Modelling Bacteria-enhanced Thermal Tolerance in Marine Phytoplankton

Aarshi Jain1, Colin T. Kremer1
1University of California, Los Angeles

Questions? jainaarshi2000@ucla.edu

Introduction

Phytoplankton (or algae) fuel marine food webs, regulate major nutrient cycles, and produce about 50% of Earth’s oxygen. Warming oceans will affect algal growth, productivity, and geographic ranges. However, few predictive models consider effects of species interactions, especially mutualisms. Recent lab studies show algae-bacteria interactions enhance algal thermal tolerance.1,2 We modeled this mutualism to study:

1. How stable is this ecological interaction across temperatures?
2. What mechanisms protect this mutualism from collapse via the evolution of cheaters?

Algae-Bacteria Model

Changes in algae (A) and bacteria (B) biomass depend on their temperature (T) dependent growth and death rates. The mutualists (A & B) synthesize photosynthetic (C) and cobalamin (B12) for their partner’s benefit, yet compete for nitrogen (N).

\[A' = (\mu_A [B_{12}, N, T] + \mu_B [N, T]) - m_A(T) \]
\[B' = (\mu_B [C, N, T] - m_B(T)) \]
\[N' = \rho (N_{\text{max}} - N) - (\mu_A A + \mu_B B) \]
\[B_{12}' = \rho (B_{12\text{in}} - B_{12}) - (\mu_A A + s_{B12} B) \]
\[C' = \rho (C_{\text{in}} - C) - \mu_B B + s_{C} A \]

Equilibrium Abundance (logged)

At high temperatures, both species were limited by the nutrients provided by their partner, highlighting mutualism’s importance in warming oceans.

Evolutionary Instability

Prior models3 ignore the costs of mutualism. We explored two trade-offs linking growth μ to substrate synthesis s, governed by ϕ which ranged between 0 (only growth) and 1 (only synthesis).

\[s \text{ linked to } \mu \]
\[s = (1 - \phi) s \]
\[s \text{ linked to } \mu - m \]
\[s = (1 - \phi) s \]

Then we studied the effects of selection on optimal ϕ using a quantitative genetics approach:4

Private substrate exchange

Addressing limitations of our initial work, we built a second model of this interaction, where:

- Costs of substrate production and sharing are explicit (and tied to internal nutrient stores)
- Substrates can be exchanged privately and/or publicly between algae and bacteria

We predicted this would stabilize the evolutionary dynamics of the mutualism. Key relationships in the new model are shown here:

Temperature Dependence

We analyzed this ODE model using a quasi-equilibrium framework5 to investigate how temperature changes equilibrium abundances and which nutrients limit each mutualist.

Protection from Cheaters

Private substrate exchange prevents non-participating members from accessing nutrients shared by mutualists6. We explored how the degree of coupling, governed by Δ, affected the evolution of nutrient sharing (ϕ).

Irrespective of Δ, only A-B pairs with moderate s survived. Low s led to unmet nutrient requirements whereas high s resulted in overinvestment in mutualism at the cost of growth.

Conclusions

- Algae species that depend on METH should rely on close associations with bacteria, especially at high temperatures.
- Typical models of microbial mutualisms neglect costs and are evolutionarily unstable.
- Tracking costs and allowing partners to exchange substrate privately stabilizes these interactions.