exp1Results(i));
```

---

```matlab
function out = printGeneExpression(exp1Genes, exp1Results, geneOfInterest, threshold)
 % Function prints gene expression information for a list of genes over a given threshold
 % Returns the expression value from a gene of interest
 out = 'Gene Not Found';
 for i = 1:length(exp1Results)
 if (exp1Results(i) > threshold)
 fprintf('Gene %s expression %d
', exp1Genes{i}, exp1Results(i));
 end
 if (strcmp(exp1Genes{i}, geneOfInterest))
 fprintf('Expression of %s: %d
', geneOfInterest, exp1Results(i));
 out = exp1Results(i);
 end
 end
end
```
function out = printGeneExpression(exp1Genes, exp1Results, geneOfInterest, threshold)
    %Function prints gene expression information for a list of genes over a
    %given threshold
    %Returns the expression value from a gene of interest
    out='Gene Not Found';
    for i=1:length(exp1Results)
        if(exp1Results(i)>threshold)
            fprintf('Gene %s expression %d\n',exp1Genes{i},exp1Results(i));
        end
        if(strcmp(exp1Genes{i},geneOfInterest))
            fprintf('Expression of %s: %d\n',geneOfInterest,exp1Results(i));
            out = exp1Results(i);
        end
    end
end

>> genes = {'IL1A','NFKBIA','BCL2','STAT5A','CCL5','MYC','IRF1'};
>> values = [4,56,21,12,39,21,3];
>> geneOfInterestValue = printGeneExpression(genes,values,'IRF1',20)
Gene NFKBIA expression 56
Gene BCL2 expression 21
Gene CCL5 expression 39
Gene MYC expression 21
Expression ofIRF1 3

geneOfInterestValue =
3
Getting Help

>> help printGeneExpression
Function prints gene expression information for a list of genes over a
given threshold
Returns the expression value from a gene of interest

>> help max
max    Largest component.
      For vectors, max(X) is the largest element in X. For matrices,
      max(X) is a row vector containing the maximum element from each
column. For N-D arrays, max(X) operates along the first
non-singleton dimension.
Working with files

```matlab
>> url = 'http://signalingsystems.ucla.edu/users/Simon/example.jpg';
>> imageFile = 'example.jpg';
>> urlwrite(url, imageFile);
>> A = imread(imageFile);
>> image(A);
```
Working with (more sensible) files

Download example file:

http://www.signalingsystems.ucla.edu/users/Simon/experiment1.txt

function out = printGeneExpressionFromFile(inputFileName, geneOfInterest, threshold)
    %Function prints gene expression information for a list of genes from a file
    %prints gene informaton for genes over a given threshold
    %Returns the expression value from a gene of interest
    delimiter='\t'; %tab delimiter
    headerLines=1; %titles are on first line

    A=importdata(inputFileName,delimiter,headerLines);
    exp1Genes=A.textdata(2:end,1);
    exp1Results=A.data;

    fprintf('%s loaded. %d genes.',inputFileName,length(A.data));

    %call function to print gene information
    out = printGeneExpression(exp1Genes,exp1Results,geneOfInterest,threshold);
Working with (more sensible) files

Download example file:
http://www.signalingsystems.ucla.edu/users/Simon/experiment1.txt

```
function out = printGeneExpressionFromFile(inputFileName, geneOfInterest, threshold)
 %Function prints gene expression information for a list of genes from a file
 %prints gene informaton for genes over a given threshold
 %Returns the expression value from a gene of interest
 delimiter='\t'; %tab delimiter
 headerLines=1;%titles are on first line

 A=importdata(inputFileName,delimiter,headerLines);
 exp1Genes=A.textdata(2:end,1);
 exp1Results=A.data;

 fprintf('%s loaded. %d genes.
',inputFileName,length(A.data));

 %call function to print gene information
 out = printGeneExpression(exp1Genes,exp1Results,geneOfInterest,threshold);
```

```matlab
>> printGeneExpressionFromFile('experiment1.txt','CCL5',20)
```
function out = printGeneExpression(exp1Genes, exp1Results, geneOfInterest, threshold)
%Function prints gene expression information for a list of genes over a
%given threshold
%Returns the expression value from a gene of interest
out='Gene Not Found';
for i=1:length(exp1Results)
    if(exp1Results(i)>threshold)
        fprintf('Gene %s expression %.2f\n',exp1Genes{i},exp1Results(i));
    end
    if(strcmp(exp1Genes{i},geneOfInterest))
        fprintf('Expression of %s: %d\n',geneOfInterest,exp1Results(i));
        out = exp1Results(i);
    end
end
fileIdentifier = fopen('filename','w');

fprintf(fileIdentifier, 'someText');

fclose(fid);
Changing our functions to write to a file

```matlab
function out = printGeneExpressionFromFile(inputFileName, outputFileName, geneOfInterest, threshold)
 %Function prints gene expression information for a list of genes from a file
 %prints gene information for genes over a given threshold
 %Returns the expression value from a gene of interest
 delimiter='\t'; %tab delimiter
 headerLines=1;%titles are on first line

 A=importdata(inputFileName,delimiter,headerLines);
 exp1Genes=A.textdata(2:end,1);
 exp1Results=A.data;

 fprintf('%s loaded. %d genes.\n',inputFileName,length(A.data));

 %call function to print gene information
 out = printGeneExpression(exp1Genes,exp1Results,geneOfInterest,threshold, outputFileName);
```
function out = printGeneExpressionFromFile(inputFileName, outputFileName, geneOfInterest, threshold)
    %Function prints gene expression information for a list of genes from a file
    %prints gene informaton for genes over a given threshold
    %Returns the expression value from a gene of interest
    delimiter='\t'; %tab delimiter
    headerLines=1;%titles are on first line

    A=importdata(inputFileName,delimiter,headerLines);
    exp1Genes=A.textdata(2:end,1);
    exp1Results=A.data;

    fprintf('%s loaded. %d genes.\n',inputFileName,length(A.data));

    %call function to print gene information
    out = printGeneExpression(exp1Genes,exp1Results,geneOfInterest,threshold, outputFileName);

function out = printGeneExpression(exp1Genes, exp1Results, geneOfInterest, threshold, outputFileName)
    %Function prints gene expression information for a list of genes over a given threshold
    %Returns the expression value from a gene of interest
    fid=fopen(outputFileName,'w');
    out='Gene Not Found';
    for i=1:length(exp1Results)
        if(exp1Results(i)>threshold)
            fprintf(fid,'%s\t%.2f\n',exp1Genes{i},exp1Results(i));
        end
        if(strcmp(exp1Genes{i},geneOfInterest))
            fprintf(fid,'Expression of %s: %d\n',geneOfInterest,exp1Results(i));
            out = exp1Results(i);
        end
    end
    fclose(fid);
Changing our functions to write to a file

%Function prints gene expression information for a list of genes over a
%given threshold

fid=fopen(outputFileName,'w');
out='Gene Not Found';
for i=1:length(exp1Results)
    if(exp1Results(i)>threshold)
        fprintf(fid,'%s\t%.2f\n',exp1Genes{i},exp1Results(i));
    end
    if(strcmp(exp1Genes{i},geneOfInterest))
        fprintf(fid,'Expression of %s: %.2f\n',geneOfInterest,exp1Results(i));
        out = exp1Results(i);
    end
end
fclose(fid);

>> printGeneExpressionFromFile('experiment1.txt','experimentOutput.txt','CCL5',20)
experiment1.txt loaded. 59 genes.
Expression of CCL5 3.84

ans =

    3.84