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Abstract 

When examining the structural identifiability properties of dynamic system models, some parameters 

can take on an infinite number of values and yet yield identical input-output data.  These parameters 

and the model are then said to be unidentifiable.  Finding identifiable combinations of parameters with 

which to reparameterize the model provides a means for quantitatively analyzing the model and 

computing solutions in terms of the combinations.  In this paper, we revisit and explore the properties 

of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful 

theoretical properties of these parameter combinations.  We prove a set of   algebraically independent 

identifiable parameter combinations can be found using this algorithm and that there exists a unique 

rational reparameterization of the input-output equations over these parameter combinations.  We also 

demonstrate application of the procedure to a nonlinear biomodel.      

Key words: Identifiability, Differential Algebra, Gröbner Basis, Reparameterization 

1.  Introduction 

Parameter identifiability analysis for dynamic system ODE models addresses the question of which 

unknown parameters can be quantified from given input-output data.  Unidentifiable parameters can 

take on an uncountably infinite number of values and yet result in identical input-output data.   In such 

cases, the model and its parameter vector   are underdetermined with respect to the input-output 

data.  This indeterminacy can be removed by finding the ‘simplest’ combinations of parameters that 

take on a unique or finite number of values, which are then used as candidates to reparameterize the 

model, rendering it identifiable.  Thus the question becomes, how can identifiable parameter 

combinations be found?    

This question has been partially answered for several model classes, under limited conditions.  Evans 

and Chappell [1] and Gunn et al [2] adapt the Taylor series approach of Pohjanpalo [3] to find locally 

identifiable combinations.  Chappell and Gunn [4] use the similarity transformation approach to 

generate locally identifiable reparameterizations.  Thus, with these methods identifiability can only be 

guaranteed (at least) locally.  The problem of finding identifiable parameter combinations has also been 

addressed using differential algebra methods, as Denis-Vidal et al [5] and Boulier [6] find globally 

identifiable combinations of parameters using an “inspection” method as discussed later in this paper.  

However, as shown by Meshkat et al [7], this method is difficult to implement as a fully automated 
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computational procedure.     

In [7], an algorithm was outlined for finding the ‘simplest’ set of globally identifiable parameter 

combinations for a practical class of nonlinear ODE models.  This algorithm extended the method of 

Saccomani and coworkers [8] using a variation of the Gröbner Basis approach.  In this paper, we address 

several questions that arose in [7] regarding properties of the identifiable parameter combinations 

found, including algebraic independence and the existence of a rational reparameterization of the input-

output equations derived from the original nonlinear model.  Although a rational reparameterization of 

the original nonlinear model cannot always be done (as shown in [1]), we prove here that a unique 

rational reparameterization of the input-output equations can always be found over algebraically 

independent parameter combinations.  In addition to being useful in quantifying the model and 

exercising its solutions, we will show that the ability to rationally reparameterize the input-output 

equations leads to a rigorous proof of identifiability.    

2.  Nonlinear ODE Model 

The general form of the models under consideration is: 

                                      

                                                                                    (2.1) 

Here   is a n-dimensional state variable,   is a   -dimensional parameter vector,   is the r-dimensional 

input vector, and   is the m-dimensional output vector.  We assume   and   are rational polynomial 

functions of their arguments.  Also, constraints reflecting known relationships among parameters, 

states, and/or inputs are assumed to be already included in (2.1), because they generally affect 

identifiability properties [9].  For example,     is common. 

   

3.  Identifiability and the Differential Algebra Approach 

The question of a priori structural identifiability concerns finding one or more sets of solutions for the 

unknown parameters of a model from noise-free experimental data.  Structural identifiability is a 

necessary condition for finding parameter values in the real “noisy” data problem, often called the 

numerical identifiability problem.   

Structural identifiability can be expressed as an injectivity condition, as in [8].  Let          be the 

input-output map determined from (2.1) by eliminating the state variable  .  Consider the equation 

              , where    is an arbitrary point in parameter space and   is the input function.  If 

there exists only one solution     , then this corresponds to global identifiability.  If there exists 

finitely many distinct solutions for  , then this corresponds to local identifiability.  Infinitely many 

solutions for   corresponds to unidentifiability.    
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The a priori structural identifiability problem can be solved using the differential algebra approach of 

Saccomani et al [8], which follows methods developed by Ljung and Glad [10] and Ollivier [11,12].  Their 

program, DAISY, can be used to automatically check global identifiability of nonlinear dynamic models 

[13].  We summarize their approach below.   A detailed description can be found in [7,13].  

Using Ritt’s pseudodivision algorithm, an input-output map can be determined in implicit form.  The 

result of the pseudodivision algorithm is called the characteristic set [11].  Since the ideal generated by 

(2.1) is a prime ideal [14], the characteristic set is a “minimal” set of differential polynomials which 

generate the same differential ideal as the ideal generated by (2.1) [13].  The first m equations of the 

characteristic set are those independent of the state variables, and form the input-output relations [13]: 

                (3.1) 

The characteristic set is in general non-unique, but the coefficients of the input-output equations can be 

fixed uniquely by normalizing the equations to make them monic [13].  

The m equations of the input-output relations            are polynomial equations in the variables 

                          with rational coefficients in the parameter vector  .  Specifically, these 

equations involve polynomials from the differential ring          , where      is the field of rational 

functions over the real numbers in the parameter vector  .  For each equation, we can write 

                        , where       is a rational function in the parameter vector   and 

        is a monomial function in the variables                            etc.  We call       the 

coefficients of the input-output equations.    

To form an injectivity condition, we set                   .  Then global identifiability becomes 

injectivity of the map      [13].  That is, identifiability is determined by the equations 

                (3.2) 

for arbitrary    [13].  Thus, the model (2.1) is a priori globally identifiable if and only if            

implies      for arbitrary    [13].  The equations            are called the exhaustive summary 

[11].   

If there are finitely many distinct solutions for  , then the model (2.1) is locally identifiable.  The model 

(2.1) is unidentifiable if there are infinitely many solutions for  , that is, the solution for   is expressed in 

terms of one or more free variables.  Thus, determining structural identifiability is reduced to the nature 

of the solutions to           , which is typically solved by finding a Gröbner Basis and using 

elimination [13].   

4. Some methods for finding identifiable parameter combinations 

We focus on the case when (3.2) has infinitely many solutions (unidentifiability) in this paper. 

Unidentifiable models cannot be quantified from input-output data.  A useful alternative is to find 

identifiable parameter combinations which can always be determined from input-output data, and 

attempt to reparameterize our model (2.1) in terms of these new parameters.  Before we revisit our 
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method for finding identifiable parameter combinations [7], we briefly present two other methods for 

finding identifiable parameter combinations using the differential algebra approach.  Both procedures 

rely on using the exhaustive summary            to find parameter combinations that are either 

uniquely or finitely determined by   .  

Definition: Let   be the number of free parameters, defined as the number of total parameters   minus 

the number of equations   in the solution of           .   

That is, there are    free parameters and   “non-free” parameters, where      .  Sometimes 

identifiable combinations can easily be found directly from the solutions to the equations           , 

by algebraically manipulating their solutions to form       parameter combinations in terms of    

only.  In other words, find solutions of the form           .  For example, in the Nonlinear 2-

Compartment Model in [7], the solution to            is of the following form, where   

                          and                   :   

   
  

  
 

      

      

   
  

  
 

      

   
  

  
 

Then clearly                                   are uniquely determined by    because we can move 

the parameter vector   all to one side of the equation.  To verify global identifiability, one would then 

reparameterize            over these parameter combinations                                   

and check the injectivity condition.  

However, this ability to “move all parameters to one side of the equation” and thus “decouple” our 

parameter solution cannot always easily be done, as demonstrated in the Linear 2-Compartment Model 

below [7], where                       and                   : 
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Here we see that we it takes more effort to find the uniquely determined parameter combinations 

                             .  

Why is this the case?  The solutions to            can be found by solving for a Gröbner Basis, which 

is basically a way of simplifying the equations to a “triangular form”, followed by elimination.  No 

attempt to keep the   and    parameters separated is made during the elimination process, and so it is 

simply fortuitous if this occurs!  Other examples of models whose parameter solutions cannot easily be 

decoupled can be found in [7].  

The other way to find identifiable combinations is through the process called “inspection” *6].  The 

coefficients       of the input-output equations are assumed to be identifiable [15]. The process of 

“inspection” involves adding/subtracting/multiplying/dividing the coefficients       amongst each other 

to form simpler identifiable combinations, which are always of the form           .  For example, if 

the coefficients are:   

           

           

                  

                      

                                  

             

Then it is obvious that the combinations                                   are also uniquely 

determined by    and by reparameterizing      over these combinations, one could verify injectivity 

and thus global identifiability of the reparameterized model.     

However, if we instead have the following as coefficients: 

        

                         

                              

              

It is not so easy to simplify these coefficients to form simpler identifiable combinations.  In this case, 

                      are clearly uniquely determined by   , but the fourth combination        

only becomes apparent if we factor                      as                          .  

There are some examples of models in [7] where inspection gets trickier, primarily when there are a 
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finite number of distinct solutions for  , expressed in terms of one or more free variables.  This is where 

a Gröbner Basis comes to the rescue.  

5.  Algorithm for finding identifiable parameter combinations 

Our algorithm for finding identifiable combinations is based on the principle that a Gröbner Basis is in a 

sense a “simpler form” of           .  When testing for identifiability using the differential algebra 

approach of [13], we are solving the system            by finding a Gröbner Basis and then by 

elimination, finding a solution for    in terms of    and possibly free parameters.  Since a Gröbner Basis 

helps solve the system           , by reducing it to a simpler (triangular) form, we speculated and 

consequently demonstrated in [7] that the Gröbner Basis generates identifiable combinations that are 

‘simpler’ than     .   

There are at least   coefficients of the input-output equations, by definition.  Thus, the exhaustive 

summary            is composed of at least   equations.  From the exhaustive summary, we 

construct a Gröbner Basis of the form          
           

   , where    is a polynomial function 

with    , depending on the ranking of parameters.  Our goal is to find   terms of the form  

          
                  (5.1) 

appearing either as an element by itself or as a factor of an element in a Gröbner Basis, since when set 

to zero this means       has either a unique or finite number of solutions, respectively.  In other words, 

      
   is “decoupled” into a polynomial in   minus the same polynomial in   . 

For example, if there is a Gröbner Basis element        
   

 , this means      has a unique solution.    

Or we may have         
   

          
   

   and         
   

          
   

   as elements, which 

means that      and      have a finite number of distinct solutions.   

Note that instead of (5.1), we may have elements scaled by an arbitrary polynomial function       , 

                      
   

whose solution reduces to the simplified form (5.1).  For example,   
        

   
   

  reduces to 

       
   

 .  

Additionally, sometimes the Gröbner Basis element or factor can be rewritten in decoupled form in 

order to get an identifiable expression.  For example, an element   
      

    can be decoupled as  
  

  
 

  
 

  
  .   

Determination of additional expressions of the type (5.1) depends upon the choice of ranking of 

parameters when constructing the Gröbner Basis.  The combinations we seek may not all appear in a 

single Gröbner Basis, hence the need for several rankings of parameters.  One technique described in [7] 

is to try all   shifts of the parameter vector  , since this forces each parameter to have the highest 

ranking, and thus be eliminated in that order.  However, this may not give all   decoupled terms, thus 

different permutations of the parameter vector   may also need to be tested [7].  In practice, an a priori 
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guess for identifiable combinations can help determine an optimal rank ordering, as demonstrated in 

the example below. 

More than   decoupled elements can appear in the Gröbner Bases, so as stated in [7], we look for a set 

of the   ‘simplest’ algebraically independent combinations that as a set span all   parameters.  We 

note that if the model is reducible, i.e. if one or more parameters in the model equations do not appear 

in the input-output equations, then we rename   to the number of parameters appearing in the input-

output equations.  By ‘simplest’, we mean the lowest degree and fewest number of terms.  Algebraic 

independence will be defined in Section 8.  We called a set of the   simplest terms of the form (5.1) the 

canonical set [7].    

To formally check identifiability, one attempts to reparameterize the coefficients      of the input-

output equations over the terms        .  If a reparameterization       exists, then injectivity of       

is tested, i.e. if             , does     ?  We found in [7] that if           
   appeared as an 

element in a Gröbner Basis, then global identifiability results, whereas if           
   appeared as a 

factor in a Gröbner Basis, then local identifiability results.  

A more detailed explanation of our algorithm can be found in [7].  We summarize it as three basic steps: 

Step 1: Search through all relevant rankings and determine elements of the Gröbner Bases (or factors, as 

needed) that can be simplified to the decoupled form           
  .   

Step 2: Select the   ‘simplest’ algebraically independent combinations.  By ‘simplest’, we mean the 

lowest degree and fewest number of terms.  The set of   combinations must span all   parameters.   

Step 3: Verify the injectivity condition of the model, that is, reparameterize      as       and then test if 

             implies that   has a unique or finite number of solutions. 

6. Example of finding identifiable parameter combinations 

We now demonstrate our algorithm on a classic 2-compartment model that has been made nonlinear.   

                
  

     
           

         
  

     
             

       

Definitions: 

        state variables 

    input 

    output 
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                              unknown parameters 

Figure 1.  

Let                                 and                     .   

The input-output equation determined by Ritt’s pseudodivision algorithm is: 

     
   

         
              

    
   

                 

    
           

      
    

      
    

                                 

             
       

      
      

      
          

           
         

                    
     

              
              

             

                                    
    

Notice there are 13 coefficients, but 5 of them are algebraically independent.  Thus, we only use the 

coefficients that cannot be described as a polynomial or rational functions of the other coefficients, as 

discussed in Section 9 of this paper.   

Five coefficients      that satisfy this condition are: 

     

     

        

                                 

  
           

      
    

      
    

         

We solve           : 

        

        

            

                                                

  
           

      
    

      
    

                                 

To get: 
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Thus not all of the identifiable combinations are obvious from this solution.  

In order to find identifiable parameter combinations, we now search through Gröbner Bases for 

decoupled terms or factors.  An a priori guess for identifiable parameter combinations can help 

determine an optimal rank ordering.   

For example, multiplication of the second and third equations in the solution to            and 

multiplication by      yields that  

                

thus, we guess that            is an identifiable parameter combination.  Thus, we should test a 

Gröbner Basis ranking where these parameters are eliminated last and grouped in that order.  For 

example, the ranking                               keeps               together and eliminates 

them last.    

The Gröbner Basis with ranking                                can be found using Mathematica: 

 

Notice there are many decoupled terms to choose from, but we only need       = 8 – 3 = 5 

parameter combinations.  In this case, the decoupled terms can be found from a single Gröbner basis, 

but this is not true in general, as shown in [7]. 

Thus we pick a set of the ‘simplest’ algebraically independent parameter combinations: 

c1 k12 k21 vm 2

k12 k21 2 k12 k21 2 k01 2 k21 2

k12 k21 vm 2 2 k12 k21 vm 2 2 k01 vm 2 2 k21 vm 2 2

k12 k21 vm 2 k12 k21 vm 2 k01 vm 2 k21 vm 2

c1 k12 k21 vm c1 k01 vm c1 k21 vm c1 k01 vm c1 k21 vm

c1 k01 vm c1 k21 vm 2 2

b1 b1 b1 k12 k21 vm k01 vm k21 vm k01 vm k21 vm

b1 2 k12 k21 vm 2

b1 2 b1 2 k01 vm 2 k21 vm 2

b1 c1

k02 k12

km km km k12 k21 vm k01 vm k21 vm k01 vm k21 vm

km 2 k12 k21 vm 2 2

km 2 km 2 k01 vm 2 2 k21 vm 2 2

b1 km

c1 km
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Notice that the set of ‘simplest’ algebraically independent parameter combinations is not unique.  For 

instance,       also appears as a decoupled term, thus the term      could be replaced by it.   

We can reparameterize our coefficients as       by finding a Gröbner Basis of                     

                                                          in the rank ordering 

                                             for each coefficient      .  We get the following 

reparameterized coefficients of the input-output equation: 

     
                  

    
                   

                          
 

     
                     

                           
    

Then, when we set             , we get     , which means that our parameter combinations   are 

globally identifiable.    

Thus, we can reparameterize our nonlinear model using a “canonical form”, i.e. reduction to a first order 

system.  Let                            .  Then the input-output equation becomes: 

       

           
       

                    
     

                            
 

     
                          

                             
   

where                are all globally identifiable.     

Using these  , we seek to reparameterize the original model.  In this case, this can be done by using the 

scaling:         and            

       
  

     
        

      
  

     
      

     

Notice that the reparameterized model no longer has a “compartment” form.  This can be remedied by 

a simple algebra trick:    
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Figure 2. 

7. Theoretical Considerations 

As discussed above, there are 3 steps in our approach.  First, we find parameter combinations      from 

the Gröbner Bases of the exhaustive summary.  Second, we reparameterize      over      to get      .  

Third, we show that              implies that   has a unique or finite number of solutions, and thus we 

have rigorously proven identifiability.   

The main objective of the theoretical work is to show that the Gröbner Bases formed from the 

exhaustive summary            always provide a set of   combinations      such that there exists a 

unique rational reparameterization of      over     .  To establish this, we show: 

I. A set of   algebraically independent parameter combinations      can always be obtained 

from the Gröbner Bases of the exhaustive summary or from the exhaustive summary itself 

(Theorem 1). 

II. For such a set of   combinations, there exists a unique rational reparameterization of      

over     , i.e.        (Theorem 2).   

III. By construction of the     , we have that              implies the combinations      are 

either globally or locally identifiable, depending on whether they have a unique or finite 

number of solutions in the Gröbner Bases of the exhaustive summary  (Theorem 3).   

We address (I) in Section 8 and prove there are at least   algebraically independent parameter 

combinations      obtained from decoupled terms or factors in the Gröbner Bases of the exhaustive 

summary (adjoined with the exhaustive summary).  We also prove that if a decoupled term is contained 

in the ideal of other decoupled terms (thus “redundant”), then it is a polynomial or rational combination 

of these terms.    

We address (II) in Section 9 and show that any term           
   is “redundant” with respect to the 

ideal generated by            
             

               
   .  We also show there are at 

most   algebraically independent parameter combinations     , and thus there are exactly  .  

Combining these results implies there is a unique rational reparameterization of the input-output 

equations over our   algebraically independent parameter combinations     .    

We address (III) in Section 10 and show that a unique rational reparameterization of the coefficients of 

the input-output equations over our   algebraically independent parameter combinations implies that 

these combinations are in fact identifiable.   
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Before we address the algebraic independence of     , we must first show that the Gröbner Bases 

generate enough (that is,  ) decoupled terms or factors that as a set span all   parameters.  A simple 

explanation is that, even in the pathological case where Gröbner Bases do not generate enough 

combinations, we always have at least   coefficients      of the input-output equations, which are 

known to be identifiable [15] and must span all   parameters, by definition.  Thus, there will always be 

enough identifiable combinations to reparameterize     , i.e. we can trivially reparameterize      over 

itself.  The point of using a Gröbner Basis is that we can form ‘simpler’ parameter combinations.  

However, if no new ones are generated, this suggests the      were “simple enough”!  Thus, to simplify 

notation from now on, when we refer to the “decoupled combinations”     , we are referring to the 

parameter combinations      obtained from decoupled terms or factors in the Gröbner Bases of 

          , and in the pathological case where not enough are generated, then      possibly 

includes terms in     .   

In our previous work [7], we referred to a decoupled combination found in the Gröbner Basis of (3.2) as 

“identifiable”.  We refrain from preemptively calling the decoupled combinations “identifiable” here, 

since the goal is to find the conditions to rationally reparameterize      over      and thus get 

identifiability in the rigorous sense, i.e. the injectivity definition.  We will see that a sufficient condition 

for finding a unique rational reparameterization is that our   parameter combinations      are 

algebraically independent.    

8. Algebraic Independence   

Definition: A subset             of a field   is algebraically dependent over a subfield   if there 

exists a nonzero polynomial   of   variables with coefficients in   such that  

               (*) 

Definition: If   is not algebraically dependent, i.e. if there exists no nonzero polynomial   such that (*) 

holds, then   is algebraically independent [16].   

In this paper,        and    .  Thus,   is a subset of polynomials in     .   

Algebraic independence can be tested in the following way.  Let the polynomials be 

                    and let    be a tag variable, i.e. a variable introduced in order to eliminate other 

variables [17].   Then form the Gröbner Basis of the set                                   with the 

ranking                    .  A polynomial in only           will result if and only if the set is algebraically 

dependent.  If no such polynomial results, then the set is algebraically independent [17].    

8.1 Redundancy 

When we consider solving a system of equations             , an interesting question arises:  do we 

need every equation           
  , or are some of these equations redundant?  Redundant means 

that the solution space of some equation contains the intersection of the solution spaces of other 

equations in the set.  More precisely, suppose             is a collection of polynomials in   

variables         and suppose a solution to the system of equations                  is 
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         .  Let   be the ideal generated by  .  Then any element   of the ideal   also satisfies 

             [16].  In other words, solving     would be redundant in solving the system 

                .  We now show redundancy can be related to algebraic dependence: 

Lemma 1:  Suppose there are   algebraically independent terms                       and that the 

terms                                               are consistent, i.e. solving            

         does not result in the empty set.  Then the set                            

                     contains no redundant elements.    

Proof:  We prove the contra-positive.  Assume that the set                            

                     contains a redundant element.  Without loss of generality, assume           

is contained in the ideal                                      .  

Then if       
      

   is any solution to the system                                    , 

then     is also a solution to          , i.e.      
        .    

We have that    is a function    ,     , …,       and possibly  , thus since     is a tag variable and not a 

function of  , then     must be only a function of    ,     , …,       .  Since           is contained in the 

ideal                                       , then     must be a polynomial or rational 

function of    ,    , …,       .  Thus,      ,                       are algebraically dependent.         

Following the proof to Lemma 1, we can show that if           
   is contained in the ideal        

    
               

   , then       must be a polynomial or rational function of               

(which means that       and               are algebraically dependent).  This statement will be later 

used to prove that there exists a unique rational reparameterization of       in terms of 

             .  We thus state it as a corollary:   

Corollary 1:  Suppose the     terms                                             are 

consistent, i.e. solving                                              does not result in the 

empty set.  If           is contained in the ideal                                  , then     

must be a polynomial or rational function of    ,    , …,    .   

Proof:  This follows from the proof of Lemma 1.    

We seek to prove that among the coefficients      of the input-output equations, there exists a subset 

of   algebraically independent coefficients              .  This will follow from the converse to 

Lemma 1, with an additional assumption:  

Assumption:  The number of non-redundant equations is equal to the number of non-free parameters in 

the solution.   

In other words, for   parameters and   non-redundant equations, we can eliminate up to     

parameters and solve for   non-free parameters in terms of   free parameters.  This is a reasonable 

assumption because we are examining the unidentifiable case, where our parameter vector   is 



14 
 

underdetermined with respect to the input-output data.  This assumption will be used in Section 9 to 

link the ideas of algebraic independence of our polynomials to the dimension of our variety.     

Converse to Lemma 1:  Suppose there are   non-redundant and consistent terms 

                     , where   is the number of non-free parameters in its solution.  Then the   

terms               are algebraically independent.   

Proof: Assume there are   non-redundant and consistent terms                      , where   is 

the number of non-free parameters in its solution   , in terms of free parameters and          .  Let  

                           , taken as an ideal over        

For a contradiction, assume that               are algebraically dependent.  Then this means there 

exists a non-zero polynomial    such that            .   

Then over the quotient ring       , we can substitute     for       and obtain a condition:  

                      . 

There are two possibilities for      : 

Case 1:        only involves     that are not in the solution   . 

Then the corresponding terms           would be redundant since they are not incorporated in the 

solution   , a contradiction.     

Case 2:       involves     in the solution   .  

Then this means that the solution    has an additional constraint on it, which means there is another 

way to write the solution using the polynomial relationship        .  Then this other solution is either 

inconsistent with   , which means the terms                       are inconsistent, or one or more 

of the terms                       are redundant since the polynomial constraint         implies 

that some     can be solved for in terms of other    and thus not all    are needed in the solution   .  This 

provides a contradiction.   

Thus, these two cases prove that the   terms               are algebraically independent.   

Lemma 1 and the Converse together show that finding an algebraically independent set of   

coefficients               is equivalent to finding a set of   non-redundant 

          
               

   in the exhaustive summary (which is consistent since      always 

satisfies these equations), where   is the number of non-free parameters in the solution.  Since this is 

true by assumption (p. 13), then we have shown there exists a set of   algebraically independent 

coefficients     .   

We now return to the question of how to determine which of the terms           
   in the 

exhaustive summary are redundant. The above Converse shows that if the set is algebraically 
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dependent, then at least one of the terms in the set is redundant, and thus not all the coefficients are 

needed to solve the exhaustive summary.   In other words, one or more of the equations can be 

removed, but how to we determine which ones can be removed while retaining the same solution 

space?   

For example, consider the ideal generated by         
   

         
   

         
   

         

  
   

   
  .  The set of zeroes of all four polynomials is       

       
       

  .   Using tag variables 

and finding the Groebner Basis of                                     for the ranking 

                      , it can be shown that           , thus the terms                         are 

algebraically dependent.  However, if we remove the term          
   

   
  from the set, the set of 

zeroes is now        
        

        
  .  In other words, even though the new set         

   
  

       
   

         
   

   is algebraically independent and non-redundant, this does not mean we 

have the same solution space as before.  Notice, however, that if any of the terms        
   

       

  
   

   or        
   

  were removed from our original set, the solution set would remain the same.  In 

other words, we conjecture that we can only remove terms that are a polynomial/rational combination 

of the others, not terms which have a higher power equal to a polynomial/rational combination of the 

others.   

Thus, we want to form a minimal set of      needed to generate the same solution space as the original 

exhaustive summary (3.2).  This question has been addressed in [15] as forming a generating set for 

     in the sense of sub-algebras.  Any term       that could be rewritten (using ideal operations) as 

other elements in      was excluded from the generating set [15].  Thus, if there are more than   

coefficients of the input-output equations, we only need to choose   coefficients that are not 

polynomial or rational combinations of each other for the exhaustive summary           .  Since we 

have already proven that there exists a set of   algebraically independent coefficients, which is a 

stronger condition, then forming a set of   coefficients that are not polynomial/rational combinations 

of each other can be done.  As discussed earlier with algebraic dependence, this is easily checked by 

taking a Gröbner Basis of  {        .  To simplify notation, from now on we will refer to the exhaustive 

summary equations            as having   equations, i.e. we will restrict      to the   elements in 

its generating set.         

8.2 Algebraic independence of       

We now show that if there exist   algebraically independent     , then there exists   algebraically 

independent     .  To prove this, we show that if there were less than   algebraically independent 

    , for instance,    , then these            elements cannot be algebraically dependent with 

each of the   original coefficients       because then the original   coefficients would also be 

dependent.    This contradiction implies that we can adjoin a subset of the algebraically independent 

     to our set of algebraically independent       to obtain   algebraically independent decoupled 

combinations.      

Theorem 1: Suppose there are (at least)        terms over   parameters obtained from the Gröbner 

Bases of the exhaustive summary (or from the exhaustive summary itself).  Suppose there are exactly   
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algebraically independent coefficients      . Then there exist (at least)   algebraically independent 

    .   

Proof:  We want to show that there exists a set of   algebraically independent      .  Assume every set 

of   elements chosen is algebraically dependent. In other words, the largest set of algebraically 

independent elements is less than  , say     (proof follows similarly if any number less than     

is chosen).   

Assume for a contradiction that these     elements       are algebraically dependent with each of 

the   algebraically independent coefficients       (taken individually).  Then we have the following 

polynomials:  

                                  

                                  

  

                                  

Where each    includes    and one or more   .   

Then since each          must include some           , then this means the    cannot be 

disjoint, i.e. they overlap in some   .  Since there are   such   , using elimination we can form a 

polynomial                          [16].  This implies that the       are algebraically dependent, 

thus we have a contradiction.    

Thus, these     elements       must be algebraically independent with (at least) one of the   

original coefficients, say      .  Thus, we adjoin       to the set of      algebraically independent 

      to get a total of   algebraically independent decoupled combinations (which is, of course, a 

simpler set of decoupled combinations than the original      we started with).  Thus, in the pathological 

case where there are not   algebraically independent     , we can adjoin a subset of the   

algebraically independent coefficients      to get the “simplest set” of algebraically independent 

decoupled combinations.    

As described above, we take the Gröbner Basis of the set                                   with 

the ranking                     to test if our set of      is algebraically independent.    

9. Rational Reparameterization 

9.1  Solution space  

We now seek to prove that           
   is in fact redundant with respect to the ideal generated by 

           
             

               
    which will immediately prove       can be 

rationally reparameterized over     .  To do this, we examine the solution space generated by the 
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exhaustive summary            and the solution space generated by            
         

    
               

   .   

By the  -solution (or simply solution space) of a polynomial set of                       , we mean 

the set of values of p’s where each polynomial vanishes.  This is also known as an algebraic set or 

variety, which we call      . 

Definition: A variety       is irreducible if whenever       is written in the form             where 

   and    are varieties, then either          or           [16].   

For example,         
   is irreducible, but      

    
    is not irreducible.   

We examine the variety of           , which we call      .  Note that       is an intersection of 

varieties formed by           
             

               
  , i.e. the variety of any 

          
   contains the variety      .  For unidentifiable systems,       has two forms:  

Case 1: the solution can be written as   non-free parameters in terms of   free parameters (described 

as    ) with only 1 solution branch:  

           
             

               
     

Case 2: the solution can be written as   non-free parameters in terms of   free parameters with 

multiple branches of solutions: 

      
              

                
          

      
              

                
          

… 

      
              

                
          

Where   equals the number of distinct solutions in  .  In this case, we describe the solution  

      
              

                
          

as the sub-variety   
    .  So we have that          

    
 
   .   

Let                       be a set of algebraically independent parameter combinations found from 

decoupled terms/factors in the Gröbner Bases of (3.2).  There are also two cases for      : 

Case 1:        appears as an element in a Gröbner Basis, i.e. in the form           
  . 

Case 2:       appears as a factor of a Gröbner Basis element, i.e. in the form 

            
               

               
        where    is the multiplicity of      .  We 

know that for each      , one of the      
   must be     

   since this represents the trivial solution.  
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Let the elements      , where     and   is a subset of the indicies          , be the elements of 

     which belong to case 2, i.e. those that appear as a factor in a Gröbner Basis.  Thus, the elements 

     , where    , are the elements of      which belong to case 1.   

We are now going to relate the variety       to the variety      .  The variety       corresponding to 

equations            is an intersection of varieties formed by its Gröbner Basis elements [16].  If one 

of the Gröbner Basis elements factorizes non-trivially, then a solution is formed by taking one of the 

factors and again intersecting it with other elements or factors of other elements in the Gröbner Basis.  

Thus, the variety generated by each element in a Gröbner Basis contains the variety      .  Then this 

means the variety of a Gröbner Basis element           
   contains the variety      .  (*) 

For a Gröbner Basis element             
               

               
     , the variety of 

each            
   factor contains one or more sub-varieties   

    .  Since each element of a Gröbner 

Basis contains the solution space generated by the whole Gröbner Basis, then the union of the varieties 

of            
               

     contains the union of   
    , i.e.      .   Thus, for every   

    , 

there exists some factor            
   whose variety contains   

     (for all    , for some  ).  (**) 

We call   
     the sub-variety formed by the variety of             

   for all    , for some  , where 

       , together with            
   for     .  In other words,   

     is generated by choosing 

a factor from elements like             
               

               
      where     and 

combining it with elements           
   for    , and then finding the algebraic set of zeroes of this 

set.  Here      , where   is the product of the multiplicities of all      , i.e.         .   

Combining (*) and (**), we get that some   
     contains   

    .    

Loosely speaking, the dimension of a variety is the number of parameters that can vary freely [18].  We 

employ the dimension of a variety to prove the next two lemmas, using the following fact:  If   
     

contains   
    , then the dimension of   

     is greater than or equal to the dimension of   
     and 

thus   
      has at least as many free parameters as   

     [16].  Before we examine when this 

containment becomes equality, we first prove that there are exactly   algebraically independent     .   

Lemma 2:  Suppose there are at least        terms over   parameters found from decoupled 

terms/factors in the Gröbner Bases of the exhaustive summary (3.2).  Then there are exactly   

algebraically independent     .   

Proof:  Theorem 2 showed there are at least   algebraically independent     .   We now show there 

are at most   algebraically independent     .     

Assume there are more than   algebraically independent parameter combinations      in the Gröbner 

Bases, i.e. there are more than   terms of the form           
    or            

   where       

are algebraically independent.  As described above, there exists a variety   
     that contains   

    .  
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Thus, there exists a variety    
     generated by more than   terms of the form           

    or 

           
   that contains   

    .  This implies that the dimension of    
      is greater than or equal 

to the dimension of   
    .  Since there are more than   algebraically independent      (by 

assumption) but exactly   algebraically independent     , then Lemma 1 implies that there are more 

non-redundant constraints, thus more non-free parameters that form    
     than form   

    .  Thus 

   
     is expressed in terms of fewer free parameters than   

    .   Thus the dimension of    
     is 

strictly less than the dimension of   
    , a contradiction.  Thus, there are exactly   algebraically 

independent     .            

Lemma 3:  When the solution to (3.2) can be written as   non-free parameters in terms of   free 

parameters with only 1 solution branch (case 1), then       equals      . 

When the solution to (3.2) can be written as   non-free parameters in terms of   free parameters with 

multiple branches of solutions (case 2), some union of   different sub-varieties   
     equals the union 

of sub-varieties   
     for      .    

Proof:    

First we examine case 1, where there is a single solution branch where non-free parameters can be 

written in terms of the free parameters in      .  As mentioned above, the variety       contains the 

variety       since the variety of each element           
   contains the solution to           .  

By Lemma 2, the ideal generated by            is generated by   algebraically independent 

elements, thus by Lemma 1, none of the   elements that generate the ideals are redundant.  Likewise, 

there are   non-redundant generators in            .  This means the solutions to            and 

           can be solved for (over the complex numbers) in terms of   non-free parameters in    

free parameters [16]. This means both varieties        and       are spanned by   free parameters.  

Thus, since each of the varieties can be parameterized in terms of   free parameters, then the 

dimensions for each of these varieties is the same.  Since the variety       is formed by taking 

irreducible elements in the Gröbner Bases, then the varieties       and       themselves are 

irreducible.  Thus, the fact that       contains       but the dimensions are the same implies that       

equals       [19].    

Next, we examine case 2, where there are multiple branches of solutions where the non-free 

parameters are written in terms of the free parameters in      .  As mentioned above, some   
     

contains   
     since for every   

    , there exists some factor            
   whose variety contains 

  
     (for all    , for some  ) and the variety of each element           

   contains   
     (for 

   ).  We want to show that some   
     will result in some   

    .   Again, these varieties are 

irreducible since they are formed by taking irreducible factors.  Again, the dimensions of   
     and 

  
     must be the same due to the number of free parameters, thus some   

     containing   
     

implies that some   
     equals   

     [19].  Thus, some union of   different   
     equals      .    
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Thus we have shown that the  -solution space generated by            is the same as the  -solution 

space generated by a subset of the union of the solutions for        terms.  Mathematically, this is 

interesting because it means that our space            can be represented by the solution spaces 

associated with the simpler combinations      instead.  Thus, even though      may not all come from 

a single Gröbner Basis, the decoupled terms of the form           
    or            

    still behave 

like a basis for the ideal generated by the exhaustive summary.       

9.2 Reparameterization of      over      

In [7], we showed that when a rational reparameterization of      over      exists, then the ideal 

generated by            is congruent to the ideal generated by           , i.e. that       equals 

     .  Now we show the converse is also true.   

We show that Lemma 3 implies that each           
   is redundant with respect to the ideal 

generated by            
             

               
   .  Then by Corollary 1 we have that 

each       is an rational combination of     .  Thus we always have a rational reparameterization of 

     over     . 

Theorem 2:  Assume there exists a set of   algebraically independent decoupled combinations (called 

    ), found by using the Gröbner Bases of (3.2) and the original     .  Then there exists a unique 

rational reparameterization,      , of      over     . 

Proof:  Lemma 3 implies that:  

           
   is contained in the ideal generated by            

             
           

    
       (***)  

since        equals       in case 1 or some   
     equals some   

     in case 2.        

From Corollary 1, if           is contained in the ideal generated by 

                                 , then     equals a polynomial or rational function of 

             .  Applying this to (***), we have that     is a polynomial or rational function of              , 

or in other words, each coefficient       is equal to a rational combination of     .  This 

reparameterization is unique, since if there were two distinct reparameterizations       and      , then 

since                       , this implies dependence amongst the      , a contradiction.     

To find the rational reparameterization of      over     , one finds the Gröbner Basis of        

                           over the ranking                          for each coefficient      .  As 

discussed in [7], a linear polynomial                              will result.  

10. Global or Local Identifiability 

Theorem 3:  Assume there exists a unique rational reparameterization,      , of      over     .  Then   

is either globally or locally identifiable.  

Proof:   
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Since each      has at most a finite number of solutions in the Gröbner Basis of (3.2), then solving 

             gives that each        is either globally or locally identifiable, depending on whether 

each       has a unique (case 1) or finite number (case 2) of solutions.  In other words, if the      only 

appeared as elements           
   in the Gröbner Bases, then global identifiability results, and if at 

least one       appears as a factor            
   in a Gröbner Basis, then local identifiability results.  

   

This means we can take for granted that a set of algebraically independent      are identifiable and 

thus the       reparameterization step mentioned is only a mathematical formality, as predicted in [7].    

A useful interpretation of this theorem is that the identifiable combinations      thus form a “basis” of 

all identifiable combinations, in that they are the simplest polynomial or rational functions that are 

globally or locally identifiable.   

We summarize the results of this paper in a final theorem: 

Theorem 4:  Suppose we have an unidentifiable model of the form (2.1) and let the exhaustive summary 

(3.2) be described in terms of   non-redundant equations, where   is the number of non-free 

parameters in the solution to (3.2).  Then the algorithm described in Section 5 can be used to find a set 

of   algebraically independent identifiable combinations     .   

Proof: The Gröbner Bases of the exhaustive summary, in conjunction with the exhaustive summary, 

generate at least   decoupled parameter combinations     .  We assume that the exhaustive summary 

is described in terms of   non-redundant equations, where   is the number of non-free parameters in 

its solution.  The Converse to Lemma 1 proves there are   algebraically independent combinations      

in the input-output equations.  Then Theorem 1 implies there are at least   algebraically independent 

     and Lemma 2 implies there are at most   algebraically independent     , thus there are exactly 

  algebraically independent     .  Theorem 2 implies there is a unique rational reparameterization of 

     over     , call it      .  Finally, Theorem 3 implies the parameter combinations      are either 

globally or locally identifiable.  

11. Conclusion 

In this paper, we have demonstrated our algorithm on a nonlinear model and have proven that this 

procedure has a firm theoretical foundation.  We have shown that the Gröbner Bases formed from the 

exhaustive summary (in conjunction with the exhaustive summary) can be used to provide a set of   

‘simplest’ algebraically independent parameter combinations      to uniquely reparameterize the 

coefficients of the input-output equations as rational terms.  These parameter combinations are found 

by searching for “decoupled” terms or factors in the Gröbner Bases of the exhaustive summary.  A 

unique rational reparameterization of the coefficients over these parameter combinations immediately 

implies global identifiability when decoupled terms are used and local identifiability when decoupled 

factors are used.  We have thus provided a class of nonlinear models for which identifiable parameter 

combinations can be used to rationally reparameterize the model in a “canonical form”.  One practical 

consequence of this work is the result that when seeking      one need not only consider those arising 
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from a single Gröbner Basis, but can consider      arising from any ordering.  Future work consists of 

developing efficient procedures for finding these algebraically independent identifiable combinations 

among the large number,  !, of possible Gröbner Bases.    
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Figure Legends 

Figure 1. Nonlinear 2-Compartment Model 

Figure 2. Reparameterized Nonlinear 2-Compartment Model 


