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Mining 3D genome structure populations identifies
major factors governing the stability of regulatory
communities
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Three-dimensional (3D) genome structures vary from cell to cell even in an isogenic sample.

Unlike protein structures, genome structures are highly plastic, posing a significant challenge

for structure-function mapping. Here we report an approach to comprehensively identify 3D

chromatin clusters that each occurs frequently across a population of genome structures,

either deconvoluted from ensemble-averaged Hi-C data or from a collection of single-cell

Hi-C data. Applying our method to a population of genome structures (at the macrodomain

resolution) of lymphoblastoid cells, we identify an atlas of stable inter-chromosomal

chromatin clusters. A large number of these clusters are enriched in binding of specific

regulatory factors and are therefore defined as ‘Regulatory Communities.’ We reveal two

major factors, centromere clustering and transcription factor binding, which significantly

stabilize such communities. Finally, we show that the regulatory communities differ

substantially from cell to cell, indicating that expression variability could be impacted by

genome structures.
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G
enome-wide proximity ligation assays, such as Hi-C1 and
its variants2–4, as well as ChIA-PET5 have significantly
expanded our understanding of spatial genome

organization. Yet our knowledge of how genome structures
are linked to functions is still limited. For example, recent
studies have uncovered functional roles for local chromatin
looping interactions6–9. However, few studies have tried to
decipher the functional implications of inter-chromosomal
associations, which are known to play important roles in gene
regulation. We can cite three examples that demonstrate the
importance of inter-chromosomal interactions in gene regulation:
inter-chromosomal contacts are required for co-transcription of
the multi-gene complex SAMD4A, TNFAIP2 and SLC6A5
(ref. 10); the IFN-g gene on chromosome 10 is trans-activated
by regulatory regions of the TH2 cytokine locus on chromosome
11 (ref. 11); and INF-beta genes are trans-activated from
regulatory regions in different chromosomes12.

A challenge arises when using Hi-C data to infer the spatial
genome organization linked to inter-chromosomal functional
interactions. The chromatin contacts uncovered by Hi-C
describe not a single genome conformation, but the average
contact frequency over many different genome conformations in
a population of cells13–15. The spatial genome organization
can vary dramatically from cell to cell, even within an
isogenic sample16. This variability is especially strong for
inter-chromosomal contacts. Therefore, a key challenge
for interpreting ensemble-averaged Hi-C data is to deconvolute
the observed chromatin contacts into an ensemble of subsets
of interactions, where each subset are compatible to co-occur in
a single cell.

To address this challenge, we have recently developed
a modelling approach that constructs a population of
three-dimensional (3D) genome structures derived from and
fully consistent with the Hi-C data3,17. By embedding the genome
structural model in 3D space and applying additional spatial
constraints (for example, all chromosomes must lie within the
nuclear volume, and no two chromosome fragments can overlap),
it is possible to deconvolute the ensemble-based Hi-C data into a
set of plausible structural states. In particular, our approach
facilitates the inference of cooperative long-range interactions,
because the presence of some chromatin contacts may induce
structural features that may make some additional contacts in
the same structure more probable and others less likely. In
other words, the spatial constraints effectively restrict the
conformational freedom of the chromosomes, allowing us
to approximate the unobserved true structure population.
We showed previously that the structure population determined
by this method can reproduce remarkably well independent
experimental data and many known structural features of
the genome organization that were not directly evident in the
Hi-C data3,17–19.

The analysis of a genome structure population (either from
population-based modelling or in future from a large collection of
single-cell Hi-C data) demands a new generation of structural
analysis tools. Unlike protein structures, genome structures are
highly plastic15,20,21. Therefore, traditional measures of structural
similarities such as structure alignments based on the root-
mean-square deviations of chromatin positions are not suitable.
We need to distinguish functional chromatin interactions from
noise in the Hi-C data, and also from random chromatin
collisions, which together occupy a large percentage of the
measured signals.

This paper develops a novel computational framework to
derive an atlas of functional chromatin clusters from the
modelled genome structure population. Our rationale is that
despite the existence of large cell-to-cell variations between

genome structures, any functionally important spatial patterns
should generally occur in a reasonable percentage of cells
(in this paper, the threshold is 1%). That is, given a population
of genome structures, we assume that spatial patterns occurring
in multiple structures are more likely to be of functional
importance. The most obvious example of functional spatial
patterns would be a spatial chromatin cluster that brings together
several distant loci. Such clusters have already been found and
associated with co-transcription factories16,22,23, early-replication
sites24–26 and chromatin silencing27. Here we show that our
approach can comprehensively detect spatial chromatin clusters
that frequently occur in a genome structure population.

We apply our pattern discovery method to a population of
10,000 genome structures at the resolution of macrodomains,
inferred from the tethered chromosome conformation capture
(TCC3, a variant of Hi-C) data of human lymphoblastoid cells.
This analysis identifies an atlas of spatial clusters (of which a
substantial portion is inter-chromosomal) that occur frequently
across the structure population. Our 3D fluorescence in situ
hybridization (FISH) experiments validate the pronounced
co-localizations of domains in two identified inter-chromosomal
clusters. Strikingly, a significant portion of those
inter-chromosomal frequent clusters are enriched in binding of
specific regulatory factors, which are defined as ‘Regulatory
Communities’, including transcription communities, transfer
RNA (tRNA) synthesis communities, polycomb binding
communities and many others, depending on the type of
binding factors. Interestingly, the regulatory communities
carrying the same function (for example, with the same
binding factors) can exchange their members, indicating that
the structural plasticity of the human genome may outweigh its
functional plasticity. It is important to emphasize that the
majority of these communities cannot be identified directly from
the Hi-C heat map, but are only evident after the structure-based
deconvolution of the Hi-C data, since the Hi-C data provides
only binary contacts averaged across many cells, and not the
higher order chromatin contacts (involving more than two loci)
in any single cells. We reveal that two major factors, centromere
clustering and transcription factor binding, significantly
contribute to the stability of the 3D regulatory communities in
lymphoblastoid cells. We further show that these regulatory
communities differ dramatically from cell to cell, indicating that
expression variability could be impacted by the 3D genome
structures.

Results
Discover frequent spatial clusters in a 3D genome population.
We performed the TCC3, a variant of Hi-C, in human
lymphoblastoid cells. After data pre-processing and
normalization, we performed constrained clustering28 of the
Hi-C contact map to partition the linear genome into 428
structural domains as described previously3. The genomic loci
within each domain share similar contact profiles. The
median domain size is 5.2 Mb (the min and max domain size
are 0.3 Mb and 50 Mb, respectively). We categorized 63 domains
as centromeric domains since they overlap sub-centromeric
regions (5 Mb up- and downstream to the centromere locations).
We classify the remaining domains into transcription active
(126), inactive (141) and others (98) based on hierarchal
clustering of the ChIP-seq signal of 12 epigenetic/
transcriptional marks (Supplementary Fig. 1). Our 3D model of
the genome treats these domains as spheres with radii that
approximate the domain sizes3. We used the Hi-C data to
perform our population-based structural modelling3 at this
domain resolution, and generated 10,000 3D genome structures
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whose chromatin contacts reproduce the domain contact
frequencies obtained from the Hi-C experiment. Our method
performs a structure-based deconvoution of the Hi-C map
into individual genome structures, which represent the best
approximation of the true structure population given the available
data. We have previously demonstrated that a population of
10,000 structures is sufficiently large to describe cell-to-cell
variations, and that the resulting structure population reproduces
remarkably well many known properties of the genome3,17.

Given the 10,000 genome structures, we developed a graph-
based mining approach to identify frequent spatial clusters,
defined as a set of chromatin domains (from one or multiple
chromosomes) that co-localize in many genome structures. Since
the human diploid genome has homologous chromosomes, each
genome structure consists of 2N (N¼ 428) homologous domains.
Therefore, each 3D structure can be modelled as a chromatin
interaction graph (CIG) with 2N nodes, where each node is a
domain and each edge represents an interaction between two
domains (details in Supplementary Note 1). A unique feature of
the CIG is that each node has three labels: L1 is the index of
the chromosome where the domain is located; L2 is the index of
the domain among all domains in the chromosome; and L3
indicates which copy of the chromosome the domain comes from
(Supplementary Fig. 2). Therefore, each node of a CIG is labelled
by a triplet L1–L2–L3, in which the L1 and L3 labels can tell
us whether two homologous domains reside in the same
chromosome copy. For example, nodes 1-1-A and 1-3-B
represent two different domains located in different copies of
the chromosome 1. After representing each 3D genome structure
as a CIG, discovering frequent spatial clusters can be transformed
to the problem of discovering frequent dense subgraphs across
the CIGs. However, the diploid nature of the human genome adds
a novel feature to the subgraph identification problem: when
a cluster contains two or more domains from the same
chromosome, we need to differentiate between domains residing
in the same or different chromosome copies. We refer to this
feature of CIGs as ‘coupled isomorphism’, which is different from
the classic ‘graph isomorphism’. To our knowledge, coupled
isomorphism has not been seen in any existing graph problem
(for a detailed explanation refer to Supplementary Fig. 2).
Our goal is to identify subsets of the domains that are densely
connected and frequently occur across the given set of graphs,
after taking into account the coupled isomorphism. The unique
property of the coupled isomorphism, along with the large
number and scale of the graphs (tens of thousands of graphs, each
with hundreds to thousands of nodes), poses a great challenge.

We have proposed a four-step computational framework to
address this novel graph mining problem. First, we transformed a
population of genome structures into a series of CIGs. Second, we
applied the node contraction technique to reduce ‘coupled
isomorphism’ by converting the multi-labelled graphs into graphs
without L3 labels. The resulting contracted graphs are guaranteed
to preserve all occurrences of frequent patterns in the original
graphs29. This technique postpones the problem of resolving
subgraph isomorphism to a later step when we will only analyse
small candidate patterns, effectively reducing the problem
complexity. Third, we employed an efficient and scalable
algorithm for frequent subgraph discovery on the contracted
graphs30. This algorithm requires very few ad hoc parameters,
and is capable of simultaneously analysing a large number of
massive graphs. It works by reformulating the subgraph discovery
problem as a tensor-based optimization problem. In the last step,
after obtaining a collection of frequent dense subgraphs from the
contracted graphs, we identify the counterparts of these patterns
in the original multi-labelled graphs. That is, we solve the
‘coupled isomorphism’ problem separately for each frequent

pattern discovered. We developed a novel approach for
this step, which reduces the graph isomorphism problem to an
item counting procedure of categorizing all subgraphs into
isomorphic groups and counting the number of original
graphs each group occurs. The method pipeline is illustrated in
Fig. 1 (full details in the Supplementary Note 1, source code at
http://zhoulab.usc.edu/struct2fun/).

Spatial clusters constitute various regulatory communities. The
discovery of frequent spatial cluster requires three parameters: the
minimum size (that is, the number of chromatin domains in a
cluster), the minimum edge density and the minimum occurrence
frequency of the cluster in the genome structure population.
Varying the three parameters, as expected, we observed that the
number of identified frequent spatial clusters decreases with the
increase of the minimum frequency threshold, the minimum edge
density and the minimum size (details in Supplementary Note 2).
In the following, we focus on the analysis of the set of 3,856
frequent spatial clusters discovered with the minimum size of 4,
minimum edge density of 0.6 and minimum frequency of 1%.
Our major conclusions are robust against the variation of the
parameters (details in Supplementary Note 2).

Although local (intra-chromosomal) interactions are much
more likely to occur than inter-chromosomal interactions,
interestingly, 80.6% of the 3,856 clusters contained domains
from multiple chromosomes. The majority of clusters contained
domains from fewer than six chromosomes (Supplementary
Fig. 3a). Intra-chromosomal clusters typically have higher
frequency of occurrence in the structure population (on average
3,147 out of 10,000) than inter-chromosomal clusters (on average
509 out of 10,000). The distribution of the cluster sizes and
frequencies is shown in Supplementary Fig. 3b. The relationships
between sizes and frequencies for intra- and inter-chromosomal
clusters are shown in Supplementary Fig. 3c,d respectively.

The 3,856 frequent spatial clusters, especially inter-
chromosomal clusters, participate in a wide range of regulatory
activities. We define a regulatory community as a frequent spatial
cluster whose member domains are significantly co-enriched in
binding to the same regulatory factor(s) (permutation test,
q-valueo0.05, see Supplementary Note 3). By analysing
genome-wide binding data of 74 transcription factors31 of
human lymphoblastoid cells, we found that 53.1% of all
identified clusters constitute regulatory communities. Among
those, 83 are tRNA synthesis communities due to their intense
RNAPIII-binding signals; 3 are dominated by the polycomb
binding proteins YY1; and 729 are transcription communities
with significantly enriched RNAPII-binding signals. Remarkably,
707 (97%) of the transcription communities are
inter-chromosomal. We also obtained DNA replication data32

of human lymphoblastoid cells to examine which clusters are
enriched in early or late replication signals (details in
Supplementary Note 3). We found that 333 clusters replicate at
the beginning of S phase, whereas 4 clusters at the end of S phase.

Importantly, only a few of these regulatory communities can be
inferred from the original Hi-C contact map. We ran two popular
graph clustering algorithms, linkcomm33 and commDetNMF34,
with different design principles, on the Hi-C contact map with a
variety of different parameter settings in terms of edge cutoff,
edge density, cluster size and algorithm-specific factors. From the
linkcomm and commDetNMF algorithms in total, we obtained
3,157 and 15,755 clusters, which, however, show significant
overlap (Jaccard Index40.6) with only 12.5% and 14.1% of
the 3,856 frequent spatial clusters, respectively. Furthermore, the
frequent spatial clusters contained a much higher fraction
(53.1%) of TF enriched clusters than those clusters directly
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derived from the Hi-C contact map (30.4% and 33.0% for clusters
derived by linkcomm and commDetNMF, respectively). A closer
examination of those clusters showed that 455% of clusters

uniquely discovered by our approach, versus only 33.1% of the
clusters uniquely discovered by linkcomm and 35.2% uniquely
discovered by commDetNMF, are enriched in the TF binding. For
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Figure 1 | The overall procedure to discover frequent dense clusters. Each 3D genome structure is transformed into a CIG where a node represents a

domain and an edge represents a contact between two domains. In this example, 4 CIGs with 10 nodes are built. Each node is labelled by the triplet

L1–L2–L3, where L1 indicates the chromosome index, L2 indicates the domain index among all domains in its chromosome and L3 (a letter A or B) indicates

which copy of the chromosome the domain comes from. For example, nodes 2-3-A and 2-3-B indicate ‘twin’ nodes are from the 3rd domain of

chromosome 2, in its two homologous copies. Step 1: Each genome structure is transformed into a CIG. Step 2: in each CIG, we merge any two ‘twin’ nodes

that represent homologous domains. This step yields a collection of four contracted graphs without isomorphism (termed cCIG, where each node is a

merged domain, labelled by L1 and L2). Step 3: We identify the dense subgraphs that frequently occur across many networks using a tensor-based

computational method. Step 4: We restore each frequent dense subgraph to its un-contracted form in the original CIGs, and after mining on these

subgraphs with ‘coupled isomorphism’ we identify the final set of frequent dense subgraphs.
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details of the comprehensive comparison refer to Supplementary
Note 4. The power of our approach can be explained by its
use of chromatin interaction co-occurrence information in
the modelled 3D genome population, which is entirely
missing from the original Hi-C contact map. Such information
facilitates the detection of subtle but biologically meaningful
spatial clusters that are otherwise buried in the ensemble-
averaged Hi-C data.

Interestingly, we observe that a chromatin domain can be part
of multiple frequent clusters in different genome structures
of the population. More importantly, domains tend to be
shared by clusters that are regulated by the same group of
transcription factors (Fisher’s exact test, P value o10� 16,
Supplementary Table 1). Figure 2 illustrates that a trans-
criptionally active chromatin domain on chromosome 19
participates in two different inter-chromosomal clusters, which
are both enriched with the same group of TFs, that is, RNAPII,
CTCF, NFYB and CREB1. That is, regulatory communities of
the same function can exchange their members. In other
words, the structural plasticity of the human genome may far
outweigh its functional plasticity, which also explains why
the occurrence frequencies of individual regulatory communities
are generally low.

To experimentally validate the co-localization of domains in
identified clusters, we performed DNA 3D FISH on
lymphoblastoid cells. We selected two clusters that each contains
three domains from three different chromosomes and has
enriched binding of RNAPII and other TFs. One cluster is
formed by p-arm telomeric regions of chromosomes 4, 11 and 17;
and the other is formed by domains far away from both
centromeres and telomeres of the chromosomes 1, 17 and 19. As
a comparison, we chose control regions on the centromeric
locations of chromosomes 2, 3 and 6, which do not show
co-localization from our modelled genome structures.
(Figure 3a–c and Supplementary Table 2). Examining the average
pairwise distances for domains in the predicted clusters and in the
control regions, respectively, in 2,500 randomly chosen
interphase nuclei, we confirmed that the domains in each of the
2 predicted clusters exhibit pronounced co-localizations (Fig. 3c).

Centromeric domains are hubs for inter-chromosomal clusters.
A striking observation is that among the 3,107 inter-chromosomal
clusters, the vast majority (87%) contain at least 1 centromeric
domain. Interestingly, centromeric domains of certain
chromosomes as members of clusters are observed substantially
more often than others. For example, the centromere domains of
chromosomes 1 and 9 are involved in 4500 inter-chromosomal
clusters (Fig. 4a). In general, the closer a domain is to the
centromere of its chromosome, the more frequently it participates
in stable inter-chromosomal clusters (Fig. 4b). In addition, clusters
involving more chromosomes generally have a higher proportion
of centromeric domains (Fig. 4c). These observations suggest that
centromeric domains are a major factor in chromosome
intermingling.

Centromeres of different chromosomes tend to form clusters in
human lymphoblastoid cells as shown by our recent structural
modelling17 or advanced method to capture multiple-locus
chromatin contacts35 on Hi-C data. Centromere–centromere
colocalization could also be inferred from the Hi-C contact map
(details in Supplementary Note 5). Our inspection of the 3D
genome models revealed that when a centromere–centromere
cluster forms, due to geometric constraints the centromeres are
often located towards the central regions of the corresponding
chromosome clusters, with chromosome arms emanating
outward to constitute a ‘V-shaped’ chromosome configuration
(Fig. 4d). Consequently, the centromere regions are the crowded
‘meeting spots’ of multiple chromosomes, therefore many
inter-chromosomal chromosome clusters are formed in the
proximity of centromeres. Importantly, the tendency to
participate in centromere clusters varies widely among
the chromosomes, which also explains why some
inter-chromosomal clusters are formed more easily than others.

To further evaluate the centromeric influence on spatial
genome organization, we classified the 3,107 inter-chromosomal
clusters into 2 groups based on the proportion of centromeric
domains in the cluster: 1,226 clusters contain between 0 and 30%
centromeric domains (weak centromeric influence), and 1,881
clusters have a higher proportion (strong centromeric influence).
We found that clusters with strong centromeric influence are
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Figure 2 | Functional plasticity of chromatin domain. An active domain in chromosome 19 can participate in two different clusters that are enriched with

binding of the same transcription factors, including RNAPII, CTCF, NFYB and CREB1.
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generally more stable (occur with higher frequencies, Wilcox test
P value¼ 5.3� 10� 5), indicating that centromere–centromere
interactions may play an important role in stabilizing
inter-chromosomal clusters. We also found that clusters with
strong centromeric influence are positioned closer to the nuclear
centre, and have less gene density and lower gene expression level
(all with the Wilcox test P valueso10� 16, Fig. 4e).

For inter-chromosomal clusters with weak centromeric
influence, we further asked whether the involved centromeres
are still co-localized even though centromere domains are not
part of the frequent clusters. For each cluster, we calculated the
average pairwise spatial distance between the centromeres of the
chromosomes involved in the cluster. We compared three
groups of centromere distances: clusters with strong centromeric
influence, clusters with weak centromeric influence and randomly
selected structures that do not contain the clusters with weak
centromeric influence. We found that the average centromere
distance are similar between the first two groups, and that both
are significantly shorter than the last group (Fig. 4f). These results
indicate that for inter-chromosomal clusters with a low portion of
centromeric domains, the centromeres of the corresponding
chromosomes are still co-localized, even if they are not part of
the frequent cluster (Fig. 4g). Our results indicate that
centromere–centromere clustering can be a major driving force
for specific inter-chromosomal organization.

Transcription factors may stabilize regulatory communities.
Recent studies have shown that certain transcription factors, such

as Klf1, EKLF, GATA1 and Nli/Ldb1, can bridge long-range
chromosomal contacts to form complexes of multiple
co-regulated genes36–40. However, the extent and nature of this
function is not clear. To examine the effect of TF binding in
cluster stability, we computed the partial correlation between
cluster frequency and the number of TFs with significantly
enriched binding in the cluster, by removing the influence of
centromeres on cluster frequency. We found a significant positive
association (partial correlation of 0.19, P value¼ 2.4� 10� 26,
details in Supplementary Note 6). Indeed, for inter-chromosomal
clusters under the same level of centromeric influence, those
clusters bound by more TFs always have higher occurrence
frequency (Supplementary Fig. 4). Our results indicate that
transcription factors potentially stabilize inter-chromosomal
contacts irrespective of the influence of centromeres.

Moreover, the binding of TFs to chromatin clusters show
functional-specific groupings, where four TF groups emerge
based on their enrichment profiles across the chromatin clusters
(Fig. 5a). The Group 1 is dominated by repressors, such as PAX5,
PML, MTA3 and so on, while Group 3 is dominated by many
activators, such as RNAPII, NFYB and EBF1. TF-Group 2 is
dominated by Immune Response TFs (IRTFs), including Nf-KB41,
c-Fos42, IRF3 (ref. 43), STAT3 (ref. 44) and RFX5 (ref. 45).
Interestingly, the clusters enriched in these three groups of TFs
showed different spatial distributions in the nucleus (Fig. 5b):
clusters enriched with the TFs from the IRTF-dominated Group 2
are located most centrally in the nucleus; clusters enriched with
the TFs from the activator-dominated Group 3 tend to be located
between the nuclear centre and the periphery; and clusters with
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the TFs from the repressor-dominated Group 1 have a more
dispersed radial distribution ranging across all positions.

The Group2 TFs (mainly IRTFs) are most enriched preferably
in clusters with strong centromeric influences (Fig. 5c).
Furthermore, the number of those TFs enriched in a cluster
is significantly correlated with the cluster frequency, and
such correlation is especially strong for clusters with strong
centromeric influence (Fig. 5d). These observations lead to
the hypothesis that this group of TFs may be closely

associated with centromere clustering. Indeed, we found a
positive correlation between the signal of these TFs in the
sub-centromeric regions and the subcentromere–subcentromere
contact frequencies (Fig. 5f, details in Supplementary
Note 7). This evidence confirms the tight association
between the IRTF binding and the centromere clustering,
although it is still inconclusive whether IRTF stabilizes
centromere clustering or centromere clustering stabilizes clusters
bound by IRTFs.
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On the other hand, only clusters with weak centromeric
influence display a weak yet significant correlation between the
cluster frequency and the number of enriched TFs in the
TF-Group 3 (dominated by activators) (correlation of 0.17,
P value¼ 9.09� 10� 10, Fig. 5e). In addition, the proportion of
clusters enriched with TF-Group 3 is 78% higher in clusters with
weak centromeric influence compared with those with strong

centromeric influence (Fig. 5c). Our results demonstrate that
different factors impact the stability of regulatory communities at
different nuclear locations. While centromere clustering and
IRTF binding are tightly associated with the cluster stability in the
nuclear centre, transcription activators (such as RNAPII, CTCF
and NFYB) could potentially stabilize regulatory communities
between the nuclear centre and the periphery.
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The genome structure population contains multiple substates.
The detection of distinct regulatory communities incites us
to study the co-occurrence or mutual exclusivity of these
communities in a single genome structure. To achieve this, we
performed biclustering analysis of the occurrence profiles of
all clusters across the population. We identified eight non-
overlapping subsets of genome structures spanning the whole
structure population (Fig. 6a), where each subset is characterized
by the co-occurrence of a set of specific spatial clusters. In other
words, we were able to divide the structures in the population
into different structural states according to the presence or
absence of spatial clusters. Note that using domain contacts as
features would lead to very different structure subpopulations
(details in Supplementary Note 8).

The eight structure subpopulations differ significantly in their
inter-chromosomal domain–domain contact maps (Fig. 6b). For
example, centromere of chromosome 9 have high-frequency
contacts with other chromosomes only in subpopulations 3, 4, 5,
6 and 7. After investigating the 3D models, we found that the

centromeres of chromosome 9 have significantly smaller
radial positions in these subpopulations (Fig. 6c), giving its
chromosomes more chance to intermingle with other specific
chromosomes. Analogously, centromere of chromosome 8
displays high-frequency chromatin contacts only in
subpopulation 7 (Fig. 6b), where its radial position is located
more towards nuclear interior (Fig. 6c).

Interestingly, the identities of the most enriched TFs are quite
different in the clusters of the different subpopulations (Fig. 6d).
For example, among the 31 top-enriched TFs, 70% showed
significant signal difference in the clusters of subpopulations 1
and 2 (Wilcox test P value o0.05). In subpopulation 1 the most
enriched TFs are from the Group 1 (mainly repressors). In
subpopulations 2 and 7, Group2 (mainly IRTFs) are dominant,
while in subpopulations 3, 4, 5 and 8 the most enriched TFs
are from Group 3 (mainly activators). Our results suggest that
the regulation of certain transcription factors may be facilitated
in individual cell states, which, in turn, may stabilize specific
regulatory communities. It is known that many actively
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transcribed genes are only expressed in a portion of the cell
population15,16,46–49. Our study indicates that the diversity of
genome structures may contribute to the diversity of expression
in an isogenic cell population.

Discussion
We present a graph-based computational framework for the
analysis of 3D genome structure populations, for which
traditional structural analysis tools are not suitable due to the
highly plastic nature of genome structures. Our method can
comprehensively identify frequently occurring chromatin clusters
in tens of thousands of 3D genome structures. Integrating
epigenomics and functional genomics data, we show that the
clusters are involved in a wide range of nuclear processes, with
transcription being most prevalent. Strikingly, the majority of
these clusters are not detectable in the Hi-C contact map.
Interestingly, we found that a chromatin domain can belong to
different transcription communities in different genome
structures; however, these communities tend to be regulated by
same transcription factors. This observation reveals the functional
degeneracy of the highly plastic human genome structures.

We identified two major factors, centromere clustering and
transcription factor binding, that significantly contribute to the
stability of the 3D regulatory communities in lymphoblastoid
cells. Centromere clustering creates crowded ‘meeting spots’ of
multiple chromosomes in the nuclear centre, facilitating the
formation of inter-chromosomal contacts and hence functional
chromatin clusters. Note that the impact of centromere clustering
reaches far beyond the nuclear centre. Even among chromatin
clusters containing a low percentage of centromere domains,
the respective centromeres are still co-localized. In this case
centromeres serve as anchors, and active domains nearby loop
outward and intermingle, potentially creating hotspots to form
transcriptional communities. We further show that binding of
specific transcription activators could potentially stabilize
such communities, particularly between the nuclear centre and
the periphery. Another key finding is that the localization of sets
of TFs into transcription communities demonstrate specific
patterns, in particular, activators and repressors are grouped into
separate transcriptional communities. In other words, we
discovered that combinatorial regulation of TFs, until now only
discussed in the context of linear genome sequences, in fact also
exists in the 3D space. We note that our major findings are not
sensitive to the parameter settings for the frequent clustering
mining algorithm (see Supplementary Note 2).

Using the frequently occurring chromatin clusters as structure
features, we were able to group the 10,000 highly variable 3D
genome structures into 8 groups (substates) exhibiting similar
feature profiles. We show that the transcriptional communities
present in the genome structures differ dramatically from substate
to substate, indicating that 3D genome structures may contribute
to expression variability across cells.

Our method is generally applicable to genome structures at any
resolution. This paper exemplifies the utility of our method at the
resolution of macrodomains. Intuitively, one would hope that
the unit of resolution (for example, macrodomains) shall not
vary across the genome population. Recent single-cell Hi-C
experiments showed that topological domains are largely
conserved across cells within a sample50. As a realistic
approximation, we assume that macrodomains possess the same
property. As the 3D genome modelling quickly approaches the
resolution of topological domains, more functional and
regulatory inferences can be derived.

Our method is also applicable to the functional analysis of a
collection of single-cell Hi-C data, although currently single-cell

Hi-C technology is still hampered by its very limited capture
efficiency and the cost bottleneck to cover the highly variable
genome conformation space. Therefore, our strategy of frequent
pattern discovery from a population of 3D genome structures,
deconvoluted from the ensemble-averaged Hi-C data, presents a
realistic and powerful approach to perform structure-function
mapping in 3D genomes.

Methods
Data pre-processing. We performed the TCC experiment in human
lymphoblastoid cells. Together with data for the same cell type generated in a
previous study3, we analysed B50 million read pairs of deep-sequencing data.
The data pre-processing and normalization were described in our previous work3.
The filtered pairwise fragment reads were aggregated in a genome-wide interaction
matrix using 4,992 bins. For details of the population-based genome structure
modelling method, see our previous paper3.

3D DNA FISH. The DNA FISH probes were synthesized by Empire Genomics Inc
(for the detailed information about the chromosomal location and fluorescence
labelling of the probes, see Supplementary Table 2). Human lymphoid cell line
GM12878 cells were fixed and permeablized following the protocols3,51 with slight
modification. The denaturation and hybridization steps were performed according
to the protocols suggested by the manufacturer. Three probes (150 ng each) for
either targeted regions or control regions were mixed thoroughly with 18 ml
hybridization buffer (provided by the manufacturer) and applied evenly with the
sample on a microscope slide. After hybridization, the samples were washed several
times to remove unbound FISH probes, and mounted on microscope slides with
10 ml DAPI mounting solution for each slide. The FISH images were acquired with
Zeiss Laser Scanning Confocal microscope (LSM-780) with � 63 oil immersion
objective lenses. Optical sections (Z stacks) with 0.25–0.5 mm apart were obtained
with alternative scanning (frame mode) of two lasers each, and stored in four
separate channels with the ZEN software provided by the manufacturer. The FISH
results were analysed with ImageJ52 and Nemo53.

Partitioning spatial genome structures into subpopulations. For each
inter-chromosomal cluster, we constructed a binary vector of length N storing its
occurrence in the N structures. This vector can be interpreted as an activity profile
of the cluster in different structures. We combined these vectors into the cluster
co-occurrence matrix C¼ (cij)M�N, where cij¼ 1 when cluster i occurs in structure
j, otherwise cij¼ 0. We are interested in the co-occurrence pattern, so called
‘bicluster’, consisting of a subset of clusters and structures, such that the member
clusters are more likely to co-occur within the bicluster than those outside
of the bicluster. We applied a non-negative matrix factorization (NMF)-based
biclustering algorithm54 to discover the biclusters. We first removed 347
inter-chromosomal clusters with the occurrence frequency Z1,000 from the matrix
C, because they have prevalent occurrences across the population and thus cannot
provide useful information. Then we performed the NMF-based biclustering
algorithm, resulting in eight biclusters.
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