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Abstract
We derive the complete set of kinetic equations describing the evolution of the
probability density distribution for a structured population such as cells dis-
tributed according to their ages and sizes. The kinetic equations for such a ‘sizer-
timer’ model incorporate both demographic and individual cell growth rate
stochasticities. Averages taken over the densities obeying the kinetic equations
can be used to generate a second order PDE that incorporates the growth
rate stochasticity. On the other hand, marginalizing over the densities yields
a modified birth–death process that shows how age and size influence demo-
graphic stochasticity. Our kinetic framework is thus a more complete model
that subsumes both the deterministic PDE and birth–death master equation
representations for structured populations.

Keywords: kinetic theory, cell proliferation, cell size control, birth–death pro-
cess, age structured populations

(Some figures may appear in colour only in the online journal)

1. Introduction

Across many diverse applications, mathematical models have been formulated to describe the
evolution of populations according to a number of individual attributes such as age, size, and/or
added size since birth. For example, deterministic age-structured models that incorporate age-
dependent birth and death were developed by McKendrick and have been applied to human
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populations [1]. More recently, there has been renewed interest in cell size control [2, 3],
cellular division mechanisms [4], and structured cell population models [5, 6].

When considering proliferating cell populations, individual cell growth is interrupted by
cell division events that generate smaller daughter cells. Cell division is a process that involves
many biochemical steps and complex biophysical mechanisms that involves metabolism,
gene expression, protein production, DNA replication, chromosome separation (for eukaryotic
cells), and fission or cell wall formation [7–11]. To simplify the understanding of which fac-
tors trigger cell division, three basic models that subsume these complex processes have been
proposed. Cells can divide based on their age since birth, volume (size), or added volume since
birth y [2, 12]. PDE approaches for the timer, sizer, and adder models, as well as combinations
of these models, have been well-studied [6, 13, 14]. These PDE approaches implicitly describe
the mean density of cells in age, size, and/or added size, and are considered deterministic
models.

However, there has been much less development of structured populations models that incor-
porate stochastic effects. In the presence of stochasticity, how would the PDEs be modified? In
the sizer-timer type of structured population models, stochasticity can arise in growth dynamics
of each cell as well as in random times of cell division and death (demographic stochasticity).

Stochasticity arising from random times of birth and death (demographic stochastic-
ity) has been considered in timer-like models for age-structured populations [15, 16]. This
approach generalized the classic deterministic McKendrick equation to a higher dimen-
sion (dynamically varying) associated with the number of individuals in the system. This
higher-dimensional stochastic ‘kinetic theory’ allows one to systematically connect an age-
independent birth–death master equation description to the deterministic age-structured McK-
endrick model. A comprehensive and general treatment of the age-structured stochastic process
using a Doi-Peliti operator formalism has also been developed for calculation of correlation
functions [17]. The full kinetic theory has only been developed for age-structured populations
and only includes demographic stochasticity (since chronological age is a deterministic quan-
tity proportional to time). Other approaches using stochastic hybrid systems [18] have been
used to incorporate the influence of random birth times of population-level variations in cell
size. Intrinsic stochasticity in the growth rate of an individual cell has been treated in terms
of Langevin equations for cell size [19], effective potentials [3] and stochastic maps [12, 20].
Recently, Chapman–Kolmogorov equations have also been applied to study the effect of differ-
ent sources of noise in cellular proliferation [21]. However, stochasticity in the intrinsic growth
rate has not been considered within a demographically stochastic kinetic theory.

In this paper, we derive the kinetic equations for the sizer-timer model of cell proliferation
that incorporates both demographic stochasticity and intrinsic stochasticity in the growth of
individual cells. In the next section, we derive the Fokker–Planck equation for the size of an
individual cell and define the probabilistic quantities needed to construct the full kinetic theory.
This equation is then marginalized in section 3 to explicitly isolate and show the feature limits
of intrinsic stochasticity and demographic stochasticity. Including both sources of stochastic-
ity renders the calculations of marginalized densities rather technical, but by defining specific
moments, we derive a hierarchy of models describing correlations that arise from growth rate
stochasticity. These higher-order (and higher-dimensional) models cannot be derived from
approaches that impose mean-field assumptions and are evident only when a kinetic approach
such as ours is employed. The first-order model describing the single particle density is self-
contained and simply reduces to the mean-field ‘sizer-timer’ model [4, 13]. Higher order mod-
els are connected to each other and the first-order mean-field model. Marginalization of higher
moments of particle numbers can also be constructed from our kinetic theory. These hierar-
chical models describe demographic stochasticity and are not closed. Our results generalize
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a large body of work on sizer-timer PDE models to include stochastic processes, both at the
individual and population levels.

2. Derivation of kinetic theory

Here, we outline the derivation of the kinetic equation for a population of dividing cells of
different ages a and sizes (volumes) x. We start from the SDE for the size3 of a single cell at
time t:

dXt = g(Xt, At, t)dt + σ(Xt, At, t)dWt, Xt, At ∈ Λ, (1)

where Λ := [0,∞), At is the cell’s age (time that has elapsed after its birth), g(Xt, At, t) > 0 is
the size- and age-dependent growth rate, and Wt is a standard Wiener process with indepen-
dent, normally distributed increments Wt − Ws, zero mean, and variance t − s. The parameter
σ(Xt, At, t) represents the strength of stochasticity in a cell’s growth rate. Here, we assume
both g and σ are Lipschitz continuous to ensure the existence and uniqueness of Xt given any
initial conditions X0 > 0, A0 � 0. We also assume σ ∈ C1, σ(0, t, a) = ∂xσ(0, t, a) = 0 so that
the noise vanishes at x = 0 and Xt remains positive.

Next, we investigate a system of m + 2n cells, where m is the number of individual cells
(singlets) and n is the number of twins (doublets). A twin means two daughter cells generated
from the division of a common mother cell, and therefore they have the identical age. In this
section, we use the notation

X(m)
t = (X1

t , X2
t , . . . , Xm

t ), Y(2n)
t = (Y1

t , . . . , Y2n
t ),

A(m)
t = (A1

t , A2
t , . . . , Am

t ), B(n)
t = (B1

t , . . . , Bn
t ),

(2)

where A(m)
t and B(n)

t are ordered ages such that Ai
t � A j

t � 0, Bi
t � B j

t � 0, ∀ i > j and X(m)
t

and Y(2n)
t are the vectors of the volumes of the m singlets and 2n doublets that are of ages A(m)

t

and B(n)
t , respectively, at time t. We first use ordered ages to facilitate our derivations and to

better understand the boundary conditions representing newly born cells. Note that two cells
in a doublet have the same age but can have different sizes; thus, the age vector B(n)

t of the 2n
twins stores n ages, while the size vector Y(2n)

t stores 2n sizes.
Formally solving equation (1), each Xi

t and Y j
t satisfies

Xi
t = Xi

t′ +

∫ t

t′
g(Xi

s, Ai
s, s)ds +

∫ t

t′
σ(Xs, As, s)dWi

s,

Y j
t = Y j

t′ +

∫ t

t′
g(Y j

s , B

[
j+1

2

]

s , s)ds +
∫ t

t′
σ(Y j

s , B

[
j+1

2

]

s , s)dWm+ j
s ,

(3)

where dWi
s, dWm+ j

s are intrinsic, independent fluctuations in growth rates. We assume that cell
division rates are regulated by a ‘timer’ mechanism and do not depend on cell size, i.e. the
probability that a cell in a population of m singlets and n doublets divides during (t, t +Δt] is
βm,n(At, t)dt + o(dt), a function of its age At, time t and population sizes m, n. The mathematical
analysis that follow requires that the birth rate is independent of a cell’s size Xt. Finally, we
take the continuous time limit and assume that in a finite number of cells, the possibility of two
cells dividing in (t, t + dt] is o(dt) as dt → 0.

3 Alternatively, Xt might also represent the log of the cell size.
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2.1. The forward equation

We evaluate the increment in time by Ito’s formula applied to a function
f m,n(X(m)

t , Y(2n)
t , t; A(m)

t′ , B(n)
t′ ) of m individual and n twin sizes given initial sizes and

ages A(m)
t′ , B(n)

t′ at t′ < t, where the ages are defined to be in the descending order
A1 � A2 · · · � Am � 0, B1 � B2 · · · � Bn � 0. Ordering the ages will eventually allow
us to easily incorporate cell division as a boundary condition in which newborn cells are
represented by Bn = 0. We start by constructing the difference

f m,n(X(m)
t+dt, Y(2n)

t+dt, t + dt|A(m)
t′ , B(n)

t′ ) − f m,n(X(m)
t , Y(2n)

t , t|A(m)
t′ , B(n)

t′ )

=

∫ t+dt

t

⎡
⎣∂ f m,n

∂s
+

m∑
i=1

g
(
Xi

s, Ai
s, s
) ∂ f m,n

∂Xi
s

+

2n∑
j=1

g
(

Y j
s , B[( j+1)/2]

s , s
) ∂ f m,n

∂Y j
s

+
1
2

m∑
i=1

σ2(Xi
s, Ai

s, s)
∂2 f m,n

(∂Xi
s)2

+
1
2

2n∑
j=1

σ2(Y j
s , B[( j+1)/2]

s , s)
∂2 f m,n

(∂Y j
s )2

⎤
⎦ ds

+

m∑
i=1

∫ t+dt

t
σ(Xi

s, Ai
s, s)

∂ f m,n

∂Xi
s

dWi
s +

2n∑
j=1

∫ t+dt

t
σ(Y j

s , B[( j+1)/2]
s , s)

∂ f m,n

∂Y j
s

dW̃ j
s.

(4)

After taking the expectation of equation (4) we find

E

[
f m,n(X(m)

t+dt, Y(2n)
t+dt, t + dt|A(m)

t′ , B(n)
t′ )
]
− E

[
f m,n(X(m)

t , Y(2n)
t , t|A(m)

t′ , B(n)
t′ )
]

= E

⎡
⎣∫ t+dt

t
ds

⎛
⎝∂ f m,n

∂s
+

m∑
i=1

g(Xi
s, Ai

s, s)
∂ f m,n

∂Xi
s

+

2n∑
j=1

g(Y j
s , B[( j+1)/2]

s , s)
∂ f m,n

∂Y j
s

+
1
2

m∑
i=1

∂2 f m,n

(∂Xi
s)2

σ2(Xi
s, Ai

s, s) +
1
2

2n∑
j=1

∂2 f m,n

(∂Y j
s )2

σ2(Y j
s , B[( j+1)/2]

s , s)

⎞
⎠
⎤
⎦ . (5)

Specifically, we can take f m,n in equation (5) as a distribution of the form

f m,n(X(m)
t , Y(2n)

t , t|A(m)
t′ , B(n)

t′ ) =
m∏

i=1

δ(Xi − Xi
t)

2n∏
j=1

δ(Y j − Y j
t )

× S1,m(t|t′, A(m)
t′ )S2,n(t|t′, B(m)

t′ ), (6)

where S1,m and S2,n are joint survival possibilities

S1,m

(
t|t′, A(m)

)
=

m∏
i=1

e−
∫ t

t′βm,n(Ai−t′+s,s)ds,

S2,n

(
t|t′, B(n)

)
=

n∏
j=1

(
e−

∫ t
t′βm,n(B j−t′+s,s)ds

)2
,

(7)

and the birth rate β ≡ βm,n can implicitly depend on the populations m, n.
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Next, we define p̂(X(m)
t , Y(2n)

t , t|X(m)
t′ , Y(2n)

t′ , A(m)
t′ , B(n)

t′ ) as the probability density of m sin-
glets of volumes X(m)

t and n doublets of volumes Y(2n)
t at time t, conditioned on there

being m singlets of volumes X(m)
t′ and ages A(m)

t′ and n doublets with volumes Y(2n)
t′

and ages B(2n)
t′ at time t′, and that no cell division occurs during [t′, t]. The quantity

p̂(X(m)
t , Y(2n)

t , t|X(m)
t′ , Y(2n)

t′ , A(m)
t′ , B(n)

t′ )S1,m(t|t′, A(m)
t′ )S2,n(t|t′, B(m)

t′ ) is thus the probability measure
that the cell population at time t contains m singlets of size X(m)

t and n doublets of size Y(n)
t with

no cell division occurring within [t′, t], conditioned on it containing m singlets with volumes
X(m)

t′ and ages A(m)
t′ and n doublets with volumes Y(2n)

t′ and ages B(n)
t′ at t′.

After substitution of the f m,n defined in equation (6) into equation (5), dividing by dt, and
taking the dt → 0 limit, we obtain

∂

∂t

(
p̂(X(m), Y(2n), t|X(m)

t′ , Y(2n)
t′ , A(m)

t′ , B(n)
t′ )S1,m

(
t|t′, A(m)

t

)
S2,n

(
t|t′, B(n)

t

))

=

∫
Λm

dX(m)
t

∫
Λ2n

dY(2n)
t p̂(X(m)

t , Y(2n)
t , t|X(m)

t′ , Y(2n)
t′ , A(m)

t′ , B(n)
t′ )

[
∂ f
∂t

+

m∑
i=1

g(Xi
t, Ai

t, t)
∂ f
∂Xi

t
+

2n∑
j=1

g(Y j
t , B[( j+1)/2]

t , t)
∂ f

∂Y j
t

+
1
2

m∑
i=1

∂2 f
∂(Xi

t)2
σ2(Xi

t , Ai
t, t) +

1
2

2n∑
j=1

∂2 f

∂(Y j
t )2

σ2(Y j
t , B[( j+1)/2]

t , t)

⎤
⎦

= S1,mS2,n

⎡
⎣−

⎛
⎝ m∑

i=1

βm,n(Ai
t, t) + 2

n∑
j=1

βm,n(B j
t , t)

⎞
⎠ p̂m,n

−
m∑

i=1

∂(g(Xi
t, Ai

t, t) p̂)
∂Xi

t
−

2n∑
j=1

∂(g(Y j
t , B[( j+1)/2]

t , t) p̂)

∂Y j
t

+
1
2

m∑
i=1

∂2(σ2(Xi
t , Ai

t, t) p̂)
(∂Xi

t)2
+

1
2

2n∑
j=1

∂2(σ2(Y j
t , B j

t , t) p̂)

(∂Y j
t )2

⎤
⎦ , (8)

where the last equality arises from integration by parts.
Finally, we derive the PDE satisfied by the unconditioned probability density

pm,n(X(m)
t , Y(2n)

t , A(m)
t , B(n)

t , t) given pm,n(X(m), Y(2n), A(m), B(n), t′). First, we note that if no divi-
sion has occurred in [t′, t] and t − t′ < min{A(m)

t , B(n)
t }, a system at t with m singlets of volumes

X(m)
t and ages A(m)

t and n doublets with volumes Y(2n)
t and ages B(n)

t can result only from a
system at t′ with m singlets with ages A(m)

t′ = A(m)
t − (t − t′) and n doublets with ages B(n)

t′ =

B(n)
t − (t − t′). Thus, we use the Chapman–Kolmogorov relation between the two quantities

p̂(X(m)
t , Y(2n)

t , t|X(m)
t′ , Y(2n)

t′ , A(m)
t′ , B(n)

t′ )S1,m(t|t′, A(m)
t′ )S2,n(t|t′, B(m)

t′ ) and pm,n to construct

pm,n(X(m)
t , Y(2n)

t , A(m)
t′ + t − t′, B(n)

t′ + t − t′, t) =
∫
Λ(m+2n)

p̂(X(m)
t , Y(2n)

t , t|X(m)
t′ , Y(2n)

t′ , A(m)
t′ , B(n)

t′ )

× S1,m(t|t′, A(m)
t′ )S2,n(t|t′, B(m)

t′ )pm,n(X(m)
t′ , Y(2n)

t′ , A(m)
t′ , B(n)

t′ , t′)dX(m)
t′ dY(2n)

t′ . (9)

Assuming that pm,n is continuous and differentiable, and the integration is interchangeable with
differentiation in equation (9), we take derivatives with respect to all variables t, Xi, Y j, Ai, Bj
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to obtain

∂pm,n

∂t
+

m∑
i=1

∂pm,n

∂Ai
t
+

n∑
j=1

∂pm,n

∂B j
t

+

m∑
i=1

∂(g(Xi
t, Ai

t, t)pm,n)
∂Xi

t
+

2n∑
j=1

∂(g(Y j
t , B j

t , t)pm,n)

∂Y j
t

= −

⎛
⎝ m∑

i=1

βm,n(Ai
t, t) + 2

n∑
j=1

βm,n(B j
t , t)

⎞
⎠ pm,n

+
1
2

m∑
i=1

∂2(σ2(Xi
t , Ai

t, t)pm,n)
(∂Xi

t)2
+

1
2

2n∑
j=1

∂(σ2(Y j
t , B j

t , t)pm,n)

(∂Y j
t )2

, (10)

where pm,n ≡ pm,n(X(m)
t , Y(2n)

t , A(m)
t , B(n)

t , t). Hereafter, we will omit the subscript t for notational
simplicity. To facilitate further analysis, we define a symmetrized density ρm,n that is symmetric
to the interchange of variables:

ρm,n(Xm, Y2n, Am, Bn, t) =
1

2nm!n!

∑
π2n

pm,n(X(m), π2n(Y(2n)), A(m), B(n), t), (11)

where A(m) = (Aξa(1), . . . , Aξa(m)), B(n) = (Bξb(1), . . . , Bξb(m)) are ordered ages, X(m) =
(Xξa(1), . . . , Xξa(m)), Y (2n) = (Y2ξb(1)−1, . . . , Y2ξb(n)) are the corresponding sizes, and π2n is
some permutation Λ2n →Λ2n such that π2n(Y2i), π2n(Y2i−1) ∈ {Y2i−1, Y2i}, π2n(Y2i) 	=
π2n(Y2i−1), i = 1, . . . , n, i.e. π2n can interchange the sizes of two cells in a doublet.
Therefore, there are 2n total permutations π2n. ξa(1), . . . , ξa(m) is a rearrangement such
that Aξa(1) � Aξa(2) � · · · � Aξa(m) and ξb(1), . . . , ξb(n) is a rearrangement such that
Bξb(1) � Bξb(2) � · · · � Bξb(n). Defining such a ρm,n allows us to remove the restriction
that the ages must be presented in a descending order. Moreover, changing the order of two
cells within in a doublet will not affect the value of ρm,n. Definite integrals over ρm,n are then
related to those over pm,n via∫

dXm dY2n dAm dBn ρm,n(Xm, Y2n, Am, Bn, t) =
∫
Λ(m+2n)

dX(m) dY(2n)
∫
Λ

dAξa(1) . . .

. . .

∫ Aξa(m−1)

0
dAξa(m)

∫
Λ

dBξb(1) . . .

∫ Bξb(n−1)

0
dBξb(n) pm,n(X(m), Y(2n), A(m), B(n), t),

(12)

so ρm,n is also a probability density distribution if pm,n is. Furthermore, the differential equation
satisfied by ρm,n for Am, Bn > 0 is the same as the differential equation satisfied by pm,n

∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂B j
+

m∑
i=1

∂(g(Xi, Ai, t)ρm,n)
∂Xi

+

2n∑
j=1

∂(g(Y j, B[ j+1
2 ], t)ρm,n)

∂Y j

= −

⎛
⎝ m∑

i=1

βm,n(Ai, t) + 2
n∑

j=1

βm,n(B j, t)

⎞
⎠ ρm,n

+
1
2

m∑
i=1

∂2(σ2(Xi, Ai, t)ρm,n)
(∂Xi)2

+
1
2

2n∑
j=1

∂2(σ2(Y j, B[ j+1
2 ], t)ρm,n)

(∂Y j)2
. (13)
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2.2. Boundary conditions

We now specify appropriate boundary conditions for ρm,n that represent the birth of new cells
with age zero. By using ordered ages, it is easy to derive the corresponding boundary con-
ditions for pm,n defined in equation (9), which we omitted here, but which are nonzero if
Bn = 0 and zero if any entry in X(m), Y(2n), A(m), B(k<n) is zero. The boundary conditions for
ρm,n are then derived from the boundary conditions for pm,n. Homogeneous boundary condi-
tions also arise at any Xi = 0,∞ or Y j = 0,∞ indicating that no cell can have 0 or infinite size.
If one cell divides at time t in a system of m singlets and n doublets, the system could either
convert to m − 1 singlets and n + 1 doublets when this dividing cell is a singlet, or m + 1
singlets and n doublets when the dividing cell is one cell in a doublet. A simpler but simi-
lar discussion of boundary conditions for the ‘timer’ model which has no size dependence has
been discussed [15, 16]. Hereafter, we use the notation Xm

−i = (X1, X2, . . . , Xi−1, Xi+1, . . . , Xm),
Am

−i = (A1, A2, . . . , Ai−1, Ai+1, . . . , Am) to describe vectors of one lower dimension in which
element i is removed. The boundary conditions are given by

ρm,n = 0

⎧⎪⎪⎨
⎪⎪⎩

if any element in {Xm, Y2n} = 0,∞,

or any element in Am = 0,

or more than one element in Bn = 0,

(14)

and

ρm,n(Xm, Y2n[Y2 j−1 = y1, Y2 j = y2], Am, Bn[B j = 0], t) =

m + 1
n

∫ ∞

0
ds β̃m+1,n−1(y1 + y2, y1, s, t)ρm+1,n−1

(
Xm+1[Xm+1 = y1 + y2],

Yn−1, Am+1[Am+1 = s], Bn−1, t
)

+
2
m

m∑
i=1

β̃m−1,n(y1 + y2, y1, Ai, t)ρm−1,n

(
Xm

−i, Am
−i, Bn[Bn = Ai],

Y2n[Y2n−1 = Xi, Y2n = y1 + y2], t
)

,

(15)

Equation (14) enforces that no cell can have a zero or infinitely large size and no more
than one cell can divide at the same instant (continuous time assumption). In equation (15),
the notation Xm+1[Xi = x] indicates that the ith component in Xm+1 is x, with similar def-
initions for Y2n[Y j = y], Am[Ai = a], Bn[Bj = b]. The first term on the rhs of equation (15)
results from the division of a singlet while the second term results from the division of one
cell in a doublet, leaving a singlet and giving rise to a new doublet. Division is described by
β̃m,n(x, z, a, t)dz, the rate that in a population of m singlets and n doublets, a cell of volume
x and age a divides into one cell with volume ∈ [z, z + dz]. By allowing β̃m,n to explicitly
depend on both the mother cell’s size x and daughter cell’s size z, we can readily allow for
asymmetric division and daughter cells of different sizes. Moreover, from volume conser-
vation, we impose β̃m,n(x, z, a, t) = β̃m,n(x, x − z, a, t). Finally, if we assume the simple form
β̃m,n(x, z, a, t) = h(z/x)βm,n(a, t)/x [13],

∫ x
0 β̃m,n(x, z, a, t)dz = βm,n(a, t) is independent of size

x as we have assumed. In the appendix, we explicitly demonstrate that probability conservation
is preserved under these boundary conditions.

7
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3. Hierarchies and moment equations

In this section, we will assume that β̃ and β are independent of the population sizes m, n. Under
this assumption, we are able to derive lower-dimensional (e.g. marginalized) projections of our
kinetic theory (equation (13)) by integrating over a specific number of cell sizes:

ρ(h,k,	)
m,n (Xh, Y2k+2	

e , Ah, Bk+	, t) =
∫
Λ

dXh+1:m dYo
2k+2	+1:2n dAh+1:m dBk+	+1:nρm,n, (16)

where ρm,n ≡ ρm,n(Xm, Y2n, Am, Bn, t), Λ ≡ Λ(m−h)+(2n−k−2	)+(m−h)+(n−k), and we define
the notation Xh+1:m := (Xh+1, . . . , Xm), Y2k+2	+1:2n

o := (Y1, Y3, . . . , Y2k−1, Y2k+2	+1, . . . , Y2n),
Ah+1:m := (Ah+1, . . . , Am), Bk+	+1:n := (Bk+	+1, . . . , Bn) and Y2k+2	

e := (Y2, Y4, . . . , Y2k, Y2k+1,
Y2k+2, . . . , Y2k+2	). The marginalized densities require three indices to describe because
although the size Xm and age Am have a one-to-one correspondence for singlets, the twins,
while carrying the same age, almost surely have different sizes due to asymmetric division
and independent growth fluctuations immediately after birth. Thus, the number of ways to exit
and enter each state depends on which types of cells are ‘integrated over’. By marginalizing
over equation (13), we find the kinetic equation satisfied by ρ(h,k,	)

m,n (in the remaining space
Xh, Y2k+2	

e , Ah, Bk > 0) becomes

∂ρ(h,k,	)
m,n (Xh, Y2k+2l

e , Ah, Bk+	, t)
∂t

+

h∑
i=1

∂ρ(h,k,	)
m,n

∂Ai
+

k+	∑
j=1

∂ρ(h,k,	)
m,n

∂Bj
+

h∑
i=1

∂(g(Xi, Ai, t)ρ(h,k,	)
m,n )

∂Xi

+

k∑
j=1

∂(g(Y2 j, Aj, t)ρ(h,k,	)
m,n )

∂Y2 j
+

2	∑
j=1

∂(g(Y2k+ j, Aj, t)ρ(h,k,	)
m,n )

∂Y2k+ j

− 1
2

h∑
i=1

∂2(σ2(Xi, Ai, t)ρ(h,k,	)
m,n )

(∂Xi)2
− 1

2

k∑
j=1

∂2(σ2(Y2 j, B[ j+1
2 ], t)ρ(h,k,	)

m,n )
(∂Y2 j)2

− 1
2

2	∑
j=1

∂2(σ2(Y2k+ j, Bk+[ j+1
2 ], t)ρ(h,k,	)

m,n )
(∂Y2k+ j)2

= −
h∑

i=1

β(Ai, t)ρ(h,k,	)
m,n (Xh, Y2k+2	

e , Ah, Bk+	, t) −
k+	∑
j=1

2β(Bj, t)ρ(h,k,	)
m,n (Xh, Y2k+2	

e , Ah, Bk+	, t)

− (m − h)
∫
Λ2

dXh+1 dAh+1β(Ah+1, t)ρ(h+1,k,	)
m,n (Xh+1, Y2k+2	

e , Ah+1, Bk+	, t)

− 2(n − k − 	)
∫
Λ2

dY2k+2 dBk+1 β(Bk+1, t)ρ(h,k+1,	)
m,n (Xh, Y2k+2	+2

e , Ah, Bk+	+1, t)

+
(n − k − 	)(m + 1)

n

∫
Λ2

dXh+1 dAh+1 β(Ah+1, t)ρ(h+1,k,	)
m+1,n−1(Xh+1, Y2k+2	

e , Ah+1, Bk+	, t)

+
2(n − k − 	)(m − h)

m

∫
Λ2

dY2k+2 dBk+1 β(Bk+1, t)ρ(h,k+1,	)
m−1,n (Xh, Y2k+2	+2

e , Ah, Bk+	+1, t)

+
2(n − k − 	)

m

h∑
i=1

β(Ai, t)ρ(h−1,k+1,	)
m−1,n (Xh

−i, Y2k+2+2	
e [Y2k+2 = Xi], Ah

−i, Bk+	+1[Bk+1 = Ai], t),

(17)

8
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and the associated boundary conditions become

ρ(h,k,	)
m,n (Xh, Y2k+2	

e [Y2k = y], Ah, Bk+	[Bk = 0], t)

=
m + 1

n

∫
Λ2

dAh+1 ds β̃(y + s, y, Ah+1, t)ρ(h+1,k−1,	)
m+1,n−1 (Xh+1[Xh+1 = y + s],

Y2k+2	−2
e , Ah+1, Bk+	−1, t) (18)

+
2(m − h)

m

∫
Λ2

dBk ds β̃(y + s, y, Bk, t)ρ(h,k,	)
m−1,n(Xh, Y2k

e [Y2k = y + s], Ah, Bk+	, t)

+
2
m

h∑
i=1

∫
Λ

ds β̃(y + s, y, Ai, t)ρ(h−1,k−1,	+1)
m−1,n

(
Xh

−i,

Y2k+2	
e

[
Y2k+2	−1 = y + s, Y2k+2	 = Xi

]
, Ah

−i, Bk+	[Bk+	 = Ai], t
)

,

ρ(h,k,	)
m,n (Xh, Y2k+2	

e [Y2k+2	−1 = y1, Y2k+2	 = y2], Ah, Bk+	[Bk+	 = 0], t)

=
m + 1

n

∫
Λ

dAh+1β̃(y1 + y2, y1, Ah+1, t)ρ(h+1,k,	−1)
m+1,n−1 (Xh+1[Xh+1 = y1 + y2],

Y2k+2	−2
e , Ah+1, Bk+	−1, t)

+
2(m − h)

m

∫
Λ

dBk+1 β̃(y1 + y2, y1, Bk+1, t)ρ(h,k+1,	−1)
m−1,n (Xh, Y2k+2	

e [Y2k+2 = y1 + y2],

Ah, Bk+	, t)

+
2
m

h∑
i=1

β̃(y1 + y2, y1, Ai, t)ρ(h−1,k,	)
m−1,n (Xh

−i, Y2k+2	
e [Y2k+2	−1 = y1 +y2, Y2k+2	 = Xi],

Ah
−i, Bk+	[Bk+	 = Ai], t), (19)

and

ρ(h,k,	)
m,n (Xh[Xi = 0], Y2k+2	

e , Ah, Bk+	, t) = ρ(h,k,	)
m,n (Xh[Xi = ∞], Y2k+2	

e , Ah, Bk+	, t) = 0,

i = 1, 2, . . . , h,

ρ(h,k,	)
m,n (Xh, Y2k+2	

e [Y j = 0], Ah, Bk+	, t) = ρ(h,k)
m,n (Xh, Y2k+2	

e [Y j = ∞], Ah, Bk+	, t) = 0,

j = 2, 4, . . . , 2k, 2k + 1, . . . , 2k + 2	,

ρ(h,k,	)
m,n (Xh, Y2k+2	

e , Ah[Ai = 0], Bk, t) = 0,

i = 1, 2, . . . , h,

ρ(h,k,	)
m,n (Xh, Y2k+2	

e , Ah, Bk+	, t) = 0,

if two or more entries in Bk+	 are 0. (20)

The first two terms on the rhs of equation (17) represent the division of a singlet/doublet in
the current system whose age is specified; the third and fourth terms on the rhs describe the
division of a singlet and one cell of a doublet, respectively, whose age is not specified; the fifth
term results from the division of a singlet, whose age and volume are unspecified, that induces

9
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the state transition (m + 1, n − 1) → (m, n). The sixth term arises from division of one cell of
a doublet that converts the system from (m − 1, n) to (m, n). Finally, the last term represents
the division of one cell in a doublet whose age is Ai, 1 � i � h and its undividing twin has size
Xi. In equations (18) and (19), the first term on their rhss represents the division of a singlet,
and the second term on their rhss describes the division of one cell in a doublet, giving rise to
a newborn doublet and leaving a singlet whose volume and age are integrated over. The last
term in the boundary conditions in equations (18) and (19) results from the division of a cell
in a doublet, giving rise to a newborn doublet and leaving a singlet whose volume and age are
Xi ∈ Xh and Ai ∈ Ah, respectively.

The differential equations satisfied by the fully marginalized density ρ(0,0,0)
m,n are

∂ρ(0,0,0)
m,n (t)
∂t

=

∫
Λ2

dX1 dA1 β(A1, t)
[
(m + 1)ρ(1,0,0)

m+1,n−1(X1, A1, t)−mρ(1,0,0)
m,n (X1, A1, t)

]

+ 2n
∫
Λ2

dY2 dB1 β(B1, t)
[
ρ(0,1,0)

m−1,n(Y2
e , B1, t) − ρ(0,1,0)

m,n (Y2
e , B1, t)

]
, (21)

which, for an age-independent division rate, explicitly reduces to the simple birth–death master
equation

1
β(t)

∂ρ(0,0,0)
m,n (t)
∂t

= (m + 1)ρ(0,0,0)
m+1,n−1(t) − mρ(0,0,0)

m,n (t) + 2nρ(0,0,0)
m−1,n(t) − 2nρ(0,0,0)

m,n (t). (22)

In equations (21) and (22), the division rates β(A1, t) and β(t) can be replaced by their full
(m, n)-dependent forms.

3.1. Number-weighted density functions

We now define a class of number-weighted density functions from the marginalized densities
ρ(h,k,	)

m,n that incorporates higher moments and that has useful closure properties:

u(k,	)(xk, y2	, ak, b	, t) :=
∞∑

m,n=0

k∑
r=0

∑
ξ(0,r)∈Sk

2k+	−r(m)r(n)k+	−rρ
(r,k−r,	)
m,n

(
Xr[Xi = xξ

(0,r)(i)],

Y2(k−r)+2	
e [Y2 j = xξ

(r,k−r)( j), Y2(k−r)+p = yp], Ar[Ai = aξ(0,r)(i)],

Bk−r+	[B j = aξ(r,k−r)( j), Bk−r+[ p+1
2 ] = b[ p+1

2 ]], t
)

,

1 � i � r, 1 � j � k − r, 1 � p � 2	, (23)

where xk := (x1, . . . , xk), y2	 := (y1, . . . , y2	), ak := (a1, . . . , ak), b	 := (b1, . . . , b	), and (m)r =
m!/(m − r)! is the falling factorial, Sk = {1, 2, . . . , k}. The sum

∑
ξ(0,r)∈Sk

includes all elements in

the set ξ(0,r) ∈ Ωr containing all possible choices of r elements in Sk and ξ(r,k−r) := (ξ(r + 1),
ξ(r + 2), . . . ξ(k)) = Sk\ξ(0,r). We require ξ(0,r)(i) < ξ(0,r)( j), ξ(r,k−r)(i) < ξ(r,k−r)( j), ∀i < j, and
r � m, and k − r � n in equation (23). Note that u(0,0) ≡ 1 from normalization. The lowest
order number-weighted density functions u(k,	) are explicitly given in appendix B.

Since our kinetic equations (equations (13)–(15)) subsume all hierarchical equations
for ρ(h,k,	)

m,n (equations (17)–(20)), equations for u(k,	) can be derived. For example, if β is

10
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independent of m, n, the PDE satisfied by u(k,	)(xk, y2	, ak, b	, t) is

∂u(k,	)

∂t
+

k∑
i=1

∂u(k,	)

∂ai
+

	∑
j=1

∂u(k,	)

∂b j
+

k∑
i=1

∂(g(xi, ai, t)u(k,	))
∂xi

+

2	∑
j=1

∂(g(y j, b[ j+1
2 ], t)u(k,	))

∂y j

= −

⎛
⎝ k∑

i=1

β(ai, t) +
	∑

j=1

2β(b j, t)

⎞
⎠ u(k,	)

+
1
2

k∑
i=1

∂2(σ2(xi, ai, t)u(k,	))
(∂xi)2

+
1
2

2	∑
j=1

∂2(σ2(y j, b[ j+1
2 ], t)u(k,	))

(∂y j)2
, (24)

along with the boundary conditions

u(k,	)(xk[xv = x], y2	, ak[av = 0], b	, t) =
∞∑

m,n=0

k−1∑
r=0

∑
ξ(0,r)∈S−v

k

2	+k−r(m)r(n)k+	−r

× ρ(r,k−r,	)
m,n

(
Xr[Xi = xξ

(0,r)(i)], Y2k−2r+2	
e [Y2 j = xξ

(r,k−r)( j), Y2k+p = yp],

Ar[Ai = aξ(0,r)(i)], B	+k−r[B j = aξ(r,k−r)( j), Bk−r+[ p+1
2 ] = b[ p+1

2 ]], t
)

= 2
∫
Λ2

ds da β̃(x + s, x, a, t)u(k,	)(xk[xk = x + s], y2	, ak[ak = a], b	, t)

+ 2
k∑

w=1,	=v

∫
Λ

ds β̃(x + s, x, aw, t)u(k−2,	+1)
(
xk
−v,−w, ak

−v,−w,

y2	+2[y2	+1 = xw, y2	+2 = x + s], b	+1[b	+1 = aw], t
)

,

(25)

u(k,	)(xk, y2	[y2v−1 = y1, y2v = y2], ak, b	[bv = 0], t)

=

∞∑
m,n=0

k∑
r=0

∑
ξ(0,r)∈Sk

2	+k−r(m)r(n)k+	−rρ
(r,k−r,	)
m,n

(
Xr[Xi = xξ

(0,r)(i)],

Y2	+k−r
e [Y2 j = xξ

(r,k−r)( j), Y2k+q = yq], Ar[Ai = aξ(0,r)(i)],

B	+k−r[B j = aξ(r,k−r)( j), Bk−r+[ q+1
2 ] = b[ q+1

2 ]], t
)

= 2
∫
Λ

da β̃(y1 + y2, y1, a, t)

× u(k+1,	−1)(xk+1[xk+1 = y1 + y2], y2	
−(2v−1),−2v, ak+1[ak+1 = a], b	

−v, t)

+ 2
k∑

w=1

β̃(y1 + y2, y1, aw, t)

× u(k−1,	)(xk
−w, ak

−w, y2	[y2v−1 = y1 + y2, y2v = xw], b	[bv = aw], t), (26)

11
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where xk
−v := (x1, . . . , xv−1, xv+1, . . . , xk), ak

−v := (a1, . . . , av−1, . . . , av+1, . . . ak), xk
−v,−w :=

(x1, . . . , xv−1, xv+1, . . . , xw−1, xw+1, . . . , xk), ak
−v,−w := (a1, . . . , av−1, av+1, . . . , aw−1, aw+1, . . . ,

ak), y2	
−(2v−1),−2v := (y1, . . . , y2v−2, y2v+1, . . . , y2	), b	

−v := (b1, . . . , bv−1, bv+1, . . . , b	) and
S−v

k := {1, 2, . . . , v − 1, v + 1, . . , k}. The additional conditions,

u(k,	)(xk, y2	, ak, b	, t) = 0

{
if any xi, y j = 0,∞

if two or more ai or b j = 0,
(27)

are found by using equation (20) in equation (23). Note that the PDE (equation (24)) for each
u(k,	) is ‘closed’ and does not involve other density functions u(k ′ ,	 ′ ). However, the bound-
ary conditions (equations (25) and (26)) couple u(k,	), k + 	 > 1 with u(k+1,	−1), u(k−1,	), or
u(k−2,	+1), preventing direct closure at the level of each set of indices k, 	. Nonetheless, although
the full models for u(k,	), k + 	 > 1 are not closed, the boundary conditions will only involve
u(k ′ ,	 ′ ) such that k′+2	′ � k + 2	, and therefore all u(k,	), k + 	 > 1 can be solved sequentially
after we have found u(1,0), which can be completely determined by solving the PDE

∂u(1,0)

∂t
+

∂u(1,0)

∂a
+

∂(gu(1,0))
∂x

= −β(a, t)u(1,0)(x, a, t) +
1
2
∂2(σ2u(1,0))

(∂x)2
, (28)

with associated boundary conditions specified at a = 0, x = 0, x = ∞

u(1,0)(x, 0, t) = 2n
∞∑

m=0

∞∑
n=1

ρ(0,1,0)
m,n (Y2

e[Y2 = x], B1[B1 = 0], t)

= 2
∫ ∞

x
dz
∫
Λ

da β̃(z, x, a, t)u(1,0)(z, a, t),

u(1,0)(0, a, t) = u(1,0)(∞, a, t) = 0. (29)

The model for u(1,0) is essentially the standard mean-field sizer-timer model [4, 13] but with an
additional diffusion term ∂2(σ2u(1,0))

(∂x)2 representing the random growth rate of each independent
cell. To explicitly illustrate how growth rate stochasticity affects the evolution of the struc-
tured population, we numerically solve equations (28) and (29). We set g(x, a, t) = x/2 and a
constant rate β(x, a, t) = (2 ln 2)−1 describing an exponentially distributed division time with
mean 2 ln 2. We also assume β̃ = β(x, a, t)δ(z/x)/x where δ is a Dirac measure enforcing
symmetric division. The initial condition is u(1,0)(x, a, 0) = x e−2a−x/5. We use the adaptive
spectral method proposed in [22] to numerically compute u(1,0)(x, a, t) for different growth
noise σ = 0,

√
x,
√

2x. We construct the mean cell size

〈x(t)〉 =
∫
Λ2 xu(1,0)(x, a, t)dx da∫
Λ2u(1,0)(x, a, t)dx da

, (30)

and plot its evolution in figure 1.
Given the solution to u(1,0)(x, a, t), we can calculate u(0,1) and then u(2,0), u(1,1), and so on.

How the different u(k,	) are connected through the boundary conditions is illustrated in figure 2,
demonstrating the sequence to follow to fully solve the single-density problem. The differential
equation satisfied by the lowest order momentE[N(t)] requires u(1,0), as indicated by the shaded
blue arrow in figure 2(a). The two sequences traced by the boundary conditions (25) and (26)
are shown in figures 2(a) and (b), respectively. In figure 2(c) we show the combined sequence of
boundary condition calculations to find u(1,2): the equations satisfied by u(1,0) are fully closed so
u(1,0) can be first calculated. In the second step, we use u(1,0) to construct the boundary condition

12
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Figure 1. Mean cell sizes 〈x(t)〉 under symmetric division for different growth rate noise
functions σ = 0,

√
x,
√

2x. After an initial transient, we see that a larger σ leads to larger
average sizes. Even when the mean division times are kept fixed, larger noise in growth
rates lead to broader distributions of cell sizes which increases the mean.

and solve for u(0,1). The third step is to use u(0,1) to construct the boundary condition and solve
for u(2,0). The boundary condition dependences of u(1,0), u(2,0) are indicated by blue arrows. The
fourth and fifth steps are to solve for u(1,1) and u(3,0), whose boundary condition dependences are
indicated by the green arrows. Next, we calculate u(2,1), u(0,2), and finally u(1,2), whose boundary
condition dependences are shown by the red arrows. These higher-dimensional results capture
the stochasticity arising only from noisy growth of each cell (through the diffusive terms in
equations (24) and (28)). When the coefficients satisfy certain conditions, it is also possible to
further reduce the full kinetic models for u(k,	) in equations (24) and (27) to simpler models,
which are derived in previous literatures like [5, 16] by integrating over the size variable x or
age variable a. This is explicitly shown in appendix C.

3.2. Moments of the total population

In addition to the number-weighted densities defined in equation (23), one can also investi-
gate moments of the total cell number N = m + 2n. The expected moments of the total cell
population

E[Nk(t)] =
∞∑

m=0

∞∑
n=0

(m + 2n)kρ(0,0,0)
m,n , (31)

can be used to find, for k = 1

dE[N(t)]
dt

=
∞∑

m,n=0

[
m
∫
Λ2

dX1 dA1 β(A1, t)ρ(1,0,0)
m,n (X1, A1, t)

+ 2n
∫
Λ2

dY2 dB1 β(B1, t)ρ(0,1,0)
m,n (Y2

e , B1, t)

]

=

∫
Λ2

dx da β(a, t)u(1,0)(x, a, t).

(32)

13
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Figure 2. A map of boundary condition interdependences for single-density kinetic the-
ory. In (a) we indicate the dependence of the boundary condition for u(k,	)(xk, ak, y2	, b	, t)
if any ai = 0. The boundary condition for u(k,	) depends on itself and u(k−2,	+1); for
example, u(0,1) is required for the boundary condition for u(2,0), so the red arrow points
from u(0,1) to u(2,0). In (b) we indicate the dependence of the boundary condition for
u(k,	)(xk, ak , y2	, b	, t) if any bj = 0. Here, the boundary condition for u(k,	) depends on
u(k+1,	−1) and u(k−1,	). (c) An example of an explicit sequence of calculations to find u(1,2)

starting from u(1,0).

The differential equation for E[N(t)] does not involve any boundary condition, but depends
on u(1,0). Nonetheless, using the solutions to equations (28) and (29) one can explicitly solve
equation (32) to find E[N(t)].

The demographic stochasticity arising from random birth (and possibly death) times affects
the total population and is most directly summarized by higher total-population correlations.
For example, the differential equation satisfied by E[N2(t)] is found to be

dE[N2(t)]
dt

=

∞∑
m,n=0

[
(2m2 + 4mn + m)

∫
dX1dA1 β(A1, t)ρ(1,0,0)

m,n (X1, A1, t)

+ (8n2 + 4mn + 2n)
∫

dY2 dB1 β(B1, t)ρ(0,1,0)
m,n (Y2

e , B1, t)

]
,

(33)

which cannot be solved even knowing all u(k,	). However, the expectations decouple if β(t) is
independent of age and take on the simple form

dE[Nk(t)]
dt

= β(t)
k−1∑
j=0

(
k
j

)
E[N j+1(t)], (34)

which can then be solved by starting with the solution of E[N(t)]. For general age-dependent
division rates β(a, t), E[Nk>1(t)] cannot be directly computed/approximated without also clos-
ing equation (17). Such equations, as well as those for higher-number moments such as∑

m,nmkρ(h,k,	)
m,n are not closed and form complex hierarchies that need additional assumptions

to close.
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4. Generalizations and extensions

4.1. Incorporation of death

Here, we show how our kinetic theory is modified when an age and size-dependent death,
occurring with rate μ(a, t), is incorporated. By defining

γ(a, t) = β(a, t) + μ(a, t), (35)

the joint survival probabilities S1,m and S2,n in equation (6) are modified by

S̃1,m(t|t′, Am
t′ ) =

m∏
i=1

e−
∫ t

t′γ(Ai
t′ −t′+s,s)ds, S̃2,n(t|t′, Bn

t′) =
n∏

j=1

[
e−

∫ t
t′γ(B j

t′−t′+s,s)ds
]2
. (36)

Following the previous derivations, we find

∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂B j
+

m∑
i=1

∂(g(Xi, Ai, t)ρm,n)
∂Xi

+

2n∑
j=1

∂(g(Y j, B j, t)ρm,n)
∂Y j

= −

⎛
⎝ m∑

i=1

γ(Ai, t) + 2
n∑

j=1

γ(B j, t)

⎞
⎠ ρm,n

+
1
2

m∑
i=1

∂2(σ2(Xi, Ai, t)ρm,n)
(∂Xi)2

+
1
2

2n∑
j=1

∂(σ2(Y j, B j, t)ρm,n)
(∂Y j)2

+ (m + 1)
∫
Λ2

dAm+1dXm+1 μ(Am+1, t)ρm+1,n(Xm+1, Y2n, Am+1, Bn, t)

+
2(n + 1)

m

m∑
i=1

∫
Λ

dx μ(Ai, t)ρm−1,n+1(Xm
−i, Y2n+2[Y2n+1 = x, Y2n+2 = Xi],

Am
−i, Bn+1[Bn+1 = Ai], t), (37)

where the argument of ρm,n in the first two lines is (Xm, Y2n, Am, Bn, t).
The boundary conditions for ρm,n are the same as equations (14) and (15) since only cell

division contributes to the boundary term. Similarly, we can define the marginal distribution
ρ(h,k,	)

m,n (Xh, Y2k+2	
e , Ah, Bk, t) and the higher-dimensional number-weighted densities functions

u(k,	)(xk, y2	, ak, b	, t) in the same way as in equations (17) and (23), respectively. The k = 1,
	 = 0 density obeys

∂u(1,0)

∂t
+

∂(gu(1,0))
∂x

+
∂u(1,0)

∂a
= −(β(a, t) + μ(a, t))u(1,0)(x, a, t) +

1
2
∂2(σ2u(1,0))

(∂x)2
,

(38)

and boundary conditions specified in equation (29).

4.2. Correlated noise in growth rate

In this subsection we consider a model in which the noise in growth rates is correlated across
cells. By defining Zm,2n = (Xm, Y2n) and Cm,2n = (Am, B1, B1, . . . , Bn, Bn) to be the volumes
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and ages of m singlets and n doublets at time t, we can describe the growth rate as

dZm,2n
t = Gm,2n(Zm,2n

t , Cm,2n
t , t)dt +Σm,2n(Zm,2n

t , Cm,2n
t , t)dWp

t , (39)

where Gm,2n ∈ R
m+2n, Σm,2n(Zm,2n

t , Cm,2n
t , t) = (σ)i j ∈ R

(m+2n)×p and Wp
t is a p-dimensional

i.i.d. standard Wiener process [23]. For simplicity, we assume that the ith component of Gm,2n

is gi(Zi
t , Ci

t, t) = g(Zi, Ci, t), indicating that the deterministic part of the growth rate is identical
for all cells. Following our derivation in section 2, we find that ρm,n(Xm, Y2n, Am, Bn, t) satisfies

∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂Bi
+

m∑
i=1

∂(g(t, Xi, Ai)ρm,n)
∂Xi

+

2n∑
j=1

∂(g(t, Y j, B[( j+1)/2])ρm,n)
∂Y j

= −

⎛
⎝ m∑

i=1

β(Ai, t) +
n∑

j=1

2β(B j, t)

⎞
⎠ ρm,n(Xm, Y2n, Am, Bn, t) +

1
2

m+2n∑
s1,s2=1

∂2(Ds1,s2ρm,n)
∂Zs1∂Zs2

,

(40)

where Ds1,s2 =
∑p

	=1σs1,	σs2,	. The boundary conditions for ρm,n are the same as that described
by equations (14) and (15). Similarly, we can define the marginal distribution density
function ρ(h,k,	)

m,n in the same way as in section 3, and it can be verified that the differen-
tial equations as well as the boundary conditions satisfied by ρ(1,0,0)

m,n (X1[X1 = x], A1[A1 =

a], t), ρ(0,1,0)
m,n (X1[X1 = x], A1[A1 = a], t) are the same as those satisfied by ρ(1,0,0)

m,n (X1[X1 =

x], A1[A1 = a], t) and ρ(0,1,0)
m,n (Y1[Y1 = x], B1[B1 = a], t) in equations (17) and (19), although

the differential equations satisfied by ρm,n in equation (40) and in equation (11) are different. If
we further assume that the variance in growth rates for all cells is identical:

∑p
	=1σ

2
i,	 = σ2, ∀ i,

then the equation and boundary conditions for the ‘1-point’ density function u(1,0)(x, a, t) are
identical to those in equations (28) and (29) since correlations in growth rate noise are not
captured by a mean-field description of only one coordinate (x, a). The differences between
correlated and uncorrelated growth noise among cells may arise in the differential equations
for u(k,	)(xk, y	, ak, b	, t), k + 	 � 2.

5. Summary and conclusions

In this paper, we rigorously constructed a kinetic theory for structured populations, in particu-
lar for age- and size-structured cell proliferation models. We considered stochasticity in both
an individual cell’s growth rate (‘intrinsic’ stochasticity) and the cell number fluctuations from
random birth and death event times (‘demographic’ stochasticity). Derivations of the kinetic
theory requires separation of ‘singlet’ and ‘doublet’ populations, as was proposed in [16]. How-
ever, taking into account both size and age dependences, as well as randomness in growth rates
leads to the much more complex computation which we performed here.

One of our main results is the kinetic equations and boundary conditions described by
equations (13)–(15). Marginalized densities are also found to obey more complex equations
that form a hierarchy (equations (17), (19), and (20)). By taking single-density averages over
these equations, we find closed PDEs that govern multi-point density functions (equation (24)).
However, the associated boundary conditions, equation (25), couple density functions of
different dimensions. Nonetheless, density function of all dimensions can be successively
solved starting from the ‘1-point’ density u(1,0)(x, a, t) which obeys equations (28) and (29), a
2 + 1-dimensional second order PDE and boundary condition that is analogous to the classic

16



J. Phys. A: Math. Theor. 54 (2021) 385601 M Xia and T Chou

McKendrick equation but that includes a diffusive size term arising from stochasticity in growth
rates. The explicit equations for the first and second moments of the total population are given
by equations (32) and (33), respectively.

Generalizations and extensions to our basic kinetic theory are also investigated. For
example, we derived the kinetic equations when a Markovian age-dependent death process is
included (equations (29), (37), and (38)). We also considered noise in growth rates that are cor-
related across cells and showed these effects arising in ‘cross-diffusion’ terms in the associated
kinetic (and higher moment) equations.

Our unifying kinetic theory enables one to systematically analyze cell populations at both
the individual and population levels. A full kinetic theory may be useful for studying other pro-
cesses such as failure in multicomponent systems that age and evolve [24]. Further extensions
of our kinetic equations that are feasible are to include spatial distribution [25] or correlations
in growth rates across generations [13]. It is also possible to consider stochasticity for differ-
ent cell division strategies [21]. Finally, efficient numerical methods for solving our kinetic
equations can be developed, for instance in [22], equations similar to equations (28) and (29)
which describe the dynamics of u(1,0) are solved accurately and efficiently.
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Appendix A. Conservation of probability

We now define probability fluxes

Jm,n;m+1,n−1(t) = (m + 1)
∫

dXmdY2n−2 dAm dBn−1
∫
Λ3

dy1 dy2 dsβ̃m+1,n−1(y1 + y2, y1, s, t)

× ρm+1,n−1
(
Xm+1[Xm+1 = y1 + y2], Y2n−2,Am+1[Am+1 = s], Bn−1, t

)
,

Jm,n;m−1,n(t) =
2n
m

∫
dXm dY2n−2 dAm dBn−1

∫
Λ2

dy1 dy2

m∑
i=1

β̃m−1,n(y1 + y2, y1, Ai, t)

× ρm−1,n
(
Xm

−i, Y2n[Y2n−1 = Xi, Y2n = y1 + y2],Am
−i, Bn[Bn = Ai], t

)
,

Jm,n;m′ ,n′(t) = 0, if m + 2n − m′ − 2n′ 	= 1. (41)

Jm,n;m′ ,n′(t)dt is the probability flux within time [t, t + dt] from state (m′, n′) to state (m, n) aris-
ing from from cell division. When dt is sufficiently small, the probability that more than one
cell divides during [t, t + dt] is o(dt), which is negligible, allowing us to set Jm,n;m′ ,n′(t) = 0 if
m + 2n − m′ − 2n′ 	= 1. We now verify the conservation of probability flux
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Jm−1,n+1;m,n(t) + Jm+1,n;m,n(t)

=

∫
dXm dY2n dAm dBn

⎛
⎝ m∑

i=1

βm,n(Ai, t) +
n∑

j=1

2βm,n(B j, t)

⎞
⎠ ρm,n

=

∫
dXm dY2n dAm dBn

(
mβm,n(Am, t) + 2nβm,n(Bn, t)

)
ρm,n, (42)

where ρm,n = ρm,n(Xm, Y2n, Am, Bn, t). The first term is

Jm−1,n+1;m,n(t) = m
∫

dXm−1 dY2m dAm−1 dBn

∫
Λ3

dy1 dy2 dAm

β̃m,n(y1 + y2, y1, Am, t)ρm,n(Xm[Xm = y1 + y2], Y2n, Am, Bn, t)

= m
∫

dXm−1 dY2n dAm−1 dBn
∫
Λ2

dAm dy
∫ y

0
ds

β̃m,n(y, s, Am, t)ρm,n(Xm[Xm = y], Y2n, Am, Bn, t)

= m
∫

dXm−1 dY2n dAm−1 dBn

∫
Λ2

dAm dXm βm,n(Am, t)ρm,n, (43)

which is exactly the first term on the right-hand side of equation (42). The second term

Jm+1,n;m,n(t) =
2n

m + 1

∫
dXm+1 dY2n dAm+1 dBn−1

∫
Λ2

dy1 dy2

×
m+1∑
i=1

β̃m,n(y1 + y2, y1, Ai, t)

× ρm,n
(
Xm+1

−i ,Y2n[Y2n−1 = Xi, Y2n = y1 + y2], Am+1
−i , Bn[Bn = Ai], t

)
=

2n
m + 1

m+1∑
i=1

∫
dXm+1 dY2n−2 dAm+1 dBn−1

∫
Λ

dy
∫ y

0
ds β̃m,n(y, s, Ai, t)

× ρm,n
(
Xm+1

−i , Y2n[Y2n−1 = Xi, Y2n = y],Am+1
−i , Bn[Bn = Ai], t

)
= 2n

∫
dXm dY2n dAm dBn βm,n(Bn, t)ρm,n,

(44)

which is precisely the second term on the right-hand side of equation (42). We have thus verified
that the probability flux out of state (m, n) due to cell division is the sum of probability currents
into (m − 1, n + 1) and into (m + 1, n). Summing up over m and n, we obtain for m + n > 0

∞∑
m,n=0

(
Jm−1,n+1;m,n(t) + Jm+1,n;m,n(t)

)

=

∞∑
m,n=0

∫
dXm dY2n dAm dBn

(
mβm,n(Am, t) + 2nβm,n(Bn, t)

)
ρm,n.

(45)

Finally, it is readily observed that
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∞∑
m,n=0

∫
dXm dY2n dAm dBn ∂ρm,n

∂t

=

∞∑
m,n=0

n∑
j=1

∫
dXm dY2n dAm dBn

− j ρm,n(Xm, Y2n, Am, Bn[B j = 0], t)

−
∞∑

m,n=0

∫
dXm dY2n dAm dBn

⎛
⎝ m∑

i=1

βm,n(Ai, t) + 2
n∑

j=1

βm,n(B j, t)

⎞
⎠ ρm,n

=

∞∑
m=1

∞∑
n=0

(Jm,n;m−1,n − Jm−1,n+1;m,n) −
∞∑

m,n=0

Jm+1,n;m,n +

∞∑
m=0

∞∑
n=1

Jm,n;m+1,n−1 = 0.

(46)

Therefore, we have verified that

∞∑
m=0

∞∑
n=0

∫
dXm dY2n dAm dBnρm,n(Xm, Y2n, Am, Bn, t),

is time-independent.

Appendix B. Explicit expressions for u(k,�)

Below, we display the explicit expressions of u(k,	) in terms of ρ(h,k,	)
m,n for k + 	 � 2:

u(1,0)(x, a, t) =
∞∑

m,n=0

mρ(1,0,0)
m,n (X1 = x, A1 = a, t) +

∞∑
m,n=0

2nρ(0,1,0)
m,n (Y2

e[Y2 = x], B1 = a, t),

(47)

u(0,1)(y1, y2, b1, t) =
∞∑

m,n=0

2nρ(0,0,1)
m,n (Y1 = y1, Y2 = y2, B1 = b1, t), (48)

u(1,1)(x1, y1, y2, a1, b1, t)

=

∞∑
m,n=0

4n(n − 1)ρ(0,1,1)
m,n (Y4

e[Y2 = x1, Y3 = y1, Y4 = y2], B1 = a1, B2 = b1, t)

+

∞∑
m,n=0

2mnρ(1,0,1)
m,n (X1 = x1, Y1 = y1, Y2 = y2, A1 = a1, B1 = b1, t),

(49)

u(2,0)(x1, x2, a1, a2, t)

=

∞∑
m,n=0

m(m − 1)ρ(2,0,0)
m,n (X1 = x1, X2 = x2, A1 = a1, A2 = a2, t)

+

∞∑
m,n=0

2mnρ(1,1,0)
m,n (X1 = x1, A1 = a1, Y2

e[Y2 = x2], B1 = a2, t) (50)
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+

∞∑
m,n=0

2mnρ(1,1,0)
m,n (X1 = x2, A1 = a2, Y2

e[Y2 = x1], B1 = a1, t)

+
∞∑

m,n=0

4n(n − 1)ρ(0,2,0)
m,n (Y4

e[Y2 = x1, Y4 = x2], B1 = a1, B2 = a2, t),

u(0,2)(y1, y2, y3, y4, b1, b2, t) =
∞∑

m,n=0

4n(n − 1)ρ(0,0,2)
m,n (Y4 = [y1, y2, y3, y4], B2 = [b1, b2], t).

(51)

Appendix C. Reduction to simpler models

Besides the general marginalizations we have considered (equations (17) and (23)), we can
define other useful quantities by e.g. integrating over all volumes or all ages. Under some
additional assumptions these additional integrations reduce the full kinetic theory to sim-
pler, known models. For example, if the solution u(k,	) of equations (24) and (27) satisfies
lim

xi→∞
∂(σ2u(k,	))

∂xi
= lim

y j→∞
∂(σ2u(k,	))

∂y j
= 0 for any i, j, integrating u(k,	)(xk, y2	, ak, b	, t) over all sizes

xk and y2	 yields

u(k,	)
a (ak, b	, t) :=

∫
Λk+2	

dxk dy2	 u(k,	)(xk, y2	, ak, b	, t) (52)

which satisfies

∂u(k,	)
a (ak, b2	, t)

∂t
+

k∑
i=1

∂u(k,	)
a

∂ai
+

	∑
j=1

∂u(k,	)
a

∂b j
= −

⎛
⎝ k∑

i=1

β(ai, t) +
	∑

j=1

2β(b j, t)

⎞
⎠ u(k,	)

a , (53)

with corresponding boundary conditions

u(k,	)
a (ak[av = 0], b	, t) = 2

∫
Λ

daβ(a, t)u(k,	)
a (ak[ak = a], b	, t)

+ 2
k∑

w=1,	=v

β(aw, t)u(k−2,	+1)
a (ak

−v,−w, b	+1[b	+1 = aw], t), (54)

u(k,	)
a (ak, b	[bv = 0], t) = 2

∫
Λ

daβ(a, t)u(k+1,	−1)
a (ak+1[ak+1 = a], b	

−v , t)

+ 2
k∑

w=1

β(aw, t)u(k−1,	)
a (ak

−w, b	[bv = aw], t), (55)

and u(k,	)
a (ak, b	, t) = 0 if two or more ai = 0 or bj = 0. This model describes age-structured

cell populations similar to that discussed in [16].
On the other hand, integrating over age variables a, b defines size-dependent weighted

densities

u(k,	)
s (xk, y2	, t) :=

∫
Λk+	

dak db	 u(k,	)(xk, y2	, ak, b	, t). (56)
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In this case, if β̃, β, g, σ do not depend on a, n(k,	)
s (xk, y2	, t) is found to obey

∂u(k,	)
s

∂t
(xk, y2	, t) +

k∑
i=1

∂(g(xi, t)u(k,	)
s )

∂xi
+

2	∑
j=1

∂(g(y j, t)u(k,	)
s )

∂y j

= −
k∑

i=1

(k + 2	)β(t)u(k,	)
s +

1
2

k∑
i=1

∂2(σ2(xi, t)u(k,	)
s )

(∂xi)2
+

1
2

2	∑
j=1

∂2(σ2(y j, t)u(k,	)
s )

(∂y j)2

+ 2
k∑

v=1

∫
Λ

ds β̃(xv + s, xv , t)u(k,	)
s (x̃k[x̃v = xv + s], y2	, t)

+ 2
k∑

v=1

k∑
w=1,	=v

∫
Λ

ds β̃(xw + s, xw, t)u(k−2,	+1)
s (xk

−w,−v, y2	+1[y2	+1 = xw, y2	+2 = xv + s], t)

+ 2
	∑

v=1

β̃(y2v−1 + y2v, y2v, t)u(k+1,	−1)
s (xk+1[xk+1 = y2v−1 + y2v], y2	

−(2v−1),−2v, t)

+ 2
	∑

v=1

k∑
w=1

β̃(y2v−1 + y2v, y2v, t)u(k−1,	)
s (xk

−w, ỹ2	[ỹ2v−1 = y2v−1 + y2v , ỹ2v = xw], t), (57)

where x̃k shares the same components with xk except for the vth element and ỹ2	 shares 2	− 2
common components with y2	 except for the (2v − 1)th and (2v)th elements, as indicated by the
replacements [. . .] following each variable. By integrating over age, the boundary conditions
in equations (25) and (26) for newborn cells have been assimilated into equation (57). The
remaining conditions are

u(k,	)
s (xk[xi = 0], y2	, t) = u(k,	)

s (xk[xi = ∞], y2	, t) = 0,

u(k,	)
s (xk, y2	[y j = 0], t) = u(k,	)

s (xk, y2	[y j = ∞], t) = 0.
(58)

Notice that if k = 1, 	 = 0, the last three terms on the rhs of equation (57) vanish and the
equation reduces to the size-structured PDE model [5] except for the additional diffusion term
describing growth noise.
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