Polygenic risk scores and gene expression patterns link developmental preadipocyte marker genes to age-obesity interactions

ASHA KAR1,2, Huiling Huang2,3, Milena Deal2, Kristina M. Garske2, Amogha Koka2, Janet S. Sinsheimer2,3,4, Päivi Pajukanta2,3,5

1BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA, 2Department of Human Genetics, David Geffen School of Medicine at UCLA
3Bioinformatics Interdepartmental Program, UCLA, 4Department of Computational Medicine, David Geffen School of Medicine at UCLA, 5Institute for Precision Health at UCLA

REFERENCES

BACKGROUND

- **Adipogenesis** is the process during which fat cells develop by differentiation from preadipocytes
- At the genetic level, transcription factors such as PPARy and CEBP regulate differentiation
- *Aging* and *Obesity* both result in:
 - Impaired adipogenesis → inflamed, dysfunctional adipocytes
 - Altered expression of differentiating factors and their co-regulators
 - Most studies focus on either age or obesity; interactions between obesity and aging are largely unexplored

METHODS

1) **Gene Identification**
 - Use adipose snRNA-seq to identify and test unique preadipocyte marker genes for differential expression (DE) by age in preadipocytes
2) **Functional Analyses**
 - Examine genes DE by age for enrichment of biological processes and functional pathways using Webgestalt
3) **Regional Polygenic Risk Scores**
 - Perform non-age adjusted GWAS for BMI
 - Construct polygenic risk score (PRS) models using GWAS summary statistics of variants within ~500 kb of genes (Regional PRS)
 - Assess significance of reported coefficients in model: BMI ~ Age + PRS + PRS:Age
4) **Longitudinal DE Analyses**
 - Perform DE analyses on genes using adipose bulk RNA seq-data across 14 days over 6 timepoints from adipogenesis cell-line experiment

RESULTS

- 50 preadipocyte marker genes are DE by age in preadipocytes
- 48 out of 50 are upregulated in preadipocytes with age

DE Genes are enriched for developmental processes

- 8 out of top 10 pathways are related to development or differentiation
- Regulation of cell differentiation ranks first in significance

DISCUSSION

- 50 developmental preadipocyte marker genes are involved in the aging process in adipose tissue
- Most of their expression levels increase with age
- Different patterns of gene expression during and after adipogenesis can suggest these genes play many roles in fat cell production
- Similar peaks in impulse-models suggest genes are in common pathways, coexpressed, or regulated by same TFs
- Obesity affects these genes → disruption in aging
 - In obese individuals, variants nearby these genes notably interact with age to reduce BMI
 - This contrasts what is typically observed - most variants usually interact with age in lean individuals

REFERENCES

ACKNOWLEDGEMENTS

Thank you to
BIG Summer 2022
UCLA SPUR

Pajukanta Lab: Dr. Päivi Pajukanta, Marcos Alvarez, Tony Lee, Sanida Das, Huiling Huang, Milena Deal, Zaad Jamal, Xiangming Guo, Nicholas Darci Maher
Dr. Janet Sinsheimer