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ABSTRACT

In this article, we present our novel pipeline for analysis of metabolic activity using a
microbial community’s metatranscriptome sequence data set for validation. Our method is
based on expectation-maximization (EM) algorithm and provides enzyme expression and
pathway activity levels. Further expanding our analysis, we consider individual enzymatic
activity and compute enzyme participation coefficients to approximate the metabolic
pathway activity more accurately. We apply our EM pathways pipeline to a metatran-
scriptomic data set of a plankton community from surface waters of the Northern Gulf of
Mexico. The data set consists of RNA-seq data and respective environmental parameters,
which were sampled at two depths, six times a day over multiple 24-hour cycles. Further-
more, we discuss microbial dependence on day–night cycle within our findings based on a
three-way correlation of the enzyme expression during antipodal times—midnight and noon.
We show that the enzyme participation levels strongly affect the metabolic activity esti-
mates: that is, marginal and multiple linear regression of enzymatic and metabolic pathway
activity correlated significantly with the recorded environmental parameters. Our analysis
statistically validates that EM-based methods produce meaningful results, as our method
confirms statistically significant dependence of metabolic pathway activity on the environ-
mental parameters, such as salinity, temperature, brightness, and a few others.
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1. INTRODUCTION

Calculating the functional activity and interaction of metabolic pathways in microbial

communities is essential for understanding ecological and biochemical contributions of microorganisms.

Despite many advances in using RNA-seq to understand individual contributions of organisms, it remains

challenging to quantify how the expression of individual enzymes contributes to the activity of multienzyme

metabolic pathways. In this study, we analyze time-series metatranscriptomic data to generate enzyme expression

and metabolic pathway activity levels, as well as calculate individual contributions of enzymes to metabolic

pathways. (Subramanian et al., 2005; Efron and Tibshirani, 2007; Mitrea et al., 2013; Shen et al., 2019).

Even though advances in high-throughput sequencing have aided the exploration of RNA sequencing

data, it is often challenging to disentangle community-level data (Tarca et al., 2012; Donato et al., 2013;

Mitrea et al., 2013), notably as existing pathway analysis tools (e.g., MEGAN4, MetaPathways, MinPath)

often yield variable conclusions about the activity of pathways based on RNA data (Ye and Doak, 2009;

Huson et al., 2011; Sharon et al., 2011; Konwar et al., 2013). We developed a workflow that uses a

maximum likelihood-based model, annotations provided by KEGG (Kanehisa, 2000), as well as MAP

platform (Huntemann et al., 2016) that predicts genes expressed in samples, while also provides infor-

mation about gene classification into orthology groups (Fig. 1) to estimate transcript frequency, enzyme

expression, enzyme participation in pathways, and metabolic pathway activity. In this article, we test this

model using metatranscriptomic data from a marine microbial community sampled during both day and

night, therefore likely exhibiting predictable variation in community transcription patterns. The data span

multiple time points with different environmental parameters to elucidate the complex metabolic pathway

activity in the microbial community, generally challenging to mimic in a laboratory environment.

The proposed methodology is the first to use a likelihood model to infer the pathway activity using an

enzyme’s expression and participation coefficient. First, we filtered the microbial community-specific

metabolic pathways from the KEGG database and merged the expression of enzymes sharing the same

contigs and having sequence homologs. We implemented a novel expectation-maximization (EM) algo-

rithm to estimate the enzyme participation level in each pathway and then used these estimations for more

accurate predictions of pathway activity. Increased correlation between estimated metabolic pathway ac-

tivity and environmental parameters validated our approach. Our contributions include the following:

� A direct EM-based algorithm estimating pathway activity levels based on metatranscriptomic read data
� An EM-based algorithm for estimating enzyme expression
� A novel EM-based algorithm for estimating metabolic pathway activity levels using estimation of

enzyme participation level in each pathway
� Validation of estimated enzyme expression and pathway activity as well as their dependency on the

environmental parameters.

FIG. 1. Pipeline of metabolic pathway analysis for a microbial community sample. The metatranscriptomic data

obtained from microbial community samples are sequenced, and raw reads are assembled into contigs. The genes

containing obtained contigs are further mapped into the enzyme-pathway database. Contig frequencies are obtained

using IsoEM2 (Mandric et al., 2017a). The direct EM estimates pathway activity levels using directly contig fre-

quencies. Alternatively, we first estimate the enzyme expressions, then cluster enzymes, and simultaneously estimate

enzyme participation in each pathway and pathway activity levels. EM, expectation-maximization.
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The rest of the article is organized as follows. In the next section we describe the pipeline of our

software framework and several EM-based algorithms for estimating enzyme expression and metabolic

pathway activity in microbial communities. Then we describe our data sets, including sequencing data,

and extraction of metabolic enzymes and pathways. Finally, our results statistically validate the proposed

pipeline.

2. METHODS

We first describe the pipeline containing the previous version of our software and an alternative flow

with three new EM algorithms. Then each of these three new EMs are described separately and the global

loop for pathway activity level estimation concludes description of our software.

In this section, we describe the procedure of inferring metabolic pathway activity levels from RNA-Seq

data for microbiome communities. We also apply differential pathway activity level analysis similar to the

nonparametric statistical approach described in Al Seesi et al. (2014), which was successfully applied for

gene differential expression.

This article proposes to enhance the pipeline proposed in Mandric et al. (2017b) (Fig. 1) with the

inference of enzyme expressions and enzyme participation levels in metabolic pathway repeatedly applying

the maximum likelihood model. These models are resolved using the EM algorithm. The proposed in-

ferences are highlighted in red (Fig. 1). The first step is to estimate the abundances of the assembled

contigs. The abundances can be inferred by any RNA-seq quantification tool, but we suggest using IsoEM

(Mandric et al., 2017a) since it is sufficiently fast to handle Illumina Hiseq data and more accurate than

Kallisto (Bray et al., 2016). We propose to estimate the enzyme expressions based on contig abundances

and mapping of contigs onto enzymes (EM for enzyme expression in Fig. 1). The EM for pathway activity

levels is based on inferred enzyme expressions and metabolic pathway annotation. Each enzyme is initially

assigned a participation level of 1=jwj, where jwj is the total amount of enzymes in the pathway w. The

Global loop for pathway activity updates the enzyme participation level by fitting expected enzyme

expressions to the expressions estimated by EM for enzyme expression. The Global Loop for Pathway

Activity replaces Direct EM for pathway activity level estimation proposed in Mandric et al. (2017b),

which directly estimates pathway activity from contig abundances, bypassing enzyme expression and

participation coefficients.

2.1. MAP

We obtained a preliminary annotation of RNA-seq data using the DOE-JGI Metagenome Annotation

Pipeline (MAP v.4; JGI portal) (Huntemann et al., 2016). MAP consists of feature prediction, including

identification of protein-coding genes. First, the MEGAHIT metagenome assembler is used to assemble

RNA-Seq reads into scaffolds. Second, several software suites (GeneMark.hmm, MetaGeneAnnotator,

Prodigal, and FragGeneScan) are used to predict genes on assembled scaffolds. The MAP pipeline uses

enzyme commission (EC) numbers to annotate genes, which is a required input in model. The annotations

are obtained through homology searches (using USEARCH), within a nonredundant proteins-sequence

database (maxhits = 50, e-value = 0.1), where each protein is assigned to a KEGG Orthology (KO)

group. The top five hits for each KO, with the condition that the identity score is at least 30% and 70% of

the protein length is matched, are used. The KO IDs are translated into EC numbers using KEGG KO to EC

mapping.

2.2. Direct EM for inferring pathway activity levels

We first estimate the frequencies of the assembled contigs using IsoEM2 (Mandric et al., 2017a), as this

method is almost as fast and more accurate than Kallisto (Bray et al., 2016). Then we need to estimate the

frequencies of enzymes based on contig frequencies and in turn use them to infer metabolic pathway

activity levels. These steps can be also integrated into a single direct EM that directly infers pathway

activity levels from contig frequencies.
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2.2.1. EM approach. Let w be a pathway that is considered to be a set of enzymes. Traditionally,

pathway maps are drawn as graphs with EC number nodes. EC numbers have been widely used as a

primary identifier for reconstructing the metabolic pathway from the complete genome. A more recent

attempt to reconcile metabolic pathways with nonmetabolic ones resulted in introduction of the so-called

KO. As in this article we are only interested in quantifying the activity of metabolic pathways, our primary

goal of interest will be considering EC numbers and their contribution to pathway activity levels. We will,

therefore, refer to the pathway w as a set of EC numbers as the signature describing the biochemical activity

occurring in a given microbial/viral community. A well-known fact is that different EC numbers may take

part in multiple pathways. Therefore, it is a challenging task to quantify the activity of each pathway in the

condition of uncertainty of whether enzymes belonging to a particular EC number participate in one

particular metabolic pathway and not in another one.

Hereunder we present an elaborated continuous maximum likelihood model based on contig abundances.

Let T be a random variable with values from the set of observed transcripts/contigs, and let W be a

random variable whose values belong to the set of relevant metabolic pathways (Fig. 2). The probability of

observing a contig t is given by the following formula: P(T = t) =
P

w2W fw P(T = t j W = w)‚ where fw
stands for the frequency of the pathway w, which will be also referred as the activity level of w. We are

interested in computing the distribution of frequencies on the set of pathways: fW = (fw1
‚ fw2

‚ . . . ‚ fwjW j)
Thus, in our model we adopt the following likelihood function:

L(fW ) =
Y
t2T

X
w2W

fw P(T = t j W = w)

 !at

‚

where at denotes the abundance of t estimated by IsoEM2. The corresponding log-likelihood is

l(fW ) =
X
t2T

at log
X
w2W

fwP(T = tjW = w)

 !
:

To each transcript we associate a set of EC numbers. Namely, transcripts are aligned to a protein

database and the set of all EC numbers E corresponding to the matching proteins is retrieved. In general,

more than one EC number is associated with every transcript (otherwise stated, jEj � 1). We apply the law

of total probability to decompose further each term P(T = tjW = w) participating in the log-likelihood:

P(T = tjW = w) =
X
e‚ t2e

P(T = t‚ E = ejW = w)

=
X
e:t2e

P(E = ejW = w) � P(T = tjE = e)
: (1)

FIG. 2. Direct EM estimates pathway activity based on contig frequencies.
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We use the uniform probability distribution over the set of EC numbers participating in each pathway.

This means the following:

P(E = ejW = w) = pew =
1
jwj ‚ if e 2 w

0‚ otherwise

�
: (2)

Therefore, each probability term from the log-likelihood function may be written in the following form:

P(T = tjW = w) =
1

jwj �
X

e:t2e‚ e2w

P(T = tjE = e):

Furthermore, the log-likelihood is transformed into the following:

l(fW ) =
X
t2T

at log
X
w2W

fw �
1

jwj �
X

e:t2e‚ e2w

P(T = tjE = e)

 ! !
:

Finally,

l(fW ) =
X
t2T

at log
X
w2W

fw

jwj �
X

e:t2e‚ e2w

pte

 !
‚

where

pte = P(T = tjE = e) =
bteP

t02e bt0e
:

In the last formula, bt are the bit-scores obtained from the alignment of assembled transcripts to the

proteins of EC number e. We use the bit-score measure as the degree of reliability of each alignment. In

other words, the probability of assigning a transcript t to an EC number e is proportional to the bit-score of

the alignment (t‚ e). Finally, we obtain

l(fW ) =
X
t2T

at log(
X
w2W

atwfw)‚

where

atw =
1

jwj �
X

e:t2e‚ e2w

pte:

In the log-likelihood function l(fW ) the values at are obtained by running IsoEM2 (or any other tool for

transcript quantification). The values atw are computed from the corresponding tripartite graph (Fig. 2). The

only values to be determined are fW. We aim at finding the values fW, which maximize the log-likelihood l(fW ).

We apply the EM-type algorithm (Dempster et al., 1977) for determining the values fW. We initialize

each of the abundance estimates for each pathway with a random number fw 2 [0‚ 1]‚ w 2 W . Then, we

iterate the following two steps until a convergence criterion is satisfied:

The E-step. We first compute the expected number of reads nw emitted by each pathway w through the

following formula:

nw =
X
t2T

at �
atwfwP

w02W atw0 fw0
:

The M-step. The new estimates are provided based on a standard maximization EM step:

f new
w =

nwP
w02W nw0

:

The algorithm halts when the new estimates are ‘‘close’’ to the ones from the previous step:

jj f new
W - fW jj � e, where e� 1.
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2.3. EM for enzyme expression and pathway activity level estimation

Let T be a random variable with values from the set of observed contigs, and let E be a random variable

whose values belong to the set of relevant metabolic enzymes from the KEGG database. The probability of

observing a contig t is given by the following formula: P(T = t) =
P

w2W fw P(T = t j E = e)‚ where fe stands

for the expression of the relevant metabolic enzyme e. Thus, in our model we adopt the following

likelihood function:

L(fe) =
Y
t2T

X
e2E

fe P(T = t j E = e)

 !at

‚

where at denotes the abundance of t estimated by IsoEM2. Following Mandric et al. (2017b) we estimate

the probability of contig t coming from enzyme e as follows:

P(T = tjE = e) = pte =
bteP

t02e bt0e
‚ (3)

where bte is the best bit-score obtained from the alignment of t to the protein that have a function of the

enzyme e.

The details of the EM for enzyme expression are as follows. We initialize estimates for each enzyme

with a random number fe 2 [0‚ 1]‚ e 2 E. Then, we iterate the following two steps until a convergence

criterion is satisfied:

The E-step. We first compute the expected number of reads ne emitted by each enzyme e through the

following formula:

ne =
X
t2T

at �
ptefeP

e02E pte0 fe0
:

The M-step. The new estimates are provided based on a standard normalization step:

f new
e =

neP
e02E ne0

:

The algorithm halts when the change in estimates between iterations is small enough: jj f new
E - fEjj � e,

where e� 1

The EM algorithm for estimating pathway activity levels fW = ffwjw 2 Wg based on frequencies of

enzymes fE = ffeje 2 Eg is similar to the EM aforementioned algorithm. The only difference is that instead

of Equation (3) we use the uniform probability distribution over the set of enzymes/enzyme groups

participating in each pathway [see Eq. (2)].

The initial estimate [Eq. (2)] of the participation level of enzyme e in the pathway w can be very far from

reality.

More accurate estimates of the enzyme participation levels can lead to more accurate estimates for the

pathway activity levels. Enzymes are represented by their ortholog groups w = fp1‚ . . . ‚ pkg. Since an

ortholog group can have multiple functions and participate in multiple pathways, the pathways can be

viewed as a family of subsets W of the set of all ortholog groups P. The algorithm hereunder (Fig. 3)

estimates pathway activity levels Steps (1–3) and then checks how well the computed activities fw’s fit

the enzyme expressions [Step (4)]. If the fit is not good enough, then EM-based algorithm is applied to

update the enzyme participation levels pew’s [Steps (5–6)] and then fw’s are recomputed according to

updated pew’s in Step (3).

1. Find expression f (e) of each enzyme e running EM from Section 2.3.

2. According to Equation (2), initialize pew = 1
jwj for e 2 w and pew = 0, otherwise.

3. Find activity levels fw for each pathway w 2 W running EM from Section 2.3.

4. Find expected frequency of each enzyme e according to formula f exp
e =

P
w2W pewfw If expected and

observed enzymes frequencies are close to each other: jj f exp
e2E - fe2Ejj =

P
e2E (f exp

e - fe)2 < e� 1, then

exit, that is, go to Step (7).

5. Find better fitted p0ew’s by using the following EM algorithm:

The E-step. Compute expected pexp
ew ’s that will make fe = f exp

e for each e 2 E‚ w 2 W ,
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pexp
ew = pew ·

fe

f
exp
e

:

The M-step. Provide the new estimates by normalization for each e 2 E‚ w 2 W ,

pnew
ew =

pexp
ewP

e2E p
exp
ew

:

The algorithm halts when the change in estimates between iterations is small enough:

jjpnew - pjj =
X

e2E‚ w2W
(pnew

ew - pew)2 � e� 1:

6. For each e 2 E‚ w 2 W , update pew)p0ew and go to Step (3)

7. Output ffwjw 2 Wg and fpewje 2 E‚ w 2 Wg.

3. DATA SETS

3.1. Samples

The data set that we used to validate our EM model is a metatranscriptomic data set of a bacterioplankton

community from surface waters of the Northern Gulf of Mexico. The RNA-seq data and respective

environmental parameters were sampled in July 2015 at two depths—2 and 18 m, every 4 hours throughout

48 hours totaling in 13 samples per depth. Six environmental parameters—including photosynthetic active

radiation (PAR) and seawater dissolved oxygen concentration, density, salinity, temperature, and chloro-

phyll concentration were measured for each sample. All data sets are publicly available through the JGI

Genomes Online (GOLD) database through GOLD ID Gs0110190. Out of 26 samples four samples (Day 1,

12:00, 18 m; Day 2, 20:00, 2 m; Day 3, 08:00, 2 m; Day 3, 12:00, 18 m) were discarded as they did not

contain enough reads to assemble transcripts for our pipeline (Table 1).

FIG. 3. Global Loop for pathway activity consists of alternative execution of the EM for pathway activity level and

the EM for enzyme participation level. Together the two EMs, the pathway activity level and enzyme participation, are

integrated into a single global loop that infers pathway activity.
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3.2. Microbial-specific metabolic pathway identification

Using KEGG database we extracted metabolic pathways that play a significant role in microbial com-

munities, which is confirmed by literature referenced in PubMed (Hu and Holden, 2006; Gago et al., 2011;

Janßen and Steinbüchel, 2014). We removed from consideration the high-level metabolic pathways, in-

cluding ec01100, ec01110, ec01120, and ec01130. In the end, we extracted 69 microorganism-relevant

pathways out of 152 metabolic pathways.

3.3. Enzyme identification and clustering

We restrict ourselves to enzymes that belong to microbial metabolic pathways and remove the unlikely

enzyme matches. The RNA-seq coverage of may be not deep enough to distinguish genes sharing long

common segments. Any contig matching one of such genes and corresponding enzymes will match another

one. Therefore, we can estimate only total expression of a group of such indistinguishable enzymes rather

than each of them individually. For detecting such groups of enzymes, we use an essential property that the

individual enzyme expression can vary across randomly initialized EM runs, whereas the sum of the

expression of all enzymes in the group does not change (Fig. 4 top). For example, five different EM runs

converge to different expression of enzymes EC:3.1.3.12 and EC:2.4.1.15, whereas the sum of expressions

is constant. We clustered the enzymes from the same group and rerun EM to get an accurate and stable

expression of enzymes and enzymes groups. After applying the aforementioned method, we obtain ex-

pressions of 1446 enzymes and enzyme groups for the metabolic pathway activity analysis.

Table 1. The 26 RNA-seq Samples of Microbial Communities Drawn

from the Northern Louisiana Shelf During Contrasting Light and Dark Conditions

During 3 Consecutive Days at Two Depths 2 and 18 m

Sample

Depth
18 m 2 m

Time/day Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

00:00 X X X X

04:00 X X X X

08:00 X X X ·
12:00 · X X X X ·
16:00 X X X X

20:00 X X X ·

FIG. 4. Clustering enzymes. Over multiple runs the enzyme expressions of EC:3.1.3.12 and EC:2.4.1.15 are changing

from one run to another, but the sum converges to the same overall stable group expression (a). Using KEGG we were

able to verify that the two enzymes in fact belong to the same orthology (b). EC, enzyme commission.
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4. RESULTS

Our results consist of empirical and statistical validation of estimated enzyme expression, enzyme

participation levels, and pathway activity level estimations. We first analyze the stability of enzyme

participation levels and then check how many enzyme expressions and pathway activities correlate with

environmental parameters.

4.1. Enzyme participation coefficients

We estimate the participation level of each enzyme in each pathway separately for each data point.

Supplementary Table S1 presents the participation level of all expressed enzymes in the pathway ec00020.

Table 2. Enzyme Participation Levels for All Enzymes Across All Data Points

for 2 m Depth in the Metabolic Pathway ec00620

ec00620 D1:12 D1:16 D1:20 D2:00 D2:04 D2:08 D2:12 D2:16 D3:00 D3:04 D3:12 AVE STD

EC:1.1.1.27 42.95 35.51 0 33.42 32.4 44.44 33.24 29.38 36.59 40.64 0 36.51 4.83

EC:1.2.1.3 24.76 18.14 16.58 7.76 8.41 18.7 18.99 13.19 11.15 18.12 62.69 19.86 14.38

EC:1.2.4.1 38.37 42.02 37.39 44.65 45.06 44.91 40.53 37.73 44.44 48.06 44.5 42.51 3.38

EC:1.2.7.1 1.52 11.99 27.96 8.86 6.26 13.78 24.45 15.29 10.8 22.17 5.14 13.47 8

EC:1.2.7.3 41.86 41.6 36.82 35.42 36.49 36.77 39.56 35.36 37.14 41.85 54.06 39.72 5.13

EC:1.8.1.4 22.78 25.05 20.36 22.44 20.98 21.27 24.06 26.92 26.28 24.03 44.86 25.37 6.49

EC:2.3.1.12 38.37 42.02 37.39 44.65 45.06 44.91 40.53 37.73 44.44 48.06 44.5 42.51 3.38

EC:2.7.1.40 35.64 28.45 28.35 26.37 22.74 31.44 34.27 25.96 28.45 32.93 43.66 30.75 5.49

EC:4.1.1.32 38.37 42.02 37.39 44.65 45.06 44.91 40.53 37.73 44.44 48.06 44.5 42.51 3.38

EC:4.1.1.49 44.22 45.88 42.37 42.64 45.52 55.21 49.52 45.22 49.23 57.65 51.86 48.12 4.83

EC:6.2.1.1 46.31 40.16 47.24 23.62 23.27 45.55 38.32 33.7 30.74 36.18 65.96 39.19 11.6

EC:6.2.1.13 0 0 0 0 0 0 0 35.26 0 0 0 35.26 0

EC:1.1.1.37 54.26 38.32 48.23 23.71 23.86 45.51 37.71 32.51 31.51 37.9 89.51 42.09 17.51

EC:1.1.5.4 0 0 0 38.88 0 0 0 32.66 0 0 0 35.77 3.11

EC:1.3.5.1 63.87 53.78 52.08 45.91 49.78 45.44 54.7 47.05 49.9 57.05 94.61 55.83 13.3

EC:4.2.1.2 43.51 36.47 35.65 31.49 35.27 30.01 36.6 32.08 33.94 38.87 66.38 38.21 9.59

EC:6.4.1.1 43.51 36.47 35.65 31.49 35.27 30.01 36.6 32.08 33.94 38.87 66.38 38.21 9.59

EC:6.4.1.2 30.87 37.69 42.5 33.54 36.18 45.06 46.21 46.7 44.16 52.04 100.02 46.82 17.87

EC:2.3.1.9 19.22 23.39 18.19 15.1 15.74 17.95 21.76 19.98 16.93 23.02 70.94 23.84 15.13

EC:1.1.1.79 26.73 28 26.2 27.73 31.77 30.16 32.11 38.07 37.46 38.88 0 31.71 4.61

EC:2.3.3.13 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 40.3 54.11 36.15 7.04

EC:1.2.1.10 0 0 0 0 0 0 0 0 1.45 0 0 1.45 0

EC:2.3.1.8 48.03 37.41 48.06 21.72 21.95 41.09 36.71 31.92 28.92 34.4 0 35.02 8.83

EC:2.7.2.1 36.84 31.58 39.38 19.17 18.38 30.02 27.06 24.59 22.92 26.26 0 27.62 6.59

EC:1.1.1.28 0 29.92 0 35.2 0 30.56 32.52 29.24 0 0 54.11 35.26 8.66

EC:1.1.1.38 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 40.3 0 34.35 4.37

EC:1.1.1.39 0 36.15 39.18 0 44.34 0 0 0 0 0 0 39.89 3.38

EC:1.1.1.40 43.25 36.15 39.18 35.34 44.34 42.6 44.95 39.4 44.41 54.22 0 42.38 5.13

EC:1.1.2.3 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 0 54.11 35.73 7.26

EC:1.1.2.4 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 40.3 0 34.35 4.37

EC:1.2.1.21 0 0 50.87 34.5 0 0 0 50.81 0 0 0 45.39 7.7

EC:2.3.1.54 0 29.92 31.57 35.2 0 30.56 32.52 0 36.83 40.3 0 33.84 3.5

EC:2.3.3.9 62.26 43.35 50.87 34.5 44.64 63.03 64.99 50.81 54.47 69.31 95.72 57.63 15.67

EC:2.7.9.1 46.02 37.73 37.8 30.5 35.23 34.88 41.95 35.93 36.27 43.75 0 38.01 4.4

EC:2.7.9.2 36.84 31.58 39.38 19.17 18.38 30.02 27.06 24.59 22.92 26.26 59.92 30.56 11.22

EC:2.8.3.1 10 4.42 2.61 3.21 2.68 4.52 9.71 5.34 9.18 8.75 0 6.04 2.88

EC:3.1.2.6 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 40.3 0 34.35 4.37

EC:3.6.1.7 15.66 0 0 4.01 5.97 8.11 0 6.07 7.51 7.24 0 7.79 3.44

EC:4.1.1.31 40.32 33.98 42.49 20.31 19.85 34.12 30.68 27.67 25.21 29.6 0 30.42 7.21

EC:4.2.1.130 34.2 29.92 31.57 35.2 43.16 30.56 0 29.24 36.83 0 0 33.83 4.33

EC:4.4.1.5 34.2 29.92 31.57 35.2 43.16 30.56 32.52 29.24 36.83 40.3 0 34.35 4.37

AVE, average value; STD, standard deviation.
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Similar tables can be found for ec00620 in Table 2 and for ec00561 in Table 3. We can see that the

participation level does not significantly change from one data point to another, that is, the standard deviation

is significantly smaller than the mean for all enzymes. Note that if an enzyme is not expressed in a sample,

then the participation is not defined and the participation level is reported as zero. This means that we need to

take into account only data points with nonzero participation levels when computing mean and standard

deviation over all data points.

4.2. Correlation of pathway activity levels with environmental parameters

The goal of regression-based validation is to check our hypothesis that there exist enzymes and pathways

whose expression and activity level variation across data points can be explained (i.e., correlate with)

certain environmental parameters. For each environmental parameter, we check whether it significantly

correlates (P < 5%) with each enzyme across 11 data points for the 2-m depth (Table 4). In row 2 we give

Table 3. Enzyme Participation Levels for All Enzymes Across All Data Points

for 2 m Depth in the Metabolic Pathway ec00561

ec00561 D1:12 D1:16 D1:20 D2:00 D2:04 D2:08 D2:12 D2:16 D3:00 D3:04 D3:12 AVE STD

EC:1.1.1.2 56.43 52.43 43.04 46.68 51.86 41.29 65.25 39.34 46.54 37.81 0.00 48.07 8.10

EC:1.2.1.3 98.96 136.18 95.66 69.85 79.35 69.48 112.58 60.23 80.19 83.30 208.15 99.45 40.11

EC:1.1.1.21 61.63 62.54 48.77 46.64 50.41 39.57 55.37 34.04 49.16 40.73 77.37 51.47 11.72

EC:2.7.7.9 60.17 55.14 50.26 39.73 44.57 45.06 62.68 38.50 45.22 41.12 131.96 55.86 25.27

EC:3.2.1.22 47.41 47.43 38.91 41.32 42.99 35.23 0.00 30.73 41.31 38.9 0.00 40.47 5.07

EC:2.3.1.20 90.96 77.07 0.00 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 66.05 11.86

EC:2.7.1.31 94.47 131.20 99.82 119.04 122.46 0.00 0.00 0.000 119.22 122.29 0.00 115.5 12.28

EC:2.3.1.51 58.79 90.73 75.29 75.97 69.66 59.05 79.23 59.45 80.74 65.96 0.00 71.49 10.22

EC:3.13.1.1 0.000 90.59 81.77 59.46 69.55 68.97 76.55 59.72 69.07 75.58 0.000 72.36 9.46

EC:1.1.1.156 90.96 0.000 0.00 0.00 0.00 0.00 0.00 52.78 0.00 0.00 0.00 71.87 19.09

EC:1.1.1.6 0.000 0.00 0.00 0.00 0.000 0.000 57.87 52.78 0.00 0.00 0.00 55.33 2.54

EC:2.3.1.15 50.8 66.09 55.42 55.00 49.67 49.59 65.75 44.20 60.25 54.64 149.56 63.72 27.90

EC:2.3.1.22 90.96 77.07 63.98 61.58 59.41 0.00 0.00 52.78 0.00 0.00 0.00 67.63 12.72

EC:2.4.1.241 0.00 0.00 0.00 61.58 0.00 61.75 57.87 52.78 56.58 0.00 0.00 58.11 3.35

EC:2.4.1.315 0.00 0.00 0.00 61.58 59.41 0.00 0.00 0.00 0.00 0.00 0.00 60.49 1.08

EC:2.4.1.336 0.00 0.00 0.00 0.00 0.00 61.75 0.00 0.00 0.00 0.00 0.00 61.75 0.00

EC:2.4.1.337 0.00 0.00 0.00 0.00 59.41 0.00 0.00 0.00 0.00 0.00 0.00 59.41 0.00

EC:2.4.1.46 0.00 77.07 63.98 0.00 0.00 61.75 57.87 52.78 56.58 0.00 0.00 61.67 7.77

EC:2.7.1.107 50.8 66.09 55.42 55.00 49.67 49.59 65.75 44.20 60.25 54.64 0.00 55.14 6.77

EC:2.7.1.29 0.00 0.00 108.83 78.85 74.39 82.41 77.92 65.58 75.45 78.86 0.00 80.29 11.74

EC:2.7.1.30 90.96 77.07 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 65.84 11.27

EC:2.7.8.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.58 0.00 0.00 56.58 0.00

EC:3.1.1.23 0.00 0.00 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 61.30 6.59

EC:3.1.1.3 90.96 77.07 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 390.20 95.33 93.86

EC:3.1.1.34 0.00 0.00 63.98 0.00 0.00 0.00 0.00 0.00 0.00 76.46 0.00 70.22 6.24

EC:3.1.3.4 43.19 50.83 42.05 44.04 43.19 37.42 64.52 33.09 46.99 40.50 51.36 45.20 7.95

EC:3.1.3.81 0.00 0.00 0.00 0.00 0.00 49.59 0.00 0.00 0.00 54.64 0.00 52.12 2.53

Table 4. Correlation of Enzyme Expression with Environmental Parameters

Salinity Temp Oxygen Chl PAR Density MLR

1. No. of enzymes 146 110 117 93 97 138 156

2. 95% CI 80–190 79–114 62–94 58–92 36–63 82–123 70–107

3. EC number 1.2.1.59 2.6.1.1 3.1.3.11 2.2.1.7 3.5.1.16 2.4.1.16 1.1.1.136

1. The number of enzymes significantly correlated with each of six environmental parameters and their linear combination (through

MLR). 2. The number of enzymes strongly correlated with randomly permuted parameter values (95% CI). 3. The EC number of the

metabolic enzyme, which is the most strongly correlated with the corresponding parameter.

MLR, multiple linear regression; PAR, photosynthetic active radiation.
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95% CI for the number of significantly correlated enzymes with a randomly permuted parameter. Since the

upper bound of 95% CI for salinity is 190 (row 2), we conclude that there is no evidence of enzymes

significantly correlated with salinity. We also report the enzyme that correlates the most with salinity, that

is, EC 1.2.1.59. From Table 4 we see that most parameters do not correlate well with enzymes, except

perhaps PAR.

Table 5 is the same as Table 4 but reports correlation significance of pathway activities instead of

enzyme expressions. In contrast to enzymes it is clear that the many metabolic pathways correlate with

each environmental parameter and this correlation is not by chance. Indeed, pathway activity is

supposed to be more stable than enzyme expression since generally metabolism is much less af-

fected by the current. For each environmental parameter, we also cross-check the PubMed database

whether the most correlated pathway is known to depend on this parameter. For instance, fatty acid

degradation is well correlated with salinity, and several studies reported that fatty acid degradation is

often altered by salinity at sea surface environments (Kaye, 2004; Heinzelmann et al., 2015; Carvalho

and Caramujo, 2018). The citric acid pathway’s role is to provide the energy required for the growth

and division of microorganisms by breaking organic molecules in the presence of oxygen (Hu and

Holden, 2006). In addition, it plays a central role in regulating other metabolic processes in micro-

organisms. The occurrence of fatty acid biosynthesis is diverse in the microbial community, which

controls lipid homeostasis and biogenesis. Fatty acid biosynthesis supports the membrane biogenesis

and controls the usages of adenosine triphosphate (ATP), crucial for microbial metabolism (Gago et al.,

2011; Janßen and Steinbüchel, 2014).

Table 6 is the same as Table 5. The only exception for this table being Direct EM used to compute

metabolic pathway activity directly from contigs, as opposed to Global Loop EM, which uses enzyme

expression and enzyme participation coefficients to compute pathway activity. Although there is sig-

nificant correlation between metabolic pathway activity and temperature, chlorophyll, as well as all

environmental parameters bundled together, some other pathways may have correlated with the rest of

the environmental parameters by chance. The statistical regression validation used to evaluate our model

clearly demonstrates Global Loop EM’s ability to calculate metabolic pathway activity more accurately

than Direct EM.

4.3. Cyclic changes of enzyme expressions and pathway activities

We hypothesize that we will be able to observe the cyclic changes in enzyme expression and pathway

activity level during 36 hours from 00:00 am on day 2 until 12:00 am on day 3. The cyclic changes

should manifest themselves as a higher similarity between two respective middays and midnights that

Table 5. Global Loop Expectation-Maximization

Salinity Temp Oxygen Chl PAR Density MLR

1. No. of pathways 31 22 19 18 14 30 22

2. 95% CI 1–8 0–8 0–6 0–6 0–6 01-Aug 0–7

3. Pathway ec00071 ec00195 ec00622 ec00460 ec00360 ec00071 ec00626

1. The number of pathways significantly correlated with each of six environmental parameters and correlated through multiple linear

regression. 2. The number of pathways strongly correlated with randomly permuted parameter values (95% CI). 3. The EC number of

the metabolic pathway, which is the most strongly correlated with the corresponding parameter.

Table 6. Direct Expectation-Maximization

Salinity Temp Oxygen Chl PAR Density MLR

1. No. of pathways 5 14 5 8 1 4 10

2. 95% CI 1–10 01–11 1–8 0–7 0–6 1–8 0–8

3. Pathway ec00364 ec00310 ec00281 ec00281 ec00740 ec00623 ec00623

Similarly to Table 5 this table presents the results of the statistical validation, the only difference is the Direct EM from contigs to

pathway activity being used here.

EM, expectation-maximization.
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are 24 hours apart than the similarity between two data points that are 12 hours apart. We measure

similarity between two data points by the correlation between all estimated enzyme expressions or,

alternatively, all estimated pathway activity levels. Figure 5a (respectively, Fig. 5b) shows the cor-

relation between enzyme expressions in three time points at the depth of 2 m (respectively, 18 m).

Similarly, Figure 5c and d show the correlations between pathway activity levels. For the enzyme

expressions and the pathway activity levels, the correlation between midnight samples (24-hour gap) is

higher than the correlation between midnight and noon samples (just 12-hour gap). It is also important

to notice that as expected pathway activity levels are more stable than enzyme expressions. Indeed,

correlations between enzymes expression are significantly lower than correlations between pathway

activity levels.

5. DISCUSSION

This article proposes a maximum likelihood model for the estimation of metabolic pathway activity in

the microbial community using the KEGG pathway database. Specifically, the proposed approach uses an

EM-based pipeline to estimate enzyme expression, enzyme participation levels in pathways, and metabolic

pathway activity from metatranscriptomic data. The proposed metabolic pathway analysis was applied to

the metatranscriptomic data of 26 samples collected with different environmental parameters. The key

findings of the study are as follows:

� The participation levels of enzymes in pathways do not significantly vary across the data samples.
� The enzyme expression and metabolic pathway activities were validated using regression with each

environmental parameter: salinity, temperature, oxygen, chlorophyll, and PAR.
� The three-way metabolic pathway expression correlation across four groups of samples shows that the

metabolic activity at depth of 2 m during daytime is more closely related to the daytime activity the

next day than either of the day samples related to the night sample’s metabolic activity.
� In contrast to enzyme expressions, pathway activity levels significantly correlate with environmental

parameters, for example, 31 out of 61 metabolic pathways significantly correlate with salinity.

FIG. 5. Correlations between enzyme expressions for three time points (time 00:00 of the day 2, 00:00 of the day 3,

and 12:00 of the day 2) at 2-m depth (a) and, respectively, at 18-m depth (b). Correlations between pathway activity

levels for three time points (time 00:00 of day 2, 00:00 day 3, and 12:00 of day 2) at 2-m depth (c) and, respectively, at

18-m depth (d).
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