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Abstract

Motivation: While gene–environment (GxE) interactions contribute importantly to many different phenotypes,
detecting such interactions requires well-powered studies and has proven difficult. To address this, we combine two
approaches to improve GxE power: simultaneously evaluating multiple phenotypes and using a two-step analysis
approach. Previous work shows that the power to identify a main genetic effect can be improved by simultaneously
analyzing multiple related phenotypes. For a univariate phenotype, two-step methods produce higher power for
detecting a GxE interaction compared to single step analysis. Therefore, we propose a two-step approach to test for
an overall GxE effect for multiple phenotypes.

Results: Using simulations we demonstrate that, when more than one phenotype has GxE effect (i.e. GxE plei-
otropy), our approach offers substantial gain in power (18–43%) to detect an aggregate-level GxE effect for a multi-
variate phenotype compared to an analogous two-step method to identify GxE effect for a univariate phenotype. We
applied the proposed approach to simultaneously analyze three lipids, LDL, HDL and Triglyceride with the frequency
of alcohol consumption as environmental factor in the UK Biobank. The method identified two loci with an overall
GxE effect on the vector of lipids, one of which was missed by the competing approaches.

Availability and implementation: We provide an R package MPGE implementing the proposed approach which is
available from CRAN: https://cran.r-project.org/web/packages/MPGE/index.html

Contact: jwitte@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene–environment (GxE) interactions contribute significantly to the
genetic architecture underlying complex phenotypes (Dahl et al.,
2020). However, most GxE methods focus on testing a non-null ef-
fect of the interaction for one phenotype and one environmental fac-
tor at a time across genome-wide genetic variants (Gauderman
et al., 2017; Mukherjee et al., 2012). Such methods include

approaches to jointly testing marginal and interaction effects (Dai
et al., 2012a), empirical Bayes shrinkage methods (Mukherjee and
Chatterjee, 2008), two-step approaches (Dai et al., 2012b;
Gauderman et al., 2013; Hsu et al., 2012; Zhang et al., 2016), etc.
While these approaches can increase power to detect GxE interac-
tions, adequate power remains a concern. One possible approach to
further increase the power of detecting GxE interactions is by mod-
eling multiple related phenotypes together. Previous work indicates
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that power to detect main genetic effects can be increased by model-
ing multiple correlated phenotypes; thus, one would expect similar
gains to be available for assessing GxE interactions (Cornelis et al.,
2010; Zhang et al., 2019).

There exists substantial shared genetic basis among different
phenotypes (i.e. pleiotropy). Genome-wide association studies
(GWAS) have shown overlap in the main genetic effects across vari-
ous complex phenotypes. While extensive work has investigated
approaches for assessing pleiotropy in main genetic effects
(Bhattacharjee et al., 2012; Galesloot et al., 2014; Majumdar et al.,
2015, 2016, 2018; Ray et al., 2016; Turley et al., 2018), little has
been done with regard to assessing pleiotropy in GxE effects. For ex-
ample, an interaction between physical activity and a genetic variant
can influence the levels of three lipids, LDL, HDL and Triglycerides,
simultaneously (Kilpeläinen et al., 2019). As another example, the
pleiotropic genetic architecture of multiple smoking-related cancers
(e.g. lung and head-neck) can be different among smokers and non-
smokers (Jiang et al., 2019; Schaal and Chellappan, 2014).

A recent study (Moore et al., 2019) proposed a mixed-model ap-
proach to quantify the heritability of a complex phenotype
explained due to GxE interaction across multiple environmental fac-
tors for a single phenotype. Another study (Yu et al., 2018) pro-
posed a subset-based multi-phenotype fixed-effects meta-analysis
considering both marginal genetic effect and GxE effect across mul-
tiple phenotypes in the same model based on summary statistics of
the corresponding effects. Another recent study (Zhang et al., 2019)
has proposed statistical methods for identifying aggregate-level GxE
effect across multiple phenotypes for a gene instead of a single SNP.
A simple strategy to test for an overall GxE effect across phenotypes is to
perform a multivariate multiple linear regression including both the multi-
variate main genetic effect and the interaction effect terms in the model.

For a univariate phenotype, two-step methods can produce
higher power for detecting GxE interactions compared to conven-
tional approaches using a single analysis testing a GxE interaction
(Dai et al., 2012b; Gauderman et al., 2013; Hsu et al., 2012). Two-
step approaches filter out less important genetic variants in the first
step and test the more promising variants for GxE interaction in the
second step to reduce the multiple testing burden. Among various
strategies in the first step, a common approach is to test the SNPs
for a marginal genetic association with the phenotype under the as-
sumption that a SNP having a GxE interaction effect on the pheno-
type should also have a marginal genetic effect on the phenotype.
Similarly, a two-step procedure for multivariate phenotypes should
produce higher power for detecting an aggregate-level GxE effect
compared to a simple one-step multivariate regression of testing an
overall GxE effect across phenotypes.

In this article, we extend the two-step procedure to multivariate
quantitative phenotypes, and investigate its relative performance
compared to the one-step multivariate regression for testing an over-
all GxE effect. Our motivation is two-fold: in the 1st step, while fil-
tering less important SNPs, simultaneously testing multiple related
phenotypes should offer higher power for detecting SNPs having an
overall marginal genetic effect (pleiotropy in main genetic effect);
and in the 2nd step, testing such selected promising SNPs for an
aggregate-level GxE effect on the multiple phenotypes should pro-
duce higher power due to pleiotropy in GxE effect across the
phenotypes.

To adjust for multiple testing in the one-step and two-step
approaches, we considered three different procedures: Bonferroni
correction, subset testing and weighted hypothesis testing. We dem-
onstrate by simulations that the multivariate two-step approach has
a substantial power gain over the competing approaches. For real
data application, we implement our approach to identify overall
GxE effect of genome-wide SNPs and frequency of alcohol con-
sumption on three lipids (LDL, HDL, Triglycerides) in the UK
Biobank.

2 Materials and methods

We consider a cohort with individual-level data on a vector of mul-
tiple phenotypes, an environmental factor and genotypes of genome-

wide SNPs. For each SNP, our approach consists of two steps
applied on the same set of individuals. In the first step, we perform a
test for marginal overall genetic association between the SNP and
the multivariate phenotype. SNPs which show an evidence of overall
genetic association are prioritized while testing for an overall GxE
effect in the second step, i.e. we consider a more liberal threshold of
significance level for these promising SNPs compared to the remain-
ing SNPs while testing GxE. While combining the two steps to iden-
tify the genome-wide significant SNPs with an overall GxE effect,
we adopt two different strategies for multiple testing adjustment:
subset testing and weighted hypothesis testing.

Let Y ¼ ðY1; . . . ;YkÞ0 be multiple continuous phenotypes in a co-
hort, G denote genotypes at a SNP and E an environmental factor.
E can be of arbitrary type, e.g. binary, categorical or continuous.
We consider multivariate linear regression (MLR) to model the
main genetic effect of the SNP on Y.

EðYÞ ¼ aþGbG: (1)

Here, bG ¼ ðb
ð1Þ
G ; . . . ; bðkÞG Þ

0 and a ¼ ðað1Þ; . . . ; aðkÞÞ0, and the error
component is assumed to follow a multivariate normal distribution
with zero mean vector and covariance matrix R1. In the first step of
the two-step procedure, we implement MLR to assess the overall
main genetic effect of the SNP. In particular, we test H0 : bð1ÞG ¼
� � � ¼ bðkÞG ¼ 0 versus H1 : bðjÞG 6¼ 0, for at least one j ¼ 1; . . . ; k. We
note that the power of identifying a SNP having a marginal genetic
effect should improve by modeling multiple related phenotypes in-
stead of a single phenotype. In the second step, we consider multi-
variate multiple linear regression (MMLR) to incorporate the
multivariate main effects of the SNP (G) and the environmental fac-
tor (E), and the multivariate interaction effect due to GxE.

EðYÞ ¼ aþGbG þ EbE þGEbGE: (2)

Here, bE ¼ ðb
ð1Þ
E ; . . . ;bðkÞE Þ

0 and bGE ¼ ðb
ð1Þ
GE; . . . ;bðkÞGEÞ

0, and the
error component is assumed to follow multivariate normal with zero
mean vector and a covariance matrix R2. We implement the type II

MANOVA to test H0 : bð1ÞGE ¼ � � � ¼ bðkÞGE ¼ 0 versus H0 : bðjÞGE 6¼ 0,

for at least one j. In the type II MANOVA test, the following two
models are compared: the unrestricted full model,
EðYÞ ¼ aþGbG þ EbE þGEbGE, versus the restricted model,
EðYÞ ¼ aþGbG þ EbE. Here, the unrestricted model reduces to the
restricted model under H0, when bGE ¼ 0. Thus, in the second step,
we only test the null hypothesis that the vector of interaction effects
bGE ¼ 0, leaving the vectors of main effects, bG and bE, unrestricted.
The power of detecting a GxE interaction effect should be increased
if the interaction is shared across Y1; . . . ;Yk. We use the R package
‘car’ (Fox and Weisberg, 2018) to perform type II MANOVA.

In the two-step procedure, we combine the P-values obtained
from 1st and 2nd steps to identify the SNPs that have a non-null
overall GxE effect. We note that the linear model in Equation (1) is
nested under the linear model in Equation (2). Hence, due to the
general result in Dai et al. (2012b), the test statistic in the screening
step to test bG ¼ 0 (Equation 1) and the test statistic testing bGE ¼ 0
in the second step (Equation 2) are independently distributed. This
property is crucial to maintain the overall false positive rate of the
combined two-step procedure at a desired level of significance. An
important rationale behind expecting higher power from our two-
step approach is that a SNP having a GxE effect should also have a
marginal genetic effect. However, if this assumption does not hold
for a SNP, one-step approaches would be more powerful. Below, we
outline the subset testing (sst) approach and the weighted hypothesis
testing (wht) approach to combine the two steps while adjusting for
multiple testing to maintain the overall false positive rate.

2.1 Adjustment for multiple testing
Suppose we are considering m SNPs, and that we have two sets of P-
values. One set is obtained from the first step testing for an overall

main genetic effect across phenotypes (equation 1), PG ¼ ðPð1ÞG ;

P
ð2Þ
G ; . . . ;P

ðmÞ
G Þ; and the other set from the second step for the multi-

variate interaction effect (Equation 2), PGE ¼ ðPð1ÞGE;P
ð2Þ
GE; . . . ;P

ðmÞ
GE Þ.
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For the one-step multivariate GxE test, Bonferroni correction is
applied to PGE. For the two-step approach, we consider the follow-
ing two well-known procedures to combine the two steps
(Gauderman et al., 2013; Ionita-Laza et al., 2007).

2.1.1 Subset testing

For PG, we consider a P-value threshold a1 and filter out all SNPs
for which P

ðiÞ
G > a1; i ¼ 1; . . . ;m. In the second step, we only con-

sider the SNPs selected in the first step ðPG < a1Þ, and apply a
Bonferroni correction while testing for an overall GxE effect for
these SNPs. Suppose, we consider a P-value threshold a2 in the se-
cond step. If m1 SNPs pass the first step, we compare PGE to a2

m1
for

each of the selected m1 SNPs to identify the SNPs having an overall
GxE effect. A larger choice of a1 will increase the possibility of send-
ing the SNPs with a true GxE effect to the second step, but at the ex-
pense of a higher multiple testing burden in the second step
(Gauderman et al., 2013). Guided by Kooperberg and LeBlanc
(2008), we considered the following choice of the P-value thresh-
olds, a1 ¼ 0:005 in step 1 and the standard choice of a2 ¼ 0:05 in
step 2.

2.1.2 Weighted hypothesis testing

Instead of completely dropping a set of less important SNPs in the
second step, it has been argued that testing all SNPs in the second
step while prioritizing them according to their relative ranking of
importance obtained in the first step produces higher power to de-
tect a GxE effect for a univariate phenotype (Hsu et al., 2012;
Ionita-Laza et al., 2007; Wasserman and Roeder, 2006; Zhang
et al., 2016). Thus, we follow this approach and test all m SNPs
using PGE in step 2 based on a significance level weighted using the
order of the P-values in step 1 (PG). The weighting scheme uses an
exponential weighting function, and allocates a larger fraction of
the total significance level a to the most significant SNPs obtained in
step 1 (Hsu et al., 2012; Ionita-Laza et al., 2007; Zhang et al.,
2016). In particular, while performing step 2, the k1 most significant
SNPs in the first bin in step 1 (lowest PG) are tested at a significance
level 1

2k1
a, the next k2 ð¼ 2k1Þ most significant SNPs in the second

bin in step 1 are tested at 1
22k2

a, the next k3 ð¼ 2k2Þ at 1
23k3

a, and so
on (Ionita-Laza et al., 2007). For example, when k1 ¼ 5 and
a ¼ 0:05, the top 5 SNPs from step 1 are tested at a significance level
0.005 in step 2, the next 10 at 0.00125, etc. This weighting scheme
guarantees that the overall false positive rate for the entire procedure
does not exceed a. Under this weighting scheme, the top SNPs from
step 1 are tested at a more liberal significance threshold than the
standard Bonferroni-corrected level required in a standard one-step
exhaustive scan of all m SNPs. However, for the SNPs not in the top
bins in step 1, weighted testing can have a more stringent threshold
than Bonferroni correction. We used a standard choice of k1 ¼ 5
and a ¼ 0:05 (Hsu et al., 2012; Ionita-Laza et al., 2007; Zhang
et al., 2016).

2.2 GxE tests for univariate phenotype
To test for a GxE interaction for a univariate phenotype, we con-
sider the following existing methods (Dai et al., 2012b; Gauderman
et al., 2013; Zhang et al., 2016). Let Y denote a single continuous
phenotype. In the one-step approach, we consider EðYÞ
¼ aþ bG �Gþ bE � Eþ bGE �GE, and test for H0 : bGE ¼ 0 ver-
sus H1 : bGE 6¼ 0. In the two-step approach, we combine the step 1
model: EðYÞ ¼ aþ bG �G, with step 2 model: EðYÞ ¼ a
þbG �Gþ bE � Eþ bGE �GE. Here we consider the same mul-
tiple testing strategies as considered above for a multivariate
phenotype.

3 Simulation study

3.1 Framework
We describe the simulation design for two phenotypes mainly for
convenience in presenting the mathematical expressions. This can be
extended for a larger number of phenotypes in a straightforward

manner. Let Y1 and Y2 denote two phenotypes, G denote the geno-
types at a SNP and E an environmental factor. We consider the fol-
lowing bivariate multiple linear regression to model the phenotypes.

ðY1Y2Þ ¼
�

a1
a2

�
þ
�

bð1Þ
G

bð2Þ
G

�
Gþ

�
bð1Þ

E

bð2Þ
E

�
Eþ

�
bð1Þ

GE

bð2Þ
GE

�
G� Eþ

�
�1
�2

�
: (3)

We consider each of Y1;Y2;G and E to be mean-centered. We

assume a bivariate normal distribution for ð�1; �2Þ0. Under a fixed

effects model, VðYjÞ ¼ b2ðjÞ
G VðGÞ þ b2ðjÞ

E VðEÞ þ b2ðjÞ
GE VðG� EÞ þ

r2
�j
; j ¼ 1;2. Under the assumption that G and E are independent in

the population, we obtain that VðG� EÞ ¼ VðGÞVðEÞ, since

EðGÞ ¼ EðEÞ ¼ 0. Thus, VðYjÞ ¼ b2ðjÞ
G VðGÞ þ b2ðjÞ

E VðEÞ þ b2ðjÞ
GE

VðGÞVðEÞ þ r2
�j
, for j¼1, 2.

Let us denote h
2ðjÞ
G ¼ b2ðjÞ

G VðGÞ; h
2ðjÞ
E ¼ b2ðjÞ

E VðEÞ; h
2ðjÞ
GE ¼ b2ðjÞ

GE

VðGÞVðEÞ, and the total variance of jth phenotype as r2
Yj
¼ VðYjÞ.

Hence, r2
Yj
¼ h

2ðjÞ
G þ h

2ðjÞ
E þ h

2ðjÞ
GE þ r2

�j
. Without loss of generality, we

assume that r2
Yj
¼ 1; so, r2

�j
¼ 1� ðh2ðjÞ

G þ h
2ðjÞ
E þ h

2ðjÞ
GE Þ; j¼1, 2.

Next, we derive the following: covðY1;Y2Þ ¼ corðY1;Y2Þ ¼ bð1ÞG bð2ÞG

VðGÞ þ bð1ÞE bð2ÞE VðEÞ þ bð1ÞGEbð2ÞGEVðGÞVðEÞ þ covð�1; �2Þ, where

covð�1; �2Þ is the covariance between the noise terms in the two phe-
notypes. Thus, we can first fix the correlation between the pheno-
types ðcorðY1;Y2ÞÞ and other simulation parameters which in turn
determine the value of covð�1; �2Þ to be used in the simulations.

We simulate the genotype data at each SNP under the Hardy-
Weinberg equilibrium using the probabilities of the three possible
genotypes as: PðAAÞ ¼ p2;PðAaÞ ¼ 2pð1� pÞ;PðaaÞ ¼ ð1� pÞ2,
where P(A) ¼ p. We simulate the environmental factor as a binary
random variable with PðE ¼ 1Þ ¼ f and PðE ¼ 0Þ ¼ 1� f .

3.2 Choice of parameters
In our simulation study, we consider three phenotypes for 20 000
individuals, and choose the pairwise phenotypic correlations ran-
domly in the range 20–30%. We simulate the minor allele frequency
at a SNP from Uniform ð0:05; 0:45Þ, and the proportion of the refer-
ence category of the environmental factor, f ¼ PðE ¼ 1Þ, from
Uniform ð0:2; 0:3Þ. For each risk SNP with a marginal genetic effect
on Yj, we simulated h

2ðjÞ
G randomly between 0.1% and 0.2% so that,

in aggregate, 100 such SNPs explain an average of 15% of the vari-
ance of Yj; j ¼ 1; 2; 3. When E has an effect on Yj, we choose h

2ðjÞ
E ,

the proportion of variance of Yj explained due to E, randomly be-
tween 1% and 2%. Similarly, we randomly simulate h

2ðjÞ
GE in the

range (0.01–0.05%) so that, in aggregate, 40 risk SNPs having a
GxE effect on Yj explain an average of 1.2% of the variance of Yj.

We consider 100 000 null SNPs which have no marginal genetic
association with any phenotype, and no GxE interaction on any
phenotype. We consider a separate set of 100 non-null SNPs
ðdenoted by mGÞ each of which has a marginal genetic effect on at
least one phenotype (Equation 1). Among these mG non-null SNPs,
mGE SNPs have a GxE effect on at least one phenotype
(Equation 2), and we vary mGE ¼ 10;20;30;40. So, a subset of the
risk SNPs having a marginal genetic effect are assumed to have a
GxE effect (mGE out of mG ¼ 100). We further assume that, if a
SNP has a GxE effect on a phenotype, the same phenotype also has
a marginal genetic effect due to the SNP. We consider three different
scenarios. In the 1st scenario, each non-null SNP has a marginal gen-
etic effect on the first phenotype but not the other two phenotypes;
and if the SNP (one of mGE SNPs) has a GxE effect, it has the inter-
action effect only on the first phenotype. Similarly in the 2nd scen-
ario, the first two phenotypes (but not the last phenotype) have a
marginal genetic effect due to each non-null SNP, and each of mGE

SNPs has a GxE effect on the first two phenotypes but not the last
one. And in the 3rd scenario, all the three phenotypes have a mar-
ginal genetic effect from each non-null SNP, and each of mGE SNPs
has a GxE effect on every phenotype.

Under each scenario, we compare the performance of various
tests of GxE interaction for each univariate phenotype and the multi-
variate phenotype. We apply three different procedures for multiple
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testing adjustment to control the family-wise error rate (FWER) as
outlined above: Bonferroni correction for the one-step methods
(abbreviated as bonf), subset testing (sst) and weighted hypotheses
testing (wht). For each method, we estimate the type I error rate and
power based on 200 simulated datasets. Under a given simulation
scenario, for each simulated dataset, we compute the proportion of
the null SNPs at which the method of choice to test GxE (null hy-
pothesis of no overall/univariate GxE effect) wrongly identified a
genome-wide significant signal of interaction. We estimate the type I
error rate as the mean of this proportion across 200 simulated data-
sets. We estimate the power using a similar procedure based on the
risk SNPs only. It is important to explore whether we obtain higher
power by testing GxE interaction for a multivariate phenotype com-
pared to each univariate phenotype. For comparison, we can plot
the power curve for the multivariate approach and the univariate ap-
proach for Y1, Y2, Y3. However for the univariate approach, includ-
ing three power curves for Y1;Y2;Y3 may look repetitive without
providing new insights. Hence, we instead used the following simple
strategy. Under a given simulation scenario, let p1, p2, p3 denote the
power estimated by the univariate approach for Y1, Y2 and Y3, re-
spectively; and p denotes the power obtained by the multivariate ap-
proach. If p > maxðp1;p2; p3Þ, the multivariate approach has higher
power than the univariate approach for each of Y1, Y2, Y3. Hence,
for ease of presentation, when plotting the power obtained by the
tests of GxE interaction for univariate phenotypes, we plot the max-
imum power obtained across three univariate phenotypes for each
multiple testing adjustment procedure. Because, the main aim here is
to compare the power of the multivariate approach with that of the
univariate approach for each of the three phenotypes.

While evaluating the FWER in the above simulation scenarios,
we assumed that the environmental factor has a marginal effect
(bE 6¼ 0) on the phenotypes (Equation 2). Under this assumption, we
estimated FWER based on null SNPs ðbGE ¼ 0Þ consisting of 100K
SNPs which have neither a marginal genetic effect (referred as G ef-
fect in the following) nor a GxE effect, and ðmG-mGEÞ null SNPs
which have a G effect but no GxE effect. Here, mG ¼ 100 and
mGE ¼ 10;20;30; 40. Next, we estimated FWER based on only the
100K SNPs that have neither G nor GxE effect. For a comprehensive
evaluation of FWER, we also considered the following simulation
scenarios. E has no marginal effect ðbE ¼ 0Þ, and FWER is estimated
based on 100K null SNPs with no G and GxE effect. In the absence
of a marginal effect of E, we also estimated FWER based on 100K

SNPs having no G and GxE effect and ðmG-mGEÞ SNPs with a G ef-
fect but no GxE effect.

In the above simulation scenarios when E has a marginal effect
on the phenotypes, we assumed that the environmental factor is dis-
tributed independently of SNP genotypes. However, some null SNPs
(no GxE effect) can be associated with the environmental factor. We
assume that the number of SNPs associated with the environmental
factor should be smaller than the number of SNPs (100) associated
with the main phenotypes. Hence, under the above simulation scen-
arios, we also considered that 40 randomly selected null SNPs have
a marginal genetic effect on E. To induce such an association, we
simulated the binary E using a logistic regression model:

PðE ¼ 1jg1; . . . ; g40Þ ¼
expð
P40

j¼1

cjgjÞ

1þexpð
P40

j¼1

cjgjÞ
, where gj is the genotype of the

jth selected SNP with an effect size cj. We simulated the odds ratios
expðcjÞ; j ¼ 1; . . . ;40; uniformly from ð1:1� 1:3Þ or ð1=1:3� 1=1:1Þ
depending on the direction of association (positive/negative) chosen
at random with probability half for each selected SNP. Under these
simulation scenarios, we evaluate the overall type I error rate and
power obtained by different univariate and multivariate approaches.

3.3 Results
First, we present the estimated overall type I error rate (FWER)
obtained from GxE tests for a multivariate phenotype. We present
the FWER in Table 1 when the environmental factor E has a mar-
ginal effect on the phenotypes. Here, the FWER is estimated based
on a set of null SNPs comprising 100K SNPs which have neither a G
effect nor a GxE effect, and mG-mGE SNPs which have a G effect
but no GxE effect. While the FWER appears to be controlled overall
at the desired level of significance 0.05 (Table 1), we observe mar-
ginal inflation in some cases; this is mainly due to using 200 itera-
tions of simulation (for computational feasibility) to estimate the
FWER under a given simulation scenario. We present the estimated
FWER of GxE tests for univariate phenotypes in Table 2 under the
same simulation scenarios, and find that the FWER is controlled
overall with marginal inflation in some cases. The FWER estimated
based on only 100K null SNPs which have no G and GxE effect is
controlled overall both for multivariate phenotype and univariate
phenotypes (Supplementary Table S1). Interestingly, 2-step proced-
ure based on weighted hypothesis testing appears to control the
FWER conservatively in this scenario (Supplementary Table S1).

When E has no effect on the phenotypes, the FWER estimated using
100K null SNPs with no G and GxE effect and another mG-mGE null
SNPs with a G but no GxE effect is reasonably well controlled both for
multivariate and univariate phenotypes (Supplementary Table S2). In
this scenario, the FWER estimated based on only 100K null SNPs
which have no G and GxE effect is overall controlled both for multi-
variate and univariate phenotypes (Supplementary Table S3). The 2-
step procedure based on weighted hypothesis testing controls FWER
conservatively for some cases in this scenario.

In the simulation scenarios when 40 null SNPs (no GxE effect) are
associated with the environmental factor, the FWER, estimated based
on the null SNPs comprising 100K SNPs with no G and GxE effect
and mG-mGE SNPs with a G effect but no GxE effect, was overall
controlled with marginal inflation in some cases (Supplementary
Table S4). We also find that the 2-step approach based on weighted
hypothesis testing controls the FWER overall better than the other
approaches in this scenario (Supplementary Table S4).

We present the estimated power of GxE tests for multivariate
and univariate phenotypes inFigures 1–3. First, we focus on the
multivariate phenotype, and compare the power of 1-step and 2-step
approaches to detect an overall effect of GxE interaction on multiple
phenotypes. We find that both of the 2-step procedures (subset test-
ing and weighted hypothesis testing) produce higher power than the
1-step approach (Bonferroni correction). We also observe that the
weighted hypothesis testing (wht) performs better than the subset
testing (sst) (Figs 1–3). We therefore focus on comparing the
weighted hypothesis testing procedure with the Bonferroni correc-
tion to contrast the power of 2-step and 1-step approaches. In 3rd

Table 1. Simulation results: estimated overall type I error rate

obtained by different tests of overall GxE effect for a multivariate

phenotype using various strategies of multiple testing adjustment

1-step bonf 2-step subset 2-step weighted

#asso-pheno mGE Correction Testing Hypothesis testing

1 10 0.04 0.04 0.1

1 20 0.05 0.04 0.06

1 30 0.09 0.06 0.04

1 40 0.06 0.05 0.03

2 10 0.04 0.04 0.06

2 20 0.06 0.06 0.06

2 30 0.08 0.04 0.02

2 40 0.06 0.07 0.04

3 10 0.03 0.05 0.04

3 20 0.03 0.05 0.05

3 30 0.06 0.02 0.02

3 40 0.07 0.07 0

Note: Here, #asso-pheno denotes the number of phenotypes that have a

marginal genetic effect or an interaction effect due to risk SNPs; mGE denotes

the number of SNPs out of 100 ðmGÞ risk SNPs that have a GxE interaction

effect. We present the overall type I error rate (FWER) at 0.05 level of signifi-

cance with the desired level 5� 10�7 per SNP, since we considered 100K null

SNPs which have no marginal G or GxE effect. The type I error rate is esti-

mated based on 200 simulated datasets with 20000 individuals in the sample.
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simulation scenario, when all three phenotypes have a GxE effect
from each of mGE SNPs, the 2-step approach implemented by
weighted hypothesis testing (abbreviated as 2-step-wht) produces
32–34% higher power than the Bonferroni correction implementing
the 1-step approach (1-step-bonf) (Fig. 3). In 2nd scenario, when
two phenotypes have a GxE effect, 2-step-wht produces 23–24%
power increase than 1-step-bonf (Fig. 2). In the absence of plei-
otropy in GxE effect, i.e. when one phenotype has a GxE effect, 2-
step-wht yields 7–8% power gain than 1-step-bonf (Fig. 1). Hence,
overall our 2-step approach offers substantial power gain compared
to the 1-step approach when testing for an overall GxE effect on a
multivariate phenotype. We also find that 2-step-wht performs

marginally better than 2-step-sst (subset testing) and produces a
power gain of 1–3% in the third simulation scenario (Fig. 3), 3–4%
in the second scenario (Fig. 2), and 2–3% in the first scenario
(Fig. 1).

For GxE tests with univariate phenotypes, the 2-step approaches
(wht and sst) perform better than the 1-step approach (Bonferroni
correction) which is consistent with findings from previous studies
(Gauderman et al., 2013; Zhang et al., 2016). Between the two
strategies of 2-step approaches for univariate phenotype, wht produ-
ces marginally higher power than sst.

Next, we contrast the performance of 2-step-wht for multivari-
ate phenotypes (multivar_wht) with that of 2-step-wht for

Table 2. Simulation results: estimated overall type I error rate obtained by different tests of GxE effect for univariate phenotype using vari-

ous strategies of multiple testing adjustment

1-step bonf correction 2-step subset testing 2-step weighted hypothesis testing

#asso-pheno mGE pheno1 pheno2 pheno3 pheno1 pheno2 pheno3 pheno1 pheno2 pheno3

1 10 0.06 0.06 0.06 0.05 0.04 0.05 0.06 0.06 0.07

1 20 0.06 0.02 0.06 0.04 0.06 0.03 0.04 0.07 0.05

1 30 0.06 0.04 0.08 0.08 0.07 0.05 0.03 0.09 0.07

1 40 0.04 0.04 0.07 0.08 0.04 0.04 0.06 0.06 0.02

2 10 0.07 0.04 0.04 0.04 0.06 0.02 0.04 0.04 0.06

2 20 0.03 0.07 0.03 0.06 0.04 0.06 0.06 0.02 0.04

2 30 0.05 0.04 0.06 0.03 0.04 0.06 0.04 0.02 0.04

2 40 0.04 0.05 0.07 0.06 0.05 0.04 0.04 0.06 0.05

3 10 0.05 0.04 0.03 0.08 0.06 0.08 0.06 0.04 0.04

3 20 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.03 0.06

3 30 0.08 0.08 0.05 0.06 0.06 0.03 0.02 0.05 0.02

3 40 0.08 0.07 0.03 0.06 0.05 0.04 0.03 0.03 0.02

Note: Here, #asso-pheno denotes the number of phenotypes that have a marginal genetic effect or an interaction effect due to risk SNPs; mGE denotes the num-

ber of SNPs out of 100 ðmGÞ risk SNPs that have a GxE interaction effect. We present the overall type I error rate (FWER) at 0.05 level of significance with the

desired level 5� 10�7 per SNP, since we considered 100K null SNPs which have no marginal G or GxE effect. Three univariate phenotypes are abbreviated as

pheno1, pheno2 and pheno3, respectively. The type I error rate is estimated based on 200 simulated datasets with 20000 individuals in the sample.
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Fig. 1. Simulation results: estimated power obtained by different tests of overall

GxE effect for multivariate phenotype (multivar), and tests of GxE effect for uni-

variate phenotype (univar) using various strategies of multiple testing adjustment: 1-

step Bonferroni correction (bonf), 2-step subset testing (sst) and 2-step weighted hy-

pothesis testing (wht). Here, 1st phenotype (but not 2nd and 3rd) has a marginal

genetic effect or an interaction effect due to risk SNPs. We denote the number of

SNPs out of 100 risk SNPs which have a GxE effect as mGE. The power is estimated

based on 200 simulated datasets
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Fig. 3. Simulation results: estimated power obtained by different tests of overall

GxE effect for multivariate phenotype (multivar), and tests of GxE effect for uni-

variate phenotype (univar) using various strategies of multiple testing adjustment: 1-

step Bonferroni correction (bonf), 2-step subset testing (sst) and 2-step weighted hy-

pothesis testing (wht). Here, all three phenotypes have a marginal genetic effect or

an interaction effect due to risk SNPs. We denote the number of SNPs out of 100

risk SNPs which have a GxE effect as mGE. The power is estimated based on 200

simulated datasets
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univariate phenotypes (univar_wht). We contrast the power
obtained by multivar_wht with the maximum power obtained
across the three univariate phenotypes each obtained by univar_wht
(as discussed above). In the presence of pleiotropy in the GxE effect,
multivar_wht produces 44% higher power than univar_wht under
the third simulation scenario (Fig. 3), and 18–19% power gain
under the second scenario (Fig. 2). However, in the absence of plei-
otropy in GxE effect under the first simulation scenario, univar_wht
offers marginal power gain (3–4%) over multivar_wht (Fig. 1).
Taken together, the multivariate approach produces substantially
higher power than the univariate approach in the presence of plei-
otropy in GxE effect, and loses marginal power in its absence.

When some null SNPs have a marginal effect on the environmen-
tal factor, the comparative performance of the multivariate and uni-
variate approaches with respect to power of detecting GxE effect
remain similar (Supplementary Figs S1–S3).

We note that in Figures 1–3, the power curve for a given method
remains flat irrespective of the total number of GxE risk SNPs
included in the phenotype simulation model. In each iteration under
a simulation scenario, we simulated the proportion of variance
explained in the phenotype due to the GxE effect per SNP uniformly
from a fixed range. Hence, on average across the iterations, each
GxE SNP has a similar GxE heritability under a given simulation
scenario. If the total number of GxE SNPs increases, the total GxE
heritability of the phenotype increases, but per-SNP GxE heritability
remains similar. As a result, the estimated power curve remains flat
irrespective of the number of GxE SNPs considered. We also
repeated the power comparison corresponding to Figures 1–3 fixing
the number of GxE risk SNPs as 30 while simulating the pairwise
phenotypic correlation uniformly from the following increasing
ranges: (0.1-0.2), (0.2-0.3), (0.3-0.4), (0.4-0.5). As expected, the
estimated power of a multivariate approach overall increases as the
pairwise phenotypic correlation increases (Supplementary Figs S4–
S6).

In our simulation design, we always assumed that each risk SNP
with a GxE effect also has a marginal genetic effect on the pheno-
types. However, if a GxE SNP does not have a marginal genetic ef-
fect, a one-step approach will be more powerful to detect such GxE

signals compared to a two-step approach. More specifically, a two-
step method based on subset testing will miss such SNPs, because it
transfers a SNP to the second step for GxE testing only if the SNP
shows a marginal genetic association in the first step. Also, a two-
step method based on weighted hypothesis testing will allocate such
a SNP near the tail of the relative ranking of importance in the first
step; and hence is likely to miss the GxE signal in the second step
due to a stringent threshold of significance level used for the SNP.

4 Real data application

We considered three lipids LDL, HDL and Triglycerides in the UK
Biobank as the multivariate phenotype, and the frequency of alcohol
consumption as the environmental factor. We note that LDL was
measured directly instead of using Friedewald equation. We
removed individuals with missing values of phenotypes or relevant
covariates from the sample, leaving 253 653 White-British unrelated
individuals. While a similar proportion of individuals belong to the
two different sex categories, the maximum proportion of individuals
(44%) belong to the age group of 55–65 (Supplementary Table S5).
First, we applied the log-transformation on the observed values of
each lipid. Next, we adjust each log-transformed lipid for age, sex
and 20 principal components (PCs) of genetic ancestry by linear re-
gression. Finally, we apply the inverse rank normal transformation
on the adjusted residuals obtained from the linear regression for
each lipid, and considered them as the final phenotype vectors,
Yj; j ¼ 1;2; 3. The frequency of alcohol consumption was coded as
an integer-valued variable (UK Biobank Data-Coding 100402) with
the following categories: 1 (daily or almost daily), 2 (three or four
times a week), 3 (once or twice a week), 4 (one to three times a
month), 5 (special occasions only), 6 (never).

Genotype data in UK Biobank were assayed using two similar
genotyping arrays. A subset of 49 950 individuals in the UK
Biobank Lung Exome Variant Evaluation (UK BiLEVE) study were
genotyped using the Applied Biosystems UK BiLEVE Axiom Array
by Affymetrix. Subsequently, 438 427 participants were genotyped
using the closely related Applied Biosystems UK Biobank Axiom
Array (Bycroft et al., 2018). We removed SNPs with minor allele fre-
quency < 0.01, and genotype missingness > 0.01. Next we removed
SNPs deviating from Hardy Weinberg Equilibrium based on a P-
value threshold 10�7. We finally tested 459 792 genotyped SNPs in
the UKB one at a time. We applied the different procedures pre-
sented above for testing the GxE interaction. We provide the results
from multivariate and univariate tests of GxE interaction in Table 3.
QQ plots for the genome-wide GxE testing (Supplementary Fig.
S10) indicate that adjusting for the selected relevant covariates was
adequate for both testing an overall GxE effect on the lipids (using
multivariate multiple linear regression) and testing GxE effect on
each lipid separately (using a multiple linear regression). For every
GxE testing approach, we used a threshold of the overall type I error
rate (FWER) as 0.05. For subset testing in a 2-step procedure, we
considered a P-value threshold of 0.005 to assess marginal genetic
association in the first step. We also note that the adjusted GxE test
P-values obtained from the 2-step method based on weighted hy-
pothesis testing (Table 3) should be compared to the FWER level
0.05, not the Bonferroni corrected significance level using the total
number of SNPs tested.

For eight SNPs on chromosome 1 and 8, the 2-step weighted hy-
pothesis testing (2-step-wht) identified a genome-wide significant
overall effect of GxE interaction on the lipids, whereas the 2-step
subset testing (2-step-sst) approach identified an overall GxE effect
for only the three SNPs on chromosome 8, also identified by 2-step-
wht (Table 3). The 1-step Bonferroni correction (1-step-bonf) did
not detect any genome-wide significant signal of an overall GxE ef-
fect. All the SNPs on chromosome 1 and 8 detected by 2-step-wht
are in linkage disequilibrium (LD). We identified the lead SNP (high-
lighted with bold font) on each chromosome based on r2 threshold
of 0.2 (Table 3). Thus, 2-step-wht detected two loci on chromosome
1 and 8 to have an overall GxE effect; 2-step-sst detected the GxE
signal only on chromosome 8.
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Fig. 2. Simulation results: estimated power obtained by different tests of overall

GxE effect for multivariate phenotype (multivar), and tests of GxE effect for uni-

variate phenotype (univar) using various strategies of multiple testing adjustment: 1-

step Bonferroni correction (bonf), 2-step subset testing (sst) and 2-step weighted hy-

pothesis testing (wht). Here, first two phenotypes (but not 3rd) have a marginal gen-

etic effect or an interaction effect due to risk SNPs. We denote the number of SNPs

out of 100 risk SNPs which have a GxE effect as mGE. The power is estimated based

on 200 simulated datasets
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In the univariate GxE analysis, 1-step Bonferroni correction did
not identify any genome-wide significant GxE effect. 2-step univari-
ate approaches detected GxE effect for HDL, but none for LDL and
triglycerides (lower part of Table 3). 2-step-wht identified five SNPs
on chromosome 8, and 2-step-sst identified a subset of these SNPs
(Table 3). Even though univariate 2-step-wht found two additional
SNPs on chromosome 8 compared to the 2-step multivariate
approaches, all the five SNPs are in strong LD resulting in the same
lead SNP rs6984305, which was also identified by the 2-step multi-
variate tests (Table 3). For the common SNPs detected by both uni-
variate and multivariate 2-step-wht, the univariate 2-step-wht
produced more significant P-values compared to multivariate 2-
step-wht (Table 3). Multivariate 2-step-wht identified the GxE SNPs
on chromosome 1 which were missed by the univariate approaches.
Thus, the univariate approach identified fewer loci compared to the
multivariate approach.

At rs7528419 on chromosome 1, the univariate GxE test (mul-
tiple linear regression) P-value for three lipids were 0.1, 0.008 and
0.0001, none of which is genome-wide significant. Even though this
seems to be a moderate evidence of pleiotropy in GxE effect, the 1-
step multivariate test (MMLR) P-value for an overall GxE effect
across lipids was 0.001 which is also not genome-wide significant.
However, since this SNP has a strong evidence of pleiotropy in mar-
ginal main genetic effect with univariate P-values across lipids as
1:6� 10�283; 4:4� 10�20, 0.0001, and also a P-value < 10�300 for

the multivariate main genetic association, the multivariate 2-step-
wht approach prioritized this SNP in the second step while testing
GxE, and identified a genome-wide significant overall GxE effect for
this SNP.

At rs6984305 on chromosome 8 which is mapped to a nearby
gene AC022784.1, a previous study (Noordam et al., 2019) identi-
fied an effect of GxE interaction on HDL with sleep duration as the
environmental factor. At rs7528419 on chromosome 1 (mapped to
gene CELSR2), previous studies (De Vries et al., 2019) found GxE
interaction effect on LDL as well as HDL with alcohol consumption
as the environmental factor in multiple different populations.
Therefore, our method replicated these signals of GxE interaction
for lipids; however, the environmental factor was different for the
signal on chromosome 8. In NHGRI-EBI GWAS catalog, rs6984305
on chromosome 8 is also reported to be marginally associated with
liver enzyme levels and serum alkaline phosphatase levels; and
rs6984305 on chromosome 1 is reported to be associated with LDL
(Zhu et al., 2017), response to statin (Theusch et al., 2014), etc.

5 Discussion

We have proposed a two-step approach to test for an aggregate-level
gene–environment interaction across multiple related phenotypes.
Using simulations, we demonstrate that our method produces sub-
stantially higher power than the Bonferroni-corrected one-step test

Table 3. Real data results: genome-wide significant signals of aggregate-level GxE interaction effect on the vector of three lipids (LDL, HDL,

Triglycerides) and univariate GxE effect on HDL obtained by the 2-step multivariate and univariate approaches, respectively

Multivariate 2-step weighted hypothesis testing for lipids

SNP CHR BP P.g (MLR) P.ge (MMLR) P.ge.wht

rs7528419 1 109817192 < E-300 0.001 0.01

rs12740374 1 109817590 < E-300 0.002 0.02

rs660240 1 109817838 < E-300 0.001 0.01

rs629301 1 109818306 < E-300 0.001 0.01

rs646776 1 109818530 < E-300 0.001 0.01

rs6984305 8 9178268 9.09E-112 6.64E-07 0.007

rs6601299 8 9184691 6.06E-106 1.94E-06 0.02

rs2126259 8 9185146 3.40E-108 1.91E-06 0.02

Multivariate 2-step subset testing for lipids

P.g (MLR) P.ge (MMLR)

rs6984305 8 9178268 9.09E-112 6.64E-07

rs6601299 8 9184691 6.06E-106 1.94E-06

rs2126259 8 9185146 3.40E-108 1.91E-06

Univariate 2-step weighted hypothesis testing for HDL

SNP CHR BP P.g (ULR) P.ge (UMLR) P.ge.wht

rs6984305 8 9178268 1.23E-78 1.40E-07 0.0004

rs9987289 8 9183358 6.20E-99 9.43E-06 0.006

rs6601299 8 9184691 1.29E-79 9.68E-07 0.002

rs2126259 8 9185146 1.00E-81 7.93E-07 0.002

rs11779870 8 9211723 1.50E-51 1.33E-05 0.03

Univariate 2-step subset testing for HDL

SNP CHR BP P.g (ULR) P.ge (UMLR)

rs6984305 8 9178268 1.23E-78 1.40E-07

rs6601299 8 9184691 1.29E-79 9.68E-07

rs2126259 8 9185146 1.00E-81 7.93E-07

Note: The frequency of alcohol consumption is considered as the environmental factor. CHR denotes chromosome, and BP denotes base pair position. In multi-

variate analysis, P.g (MLR) denotes the P-value of testing the marginal multivariate genetic association between the SNP and the lipids using multivariate linear

regression (MLR); P.ge (MMLR) denotes the P-value of testing overall GxE effect on the lipids using multivariate multiple linear regression (MMLR) prior to ad-

justment for multiple testing; P.ge.wht denotes the adjusted P-value of testing the overall GxE effect obtained by the 2-step approach based on weighted hypoth-

esis testing. In univariate analysis, P.g (ULR) denotes the P-value of testing univariate marginal genetic association between the SNP and HDL using univariate

linear regression (ULR); P.ge (UMLR) denotes the P-value of testing univariate GxE effect on HDL using univariate multiple linear regression (UMLR) prior to

adjustment for multiple testing; P.ge.wht denotes the adjusted P-value of testing univariate GxE effect using 2-step weighted hypothesis testing. The lead SNPs,

i.e. the independent SNPs having the strongest genome-wide significant signal of GxE effect, are highlighted with bold font. The lead SNPs were obtained based

on r2 threshold 0.2. P.ge.wht is the adjusted P-value obtained by the 2-step weighted hypothesis testing and was compared to the FWER level 0.05.
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of overall effect of GxE interaction on a vector of multiple pheno-
types. While our proposed two-step multivariate approach also pro-
vides substantially higher power than competing univariate
approaches in the presence of pleiotropic GxE effect, in the absence
of pleiotropy, the method only loses marginal power compared to
the analogous two-step univariate approach. We demonstrate our 2-
step approach by applying it to a vector of three lipid phenotypes in
the UK Biobank with the frequency of alcohol consumption as the
environmental factor. Our method identified a pair of independent
genome-wide significant signals of overall effect of GxE interaction
on the three lipids. Previous studies reported these SNPs to have
GxE effect on LDL & HDL with alcohol consumption as the envir-
onmental factor, and on HDL with sleep duration as the environ-
mental factor. A limitation of the UKB lipid data which we analyzed
is that the information on any medication to control or lower lipid
levels of the participants were not available.

In a GxE study for a univariate phenotype, a common approach
is to perform a joint 2 degree of freedom test to detect either a mar-
ginal genetic effect or a GxE effect (Kraft et al., 2007; Manning
et al., 2011). It aims to improve the discovery of SNPs associated
with the phenotype in the presence of heterogeneity in the main gen-
etic effect due to the environmental factor. A joint test of either a
marginal genetic effect or an interaction effect cannot distinguish a
significant signal of GxE effect. In this paper, we solely focused on
testing a non-null effect of the GxE interaction. Hence, for a mean-
ingful comparison of our approach with the 2 degree of freedom
test, we improvised an analogous testing procedure. We devised a
Wald test based on the least square estimates of univariate bGE

(Manning et al., 2011) across the three phenotypes and their corre-
sponding covariance structure (outlined in Appendix). Using simula-
tions we compared this approach with our 2-step multivariate
approach, and found that the 2-step approach consistently produces
higher power. Moreover, the improvised approach produces very
similar power as the multivariate multiple linear regression
(MMLR), because the former can be viewed as a summary statistics
based version of the later.

Zhang et al. (2019) proposed a statistical approach to test for an
overall GxE effect on multiple phenotypes at a gene-level. In con-
trast, our approach focuses on one SNP at a time. Hence, for a SNP-
level comparison, we designed an analogous testing procedure fol-
lowing the main idea of Zhang et al. (2019). We consider the princi-
pal components (PCs) of the multivariate phenotype as the newly
derived phenotypes which are uncorrelated between each other. For
each PC, we perform the univariate GxE test using a multiple linear
regression in presence of a possible main effect due to the SNP and
environmental factor. Finally, we combine the GxE test P-values
across the PCs using the Fisher’s meta analysis to obtain the P-value
of testing for an overall GxE effect. Using simulations, we find that
our proposed multivariate 2-step approach consistently produces a
higher power than this approach (Supplementary Figs S7–S9).
Moreover, the approach based on PCs loses marginal power (around
1%) compared to the multivariate multiple linear regression
(MMLR).

There are some limitations to our approach and potential for fu-
ture improvement. First, a crucial assumption underlying the two-
step approaches is that if a genetic variant has a GxE effect, it should
also have a marginal genetic effect on the phenotype. This assump-
tion is expected to hold in most cases (Paré et al., 2010). For ex-
ample, for a binary environmental factor (e.g. smoking status), a
SNP with GxE effect has no marginal genetic association in the fol-
lowing scenario. Its marginal genetic effect on the phenotype of indi-
viduals belonging to each subgroup of the population classified by
the status of the environmental factor (e.g. smokers versus non-
smokers) not only has an opposite direction, but also perfectly can-
cels out each other across the subgroups to become zero in the popu-
lation. In general, this is a strong condition to be satisfied for many
SNPs. Thus, it is more plausible that a genetic variant with a GxE ef-
fect also has a marginal genetic association (at least with a weak ef-
fect) (Kooperberg and LeBlanc, 2008; Murcray et al., 2008, 2011;
Paré et al., 2010). In support of this assumption, our real data ana-
lysis for lipids indeed identified SNPs which show an evidence of

both GxE effect and marginal genetic effect. However, it is possible
that a few SNPs can have a GxE effect in spite of having no marginal
genetic effect. If a GxE SNP does not have any marginal genetic ef-
fect, one-step GxE testing procedures are expected to be more
powerful than two-step approaches. Second, as commonly practiced
in standard GWAS, the multiple testing procedures implemented in
our approach to identify the genome-wide significant signals of GxE
effect do not explicitly account for LD among the SNPs. Hence, the
procedures are expected to be conservative in nature, limiting the
power of the tests. An interesting future direction of research will be
to adjust the multiple testing strategies for LD, in particular, the
weighted hypothesis testing and subset testing procedures. Third, we
have initially developed our approach and explored its performance
for quantitative phenotypes. However, the phenotypes can also be
of a mixed type, e.g. blood pressure (continuous) and stroke (bin-
ary). One strategy is to convert the binary trait into a liability scale
using its estimate of prevalence in the population, and then apply
our method on the pair of continuous phenotypes. To preserve the
original mixed type of the phenotypes in the analysis, we plan to de-
velop new methods using a generalized estimating equations (GEE)
approach under the framework of seemingly unrelated regressions
(SUR) (Liu et al., 2009). In future work, we also plan to extend the
approach for multiple related case-control phenotypes. Fourth, an-
other future direction is to develop a GxE test for multiple pheno-
types using the minimum of univariate GxE test P-values across the
phenotypes as the test statistic. It is important to derive the null dis-
tribution of the test statistic accounting for any possible correlation
between the P-values. Fifth, we have considered one environmental
factor in the model. However, considering multiple relevant envir-
onmental factors at the same time as multiple phenotypes should
further improve the power of detecting an overall GxE effect.

In summary, studying GxE interactions is crucial to better under-
stand how the interplay among the genetic and environmental fac-
tors underlies the phenotypic variation. However, detecting GxE
interactions can be challenging due to limited statistical power
which can be substantially increased with new methodological
approaches. Here we present a novel approach that improves the
statistical power to identify GxE interactions in the presence of plei-
otropy in the GxE effect, which may be valuable for future studies.
The approach is theoretically sound and computationally efficient.
We provide an R package MPGE for general use of the method by
other investigators.
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