The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue

Julian Landaw, Xing-Ming Yang, Peng-Yi Huang Cen, and Zhi-De Zha
18 February 2021 | https://doi.org/10.1152/ajpheart.00608.2020

ABSTRACT

Spiral wave reentry as a mechanism of lethal ventricular arrhythmias has been widely demonstrated in animal experiments and recordings from human hearts. It has been shown that in structurally normal hearts, spiral waves are available, breaking up into multiple wavelets via dynamical instabilities. However, many of the second-generation action potential models give rise only to stable spiral waves, raising issues regarding the underlying mechanisms of spiral wave breakup. In this study, we carried out computer simulations of two-dimensional homogeneous tissues using five ventricular action potential models. We show that the transient outward potassium current (I_{to}) allows it if not required plays a key role in promoting spiral wave breakup in all five models. At the maximum conductance of I_{to}, increases, it first promotes spiral wave breakup and then stabilizes the spiral waves. In the absence of I_{to}, spending the L-type calcium current can prevent spiral wave breakup; however, with the same speedup kinetics, spiral wave breakup can be promoted by increasing I_{to}, increasing G_{to} promotes single cell dynamical instabilities, including action potential duration alternans and chaos, and increasing G_{to}, further suppresses these action potential dynamics. These cellular properties agree with the observation that increasing I_{to} first promotes spiral wave breakup and then stabilizes spiral waves in tissue. Implications of our observations to spiral wave dynamics in the real hearts and action potential morphology improvements are discussed.

NEW & NOTEWORTHY

Spiral wave breakup manifesting as multiple wavelets is a mechanism of ventricular fibrillation. It has been known that spiral wave breakup in cardiac tissue can be caused by a deeply steeped action potential duration restitution curve, a property mainly determined by the recovery of L-type calcium current. Here, we show that the transient outward potassium current (I_{to}) is another current that plays a key role in spiral wave breakup. First, spiral waves can be stable for low maximum maximum G_{to}. Conductance for breakup occurs for intermediate maximum G_{to}. Moreover, I_{to} present in normal hearts of many species and required for Brugada syndrome. It may play an important role in the spiral wave stability and arrhythmogenesis under both normal condition and Brugada syndrome.

Access content

To read the full text, please use one of the options below to sign in or purchase access.

Sponsor

Supporting Member

Institutional login

OpenAthens

Personal login

Purchase

Access and purchase options for all versions of this article for 24 hours

$35.00

Purchase access to all versions of this article for 24 hours

We recommend

Monodomain cellular excitation and spiral wave reentry in simulated cardiac tissue

Papadopoulos, C., Bátora, J., & Tadic, Z.
19 October 2018 | https://doi.org/10.1152/ajpheart.00181.2018

Cardiovascular electrophysiological properties and stability of ventricular spiral waves: a simulation study

Cavallaro, G., & Salvi, E.
25 May 2010 | https://doi.org/10.1152/ajpheart.00427.2009

Effects of intracellular calcium on spiral wave stability

Papadopoulos, C., Bátora, J., & Tadic, Z.
23 November 2018 | https://doi.org/10.1152/ajpheart.00176.2018

Nonlinear spiral dynamics as the source of unidirectional wavefronts: Langendorff-perfused rabbit hearts

Chen, Q., Fager, H., & Rudy, Y.
25 May 2010 | https://doi.org/10.1152/ajpheart.00428.2009

Rearry in hypertrophic cardiac tissue described by the low-flux retrograde action potential model

Fager, H., & Rudy, Y.
20 November 2008 | https://doi.org/10.1152/ajpheart.00510.2008

Spiral waves and instability in 3D reaction-diffusion systems

Haken, H.
1975 | https://doi.org/10.1038/25119

Liberation of a patient spiral wave by a pacing intervention

Hauswirth, F., Druck, T., & Frick, O.
2006 | https://doi.org/10.1111/j.1540-8188.2006.00475.x

For patients with idiopathic hypertrophic cardiomyopathy, eliminating autonomic activity with median frequency may improve clinical measures first noted in idiopathic ventricular fibrillation

Kneeland, J. B., St Clair, R. A., & Oliva, R.
2012 | https://doi.org/10.1161/HYPERTENSIONAHA.111.191535

Termination of spiral waves during cardiac fibrillation risk in shocked point plane versus tissue

Kneeland, J. B., Harken, A. H., & Oliva, R.
2009 | https://doi.org/10.1161/CIRCULATIONAHA.109.194358

The effects of fibrillating blood on wave dynamics in a mathematical model of aggregated tissue

Kneeland, J. B., & Oliva, R.
2010 | https://doi.org/10.1161/CIRCULATIONAHA.110.989348

STAY CONNECTED

AMERICAN PHYSIOLOGICAL SOCIETY JOURNALS

Journal of Applied Physiology

Journal of Comparative Physiology

Journal of Cellular and Molecular Physiology

Journal of Clinical Investigation

JOURNAL WINNERS

F. E. Bloom Award

C. S. Best Award

H. H. Mitchell Award

Award for Excellence

SCIENCE COMMUNITY

Fellows

Scientists

Scientists

TREND

Twitter

Facebook

LinkedIn

YouTube

BLOGS

AMERICAN PHYSIOLOGICAL SOCIETY JOURNALS

American Journal of Physiology

American Journal of Physiology-Cell Physiology

American Journal of Physiology-Heart and Circulatory Physiology

American Journal of Physiology-Regulatory, Integrative and Exercise Physiology

American Journal of Physiology-Developmental and Comparative Physiology

American Journal of Physiology-Pharmacology, Toxicology and Pharmacology

American Journal of Physiology-Renal Physiology

American Journal of Physiology-Endocrinology, Diabetes and Metabolism

American Journal of Physiology-Lung Cellular and Molecular Physiology

American Journal of Physiology-Gastrointestinal and Liver Physiology

American Journal of Physiology-Cell Physiology

American Journal of Physiology-Endocrinology and Metabolism

American Journal of Physiology-Renal Physiology

American Journal of Physiology-Cell Physiology

Copyright © 2021 the American Physiological Society

Published in print 1 February 2021

Published online 10 February 2021

Accepted 22 December 2020

Received 23 July 2020

Correlation of circulating cortisol activity with medical therapy in patients with endogenous hypercortisolism

Corcept Therapeutics

2005

Fibrillation via shock-induced phase resetting.

Med Mech Mechanica & Astronomica

2005

Spiral waves and instability control in 3D reaction-diffusion systems

Advances in Physiology Education

2004

Keywords