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Abstract

Neurons are connected by complex branching processes - axons and dendrites - that

collectively process information for organisms to respond to their environment.

Classifying neurons according to differences in structure or function is a fundamental

part of neuroscience. Here, by constructing new biophysical theory and testing against

our empirical measures of branching structure, we establish a correspondence between

neuron structure and function as mediated by principles such as time or power

minimization for information processing as well as spatial constraints for forming

connections. Specifically, based on these principles, we use undetermined Lagrange

multipliers to predict scaling ratios for axon and dendrite sizes across branching levels.

We test our predictions for radius and length scale factors against those extracted from

July 1, 2021 1/32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452445
http://creativecommons.org/licenses/by/4.0/


neuronal images, measured for cell types and species that range from insects to whales.

Notably, our findings reveal that the branching of axons and peripheral nervous system

neurons is mainly determined by time minimization, while dendritic branching is mainly

determined by power minimization. Further comparison of different dendritic cell types

reveals that Purkinje cell dendrite branching is constrained by material costs while

motoneuron dendrite branching is constrained by conduction time delay over a range of

species. Our model also predicts a quarter-power scaling relationship between

conduction time delay and species body size, which is supported by experimental data

and may help explain the emergence of hemispheric specialization in larger animals as a

means to offset longer time delays.

Author summary

Neurons are the basic building blocks of the nervous system, responsible for information

processing and communication in animals. They consist of a centralized cell body and

two types of processes - axons and dendrites - that connect to one another. Previous

studies of the differences among neuron cell types have focused on comparisons of either

structure or function separately, without considering combined effects. Based on theory

for structure of and flow through biological resource distribution networks, we develop a

new model that relates neuron structure to function. We find that differences in

structure between axons and dendrites as well as between dendrites of different cell

types can be related to differences in function and associated evolutionary pressures.

Moreover, using our mathematical model, we find that the conduction time delay of

electrical signals systematically varies with species body size - neurons in larger species

have longer delays - providing a possible explanation for hemispheric specialization in

larger animals.

Introduction 1

Neurons are fundamental structural units of information processing and communication 2

in animals. They are made up of a centralized cell body, called the soma, and two types 3

of extending processes, axons and dendrites. These processes transfer information 4
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between cells in the form of electrical and chemical signals. Axons generally conduct 5

signals from the cell body to the synapses, where they connect with the dendrites of 6

other neurons. These dendrites generally conduct signals from the synapse to the cell 7

body. The processes form synaptic connections with one another in complex patterns. 8

Different types of cells exhibit diverse morphological forms - some neurons have no 9

axons or dendrites, while some have long axon processes that extend over meters, and 10

others have vast dendritic trees that branch extensively to fill two- or three-dimensional 11

space, corresponding to the mathematical and modeling concept known as space-filling 12

[Johnston and Wu, 1995]. 13

Seminal studies in neuroscience characterized morphological differences across cell 14

types. For instance, Santiago Ramón y Cajal’s ”Histology of the Nervous System of 15

Man and Vertebrates” is considered to be the founding document of neurobiology [Zeng 16

and Sanes, 2017], consisting of detailed drawings and comparative descriptive analysis of 17

neuron morphology across different cell types and species [Ramón y Cajal, 1995]. 18

Modern techniques and devices have allowed for more precise quantitative 19

measurements at the single-cell level. Indeed, recent work has established quantitative 20

morphological distinctions across different cell types, focusing on quantities such as 21

mean dendritic length, total dendritic length, and number of branching points [Gertler 22

et al., 2008 and Lu and Yang, 2017]. 23

As vast as the structural diversity is, there is an even greater diversity of functional 24

properties [Johnston and Wu, 1995]. Within sensory, motor, and interneurons, there are 25

different types of neurotransmitters and receptors that affect the nature of signal 26

processing [Squire et al, 2013]. A major future goal of neuron cell-type classification is 27

to establish a correspondence between morphological and functional properties [Zeng 28

and Sanes, 2017]. Here, we seek to address the question of how structural properties 29

relate to neuron function, and whether there are evolutionary driving forces that dictate 30

how morphology is optimized by biological principles or pressures. 31

A promising approach to the relationship between neuron structure and function is 32

biological scaling theory, as it has previously been applied to understand patterns in the 33

branching structures of biological resource distribution networks. Generally, a biological 34

property Y scales with body mass M as Y = Y0M
b, where Y0 is a proportionality 35

constant and b is a scaling exponent [West et al., 1997]. An example is metabolic rate, 36
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scaling with body mass to the power 3/4, a result known as Kleiber’s Law [Kleiber, 37

1932]. 38

West, Brown and Enquist (WBE) proposed that Kleiber’s law and other biological 39

scaling laws arise because biological organisms are sustained by resource distribution 40

branching networks that are optimized to supply all parts of the body [West et al., 41

1997]. Past work on cardiovascular networks has employed WBE theory to derive 42

scaling laws for the vessel radius and length as a result of minimizing power loss for 43

fluid flow along with space filling in order to fuel whole organism metabolism [Savage et 44

al., 2008]. Moreover, previous results have shown a quarter-power allometric scaling 45

relationship between cell size and body size in a range of cell types in mammals, 46

including neurons [Savage et al., 2017]. 47

Single neuron cells have structural similarities to cardiovascular networks, with 48

centralized cell bodies analogous to the heart and branching processes analogous to 49

blood vessels. We propose that the branching structures of axons and dendrites result 50

from optimizing organismal function subject to biophysical constraints. We consider 51

biophysical properties of neurons that might play an important role in governing 52

structure, using data to guide our evaluation of the relative importance of different 53

functions. 54

An important evolutionary function of neuronal networks involves transferring large 55

amounts of information between brain regions in a short amount of time [Laughlin and 56

Sejnowski, 2003]. On the individual cell level, the various morphological forms observed 57

in neurons are various adaptations of basic principles such as limiting signal time delay 58

[Ramón y Cajal, 1995]. Thus, it is important to consider conduction time as an 59

important design principle that governs neuronal branching structures. 60

Indeed, foundational work by Cuntz et al. has used graph theory to quantify and 61

study how connections among axons and dendrites determine conduction time delay. 62

This approach focuses on the tradeoff between wiring costs and conduction time, 63

represented as path length [Cuntz et al., 2010]. The results formalize the laws set forth 64

by Ramon y Cajal, leading to a graph-theoretical algorithm that generates biologically 65

accurate synthetic axonal and dendritic trees [Cuntz et al., 2011]. 66

However, a key aspect absent from this formalism is that it does not include the 67

diameter of axonal and dendritic fibers nor does it incorporate the principle of 68
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space-filling. Axon and dendrite radius relate to resistance and thus signaling speed and 69

conduction time. Space-filling constrains the possible connections, branching, and 70

network structure of neurons. Consequently, in this paper we take a similar approach to 71

Cuntz et al. [Cuntz et al., 2010, Chklovskii, 2004] but now incorporate the dependence 72

of conduction time on fiber radius and myelination - insulation that surrounds the fiber 73

and facilitates signal transduction [Squire et al., 2013] - along with constraints of 74

space-filling. 75

As the speed of information processing increases, energy loss due to dissipation also 76

increases [Laughlin and Sejnowski, 2003]. Signaling in the brain consumes a substantial 77

amount of energy [Attwell and Laughlin, 2001], which suggests that energy expenditure 78

is another important factor constraining the design. Moreover, the relationship between 79

metabolic rate and conduction time plays an important role in determining axon 80

function in species across scales of body size [Wang et al., 2008] The WBE framework 81

relies on the assumption that resource distribution networks are optimized such that the 82

energy used to transport resources is minimized [West et al., 1997], specifically, by 83

minimizing power lost to dissipation in small vessels [Savage et al., 2008]. 84

Building on biological and physical principles that constrain electrophysiological 85

signaling and information processing in neurons, we build models that predict a suite of 86

neuron morphologies based on which biological or physical principle is under the 87

strongest selection or pressure. Our model includes both conduction time and energy 88

efficiency while also incorporating additional factors set forth by Ramón y Cajal’s laws 89

such as the material costs and space filling [Ramón y Cajal, 1995]. We make theoretical 90

predictions for how branch radius and length change across branching generation for 91

both axons and dendrites. We compare these predictions to our empirically measured 92

data to make conclusions about the functional basis for morphological differences 93

observed across cell types. We also use this model to predict how conduction time delay 94

in neurons changes with neuron size, another prediction that is supported by empirical 95

data. 96

July 1, 2021 5/32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452445
http://creativecommons.org/licenses/by/4.0/


Theory 97

Model 98

Because conduction time delay and power usage are fundamental and costly for 99

information processing in neurons, we develop a mathematical objective function to 100

minimize them [Boyd and Vandenberghe, 2004]. Evolutionary pressures and 101

developmental processes shape branching networks and materials (such as myelination) 102

to achieve this. 103

Equation 1 is a general form of our objective function. The biophysical constraints 104

are represented as arbitrary functions and added to the expressions to be minimized, 105

allowing us to use the method of undetermined Lagrange multipliers to optimize this 106

function. 107

F = αPTOT + (1 − α)TTOT +
∑
i

λifi(rk, lk, k, n, d) (1)

Here, PTOT is the power lost due to dissipation, TTOT is the time delay for a signal 108

travelling across the network, r is the branch radius, l is the branch length, k is the 109

branching generation of the network (with 0 being the trunk and N being the tips), N is 110

the total number of levels of the network, n is the branching ratio, M is the mass of the 111

neuron process, and d is the dimension of space into which the neuron processes project. 112

The branching ratio, n, is equal to 2 for a bifurcating network. We use optimization 113

methods to calculate scaling relationships between the radius and length of successive 114

branches, rk+1

rk
and lk+1

lk
, as shown in Figure 1. 115

In Equation 1, the first term is the power loss due to dissipation, given by 116

PTOT =
∑N
k=0

lk
r2kn

k . For a neuronal network, we define the power loss by the equation, 117

P = I20Rnet, where I0 is the ionic current and Rnet is the resistance to current flow in 118

the network. Axons and dendrites can be approximated as wires through which current 119

flows and encounters resistance from the neuron fiber. The resistance is given by 120

Rk = ρlk
Ak

, where Ak is the cross sectional area of the wire, and lk is the length of the 121

segment at that level. The parameter ρ is the intrinsic resistivity of the axon or 122

dendrite, and we are assuming that ρ is constant, meaning that the material is uniform 123
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Fig 1. A hierarchical branching network A visual depiction of the successive
branching levels of a network and the quantities of interest alongside an image of a
mouse cerebellar Purkinje neuron and its dendritic branching structure. This image was
obtained using confocal microscopy and Lucifer yellow fluorescent dye. We have
cropped this image available on CellImageLibrary.Org, distributed by Maryann
Martone, Diana Price, and Andrea Thor [Martone et al., 2002].

[Johnston and Wu, 1995]. Approximating axons and dendrites as cylinders, the cross 124

sectional area is πr2k for level k, and the resistance is Rk = ρlk
πr2k

. Following standard 125

practice, we have absorbed all physical constants into the Lagrange constants, and the 126

magnitude of these terms do not affect the theoretical predictions. 127

The second term represents conduction time delay, TTOT =
∑N
k=0

lk

r
1
2
+ε

k

, and arises 128

because the average velocity of a signal along a single branch is v̄ = lk/tk, where tk is 129

the time delay. We can solve this expression for tk and sum 1
v over the length of each 130

branch [Ringo et al., 1994]. At each generation, we consider a single branch to denote 131

the total path length of a signal, and we calculate the total conduction time delay by 132

summing the time delays for single branches across all N generations. The parameter ε 133

describes the degree of myelination. Previous work has shown that the conduction speed 134

is proportional to the square root of the diameter for an unmyelinated fiber [Hodgkin, 135

1954], and proportional to the diameter for a myelinated fiber [Rushton, 1951]. Thus, an 136

ε value of 0 corresponds to an unmyelinated fiber, and a value of 1
2 corresponds to a 137

myelinated fiber. 138

We can switch between models that optimize either conduction time or power usage 139

by varying α between 0 and 1, corresponding to the following two equations. 140
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T =
N∑
k=0

lk

r
1
2+ε

k

+ λ
N∑
k=0

nkr2klk + λmmc +
N∑
k=0

λkn
kld (2)

P =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

nkr2klk + λmmc +
N∑
k=0

λkn
kld (3)

In these two equations, the governing optimization principle (first term) is 141

constrained by brain region volume (second term), neuron size (third term), and space 142

filling (fourth term). These quantities are held constant during the optimization. The 143

last constraint comes from the fact that a resource distribution network must feed every 144

cell in the body. Each branch in a given level of the network feeds a group of cells called 145

the service volume, and the total service volume at each level is preserved. The service 146

volumes vary in proportion to ldk, so the total volume is proportional to nkldk [Savage et 147

al., 2008]. We assume that the branching ratio is constant, so the number of vessels at 148

level k is nk. We can define the total volume as
∑N
k=0 n

kπr2klk, based on the 149

assumption that the projections are cylindrical and branches are symmetric. We absorb 150

the constant π into the Lagrange multiplier λ. The term that describes size, mc, is the 151

mass of the cell. Although our formulation of energy consumption in this model relates 152

to the power loss due to dissipation in signalling, a significant portion of energy 153

consumption in neurons is involved in maintaining the resting membrane potential 154

[Attwell and Laughlin, 2001]. This energy consumption is a per-volume quantity [Wang 155

et. al., 2008], as it depends on the energy required by the sodium-potassium pump, 156

which increases with increasing surface area of the neuron [Attwell and Laughlin, 2001]. 157

Thus, the energetic cost of maintaining the resting membrane potential is captured in 158

the total network volume. 159

In the section on the allometry calculation, we show that minimizing power (Eq. 3) 160

subject to a conduction time delay constraint leads to a 1
4 -power scaling between 161

conduction time delay and neuron size. This objective function can be described by the 162

following equation: 163
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P ∗ =
N∑
k=0

lk
r2kn

k
+ λ

N∑
k=0

lk

r
1
2+ε

k

+ λmmc +
N∑
k=0

λkn
kld (4)

Equations 2, 3, and 4 are all specific cases of the more general Equation 1, with 164

varying values of α as well as choice of constraint functions. 165

Scaling Ratio Calculation 166

We use the method of Lagrange multipliers to solve for the values of the scaling ratios 167

for radius and length, rk+1

rk
and lk+1

lk
that minimize the objective function. Below, we 168

show a sample calculation of the method of Lagrange multipliers for the case of power 169

minimization (Eq. 3), where we choose the dimension d to be 3. A more detailed 170

calculation can be found in Text S1. 171

We will first minimize P by differentiating with respect to radius at an arbitrary 172

level k, setting the result equal to 0. 173

∂P

∂rk
=

−2lk
nkr3k

+ 2λnkrklk = 0 (5)

Solving for the Lagrange multiplier, we have: 174

λ =
1

n2kr4k
(6)

Using the fact that the Lagrange multiplier is a constant and thus the denominator 175

must be constant across levels, we can solve for the scaling ratio: 176

rk+1

rk
= n−1/2 (7)

To find the length scaling ratio, we minimize P with respect to length at an 177

arbitrary level k, and set the result equal to 0. 178
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∂P

∂lk
=

1

nkr2k
+ λnkr2k + 3λkn

kl2k = 0 (8)

We solve for the Lagrange multiplier λk by substituting λ, as calculated in (6). As 179

before, using the fact that the denominator must be constant across levels and 180

substituting in the scaling ratio in (7) for radius, we can solve for the scaling ratio for 181

length: 182

lk+1

lk
= n−1/2 (9)

This method is used to solve for the scaling ratios for radius and length for the other 183

cases and compared to empirical results. These findings are summarized in Table 1 in 184

the Results section. 185

Allometry Calculation 186

We now use the objective function P* (Eq. 4), to derive a functional scaling relationship 187

between conduction time delay and body mass. Here, we consider the unmyelinated 188

case (ε = 0), and the case of 3-dimensional space filling (d = 3). 189

We begin by setting the derivative of P* with respect to radius and length equal to 190

zero to solve for the multipliers λ and λk, respectively, at the stationary point. 191

Substituting the expression for λk back into the original expression for P ∗, we get an 192

expression that simplifies to the original power term that it minimized,
∑N
k=0

lk
r2kn

k . For 193

simplicity, we replace the power term with P and the time delay constraint term with T 194

and rearrange. This calculation is shown in detail in Text S2. 195

Previous results have shown a proportional relationship between mc, the mass of a 196

single neuron, and the fourth root of an animal’s body mass, M1/4 [Savage et al, 2007]. 197

Thus, we can replace this term and consider a new Lagrange multiplier with the 198

absorbed constant: 199
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P ∗ = 2P + λT + λMM
1/4 (10)

We will now take the derivative of this term with respect to M, the mass, and set it 200

equal 0. 201

∂P ∗

∂M
= 2

∂P

∂M
+ λ

∂T

∂M
+ λM

∂M1/4

∂M
= 0 (11)

Previous results have shown that the energetic cost, which we have interpreted here 202

as power loss due to dissipation, decreases with increasing body weight of animals at a 203

linear rate [Wang et al., 2008]. Thus, we can express ∂P
∂M generally as a negative 204

constant, −C. We can rewrite the above expression as follows: 205

∂T

∂M
=

−λMM−3/4

4λ
+ 2

C

λ
(12)

Solving and applying the initial condition that T=0 when M=0, we have: 206

T =
−λM
λ

M1/4 +
2C

λ
M (13)

Thus, from this equation, we have extracted the scaling relationship, a mixed power 207

law relationship including a 1
4 -power law and a linear term with relative weights. Figure 208

5 shows experimental data that supports this theoretical result of the 1
4 -power law. 209

Methods 210

To test the theoretical predictions and model, it is important to look at empirical data 211

for scaling ratios for radius and length between child and parent branches in successive 212

levels. We analyzed data from NeuroMorpho.Org - an online database with digital 213

reconstructions from a wide range of species [Ascoli et al., 2007]. Figures 2,3, and 4 show 214

July 1, 2021 11/32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452445
http://creativecommons.org/licenses/by/4.0/


five examples of images of neuron reconstructions obtained from NeuroMorpho.Org. 215

These reconstructions are obtained by tracing neuron image stacks obtained using 216

various microscopic and staining techniques for in vitro neurons and slicing at regular 217

intervals. This database provides 3D reconstruction data that are organized in text files 218

by pixels, in files that specify a pixel ID label for each point, the x,y,z spatial 219

coordinates, the radius of the fiber at each point, and a parent pixel ID, referring to the 220

adjacent pixel previously labelled. The scaling ratios for radius and length can be 221

obtained by organizing this data in terms of branches. This is accomplished by finding 222

the pixels at which the difference between the child pixel ID and the parent pixel ID is 223

greater than 2, which can be defined as branching points. Based on the branching 224

points, a branch ID and parent branch ID can be assigned to each of the pixels. 225

The radius can be extracted from each of the branches by taking each of the radius 226

values in each branch and averaging them by the following formula, defining each 227

branch as branch k, where the pixels i range from 1 to Nk, where Nk is the last pixel of 228

each branch: 229

rk =

Nk∑
i=1

ri
Nk

(14)

The length of each branch can be extracted by summing up the Euclidean distances 230

between each of the points in the branch by the following formula: 231

lk =

Nk∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2 (15)

Once the radius and length of each of the branches is found, the scaling ratios are 232

computed by dividing the daughter radius or length, respectively, by the corresponding 233

value for the parent branch. Through this method and using the Python library 234

matplotlib, we generate histograms to visualize the distributions. For the radius 235

distributions, we find a large peak at rk+1

rk
= 1.0, which is likely due to the resolution 236

limit of the images. After a certain level, the radius for each of the branches is 237

equivalent to the pixel size itself. Thus, in our distributions for radius, we focused on 238
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the data for scaling ratios that are less than 1.0. We use solid black lines to denote the 239

mean values in the data, and error bars represent twice the Standard Error of the Mean 240

(SEM), the standard deviation divided by the square root of the number of data points. 241

We look at neuron reconstructions from both axons and dendrites, and from a range 242

of cell types, brain regions, and species. More detailed information about the source of 243

each of the individual reconstructions can be found in Text S4. 244

For dendrites, we looked at three different types of cells: Golgi cells, Purkinje cells, 245

and motoneurons. The Golgi cells are from Giraffa, Homo Sapiens, Loxodonta africana, 246

Megaptera novaeangliae, Neofelis nebulosa, Pan troglodytes, Panthera tigris [Jacobs et 247

al., 2014], and Mus musculus [Vervaeke et al., 2012]. The Purkinje cells are from Cavia 248

porcellus [Rapp et al, 2994], Mus musculus [De Munter et al., 2016, Chen et al., 2013, 249

Murru et al., 2019, Martone et al., 2003], and Rattus [de Luca et al., 2009, Martone et 250

al., 2003, Vetter et al., 2001]. The motoneurons are from Danio rerio [Morrice et al., 251

2018, Svahn et al., 2018], Felis Catus [Cullheim et al., 1987], Mus musculus [Leroy et al., 252

2014], Oryctolagus cuniculus [Steele et al., 2020], Rattus [Rotterman et al., 2014], and 253

Testudines [Chmykhova et al., 2008]. In Figure 2, we look at the combined dendrite 254

data for all cell types and species. In Figure 3, we look at the radius scaling ratios of 255

Purkinje cells and motoneurons individually, and draw comparisons between the two. 256

Due to the small size of axons and the limited resolution of images, the data 257

available on NeuroMorpho.Org are limited in scope. The data shown in Figure 2 was 258

taken from the following species: Anisoptera [Gonzalez-Bellido et al., 2013], Brachyura 259

[Bengochea et al., 2018], Drosophila melanogaster [Jefferis et al., 2007], Gallus gallus 260

domesticus [Garrido-Charad et al., 2018], and Rattus [Martins et al., 2017]. The 261

neurons were taken from a range of brain regions: the midbrain, the hippocampus, the 262

antennal lobe, the optic lobe, and the ventral nerve cord. 263

To study peripheral nervous system neurons, we sampled from reconstruction data 264

that was labelled by region on NeuroMorpho.Org. This data, shown in Figure 4, was 265

taken from Drosophila melanogaster [Herman et al., 2018, Nanda et al., 2018, Ye et al., 266

2011] and Mus musculus [Badea et al., 2012, Lesniak et al., 2014, Canavesi et al., 2020, 267

Shevalye et al., 2015] and includes dendritic arborizations, sensory neurons, somatic 268

neurons, and touch receptors. 269

To look at functional scaling relationships between mass and conduction time delay, 270
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we first look at data for conduction time delay in motoneurons and sensory neurons 271

across a range of species sizes, listed in order of size: Soricidae, Mus musculus, Rattus, 272

Cavia porcellus, Oryctolagus cuniculus, Felis Catus, Canis lupus familiaris, Sus scrofa, 273

Ovis aries, Giraffa, and Loxodonta africana [More and Donlean, 2018]. Using the mean 274

conduction velocity measured in studies of each species, this conduction time delay data 275

was calculated by considering the animal leg length predicted from the average body 276

mass. We use a log-log plot, shown in Figure 5, to obtain a power law relationship 277

between body mass and conduction time, where the slope is equal to the power. 278

Results 279

We compared theoretical predictions for scaling ratios calculated from objective 280

functions T, P, and P* with the mean values we measure from the data. As mean 281

values capture the average overall branching properties for axons and dendrites, the 282

mean represents the most natural and straightforward staring point for comparing our 283

general theory with empirical data. As theory is refined and additional predictions are 284

made, other features of the distribution should also be measured and compared (see 285

Discussion section). Based on the results of these comparisons for different types of 286

neurons and processes, we determined the functional properties that play the greatest 287

role in determining structure for different processes and cell types. 288

Theoretical Predictions 289

Using the model and the method of undetermined Lagrange multipliers as detailed 290

above, we made theoretical predictions for functions using different values of the 291

parameters. Table 1 shows the results for the various objective functions minimizing 292

conduction time delay and power. The approximations listed are based on the 293

simplifying assumption that the network is purely bifurcating, with a branching ratio of 294

2. 295

We consider the theoretical predictions for four objective functions. The first two 296

objective functions are specific cases of T (Eq. 2), minimizing conduction time delay. 297

We consider this function for two possible values of the parameter ε. The unmyelinated 298

case corresponds to ε = 0, and ε = 1
2 signifies the myelinated case. The second two 299
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objective functions are minimizing power. The objective function P (Eq. 3) minimizes 300

power subject to volume, mass, and space filling constraints, where volume is fixed. The 301

alternative objective function P* (Eq. 4), is the objective function minimizing energy 302

subject to conduction time, mass, and space filling constraints, where time delay is fixed. 303

For power minimization, we focused on the unmyelinated case where ε = 0, since its 304

predictions align most with the data from dendrites, which are typically unmyelinated. 305

Table 1. Results for Radius Scaling Ratio Theoretical Predictions

Biophysical Principle Prediction Closest Biological Match Data Mean

Time Minimization, Unmyelinated (T, ε = 0) n−2/5 ≈ 0.76 Peripheral Nervous System Neurons 0.76 ±0.008

Time Minimization, Myelinated (T, ε = 1
2 ) n−1/3 ≈ 0.79 Axons 0.79 ±0.001

Power Minimization with Fixed Volume (P) n−1/2 ≈ 0.71 Purkinje cell dendrites 0.69 ±0.007

Power Minimization with Fixed Time Delay (P∗) n−2/3 ≈ 0.63 Motoneuron dendrites 0.63 ±0.007

For all of the calculations, we considered different values of the parameter d, the 306

dimension of space filled by the processes. A value of d=2 signifies neuron processes 307

that branch into a 2-dimensional plane, such as Purkinje cells in the cerebellum. A 308

value of d=3 signifies neuron processes that fill a 3-dimensional space, such as 309

motoneurons [Squire et al., 2013]. We interpreted the volume constraint as a material 310

constraint, assuming that the processes are cylindrical for both 2- and 3-dimensional 311

space-filling. It is interesting to note that the dimension of space filling does not affect 312

results for radius scaling ratios. However, it does play a role in the results of the 313

theoretical predictions for length, as we have detailed in Table S1 and Table S2. Given 314

the lack of agreement between the theoretical predictions for length scaling ratios and 315

the data, we focused on radius scaling ratios in this analysis. 316

Dendrites and Axons 317

Figure 2 shows histograms that illustrate the differences in distributions of radius 318

scaling ratios for dendrites and axons, along with representative images of the 319

morphology of these two processes. Axons generally carry signals from the cell body to 320

the synapses, where they transfer information to the dendrites of other neurons. 321

Dendrites have extensive, tree-like structures and generally connect with the axons of 322

other neurons to carry signals to the cell body. The distributions observed for these 323

scaling ratios resemble the distributions observed in scaling ratios of cardiovascular 324

networks, with the radius scaling ratios exhibiting a normal distribution. 325
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In this figure, we show the comparison of the mean dendrite radius scaling ratio, 326

0.68 ± 0.004, with theoretical predictions from the four different calculations. We find 327

that the dendrite radius scaling ratio mean is closest to the theoretical predictions from 328

the objective functions minimizing power. The mean lies in between the optimal scaling 329

ratios for function P, so n−1/2 ≈ 0.71, which holds volume to be fixed, and function P*, 330

so n−2/3 ≈ 0.63, which holds time delay to be fixed. Later, in Figure 3, we looked at 331

the distributions of radius scaling ratios in these Purkinje cells and motoneurons 332

individually and compared them to the closest theoretical results individually. 333

Note that the radius scaling ratio mean for axons, 0.79 ± 0.001, is significantly larger 334

than the mean radius scaling ratio observed for dendrites, 0.68 ± 0.004. The axon 335

scaling ratio mean in the data is closest to the theoretical prediction, n−1/3 ≈ 0.79, for 336

the objective function that minimizes time, T, for myelinated fibers, ε = 1
2 . The next 337

closest prediction, n−2/5 ≈ 0.76, is that of the objective function that minimizes time, T 338

for unmyelinated fibers, ε = 0. This suggests that time minimization and myelination 339

are important factors that determine the structure for axons. 340

Purkinje Cells and Motoneurons 341

One of the parameters that we built into our theoretical model is d, the dimension of 342

space filling of the processes. Thus, we looked at the comparison of results from data 343

from representative cells with 2-dimensional and 3-dimensional dendritic trees. For 344

2-dimensional dendritic trees, we looked at cerebellar Purkinje cell data from rodents 345

including mice, rats, and guinea pigs. For 3-dimensional dendritic trees, we looked at 346

motoneurons from a range of species including rodents, amphibians, cats, and humans. 347

The histograms for these two cell types, along with a representative image for each type, 348

are shown in Figure 3. The theoretical results of minimizing power and time cost 349

functions while varying the parameter d do not capture the differences in radius scaling 350

ratios observed in this data. We hypothesized that the differences observed can be 351

explained by other principles such as the functional differences of these cell types. The 352

mean for Purkinje cells, 0.69 ± 0.01, agrees with the theoretical predictions for the 353

function P, power minimization with a volume constraint, n−1/2 ≈ 0.71, while the mean 354

for motoneurons, 0.63 ± 0.01, agrees with the theoretical predictions for function P*, 355

power minimization with a time constraint, n−2/3 ≈ 0.63. Based on the results of the 356
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Fig 2. Comparison of Dendrite and Axon Radius Scaling Ratio
Distributions, Combined Histograms showing the distributions of radius scaling
ratios for axons and dendrites combined from a range of species, brain regions, and cell
types available on NeuroMorpho.Org. The mean dendrite scaling ratio is 0.68 ± 0.004
and the mean axon scaling ratio is 0.79 ± 0.001. In the figure, µ represents the mean
and SEM represents the standard error of the mean (SEM). The standard deviations of
the distributions are 0.19 for dendrites and 0.17 for axons. The black solid lines denote
the mean in the distributions, shown with error bars, and the red, green, blue, and
magenta dashed lines represent the theoretical predictions for various objective
functions. The closest theoretical predictions for the dendrite scaling ratio mean are the
optimal scaling ratios for function P, minimizing power with fixed volume, n−1/2 ≈ 0.71,
and for function P*, minimizing power with fixed time delay, n−2/3 ≈ 0.63. The closest
theoretical predictions for the axon scaling ratio mean are the optimal scaling ratios for
function T, minimizing time delay, the myelinated case with ε = 1

2 , n−1/3 ≈ 0.79, and

the unmyelinated case with ε = 0, n−2/5 ≈ 0.76. We restricted radius scaling ratio data
to values that are less than 1.0. The representative reconstruction images show the
characteristic differences in morphology between dendritic and axonal trees. The
dendritic tree, shown on the left, is taken from an elephant cerebellar Golgi cell [Jacobs
et al, 2014]. The axonal tree, with a representative long parent branch, is taken from a
mouse touch receptor [Lesniak et al, 2014].

comparison of Purkinje cells and motoneurons, we concluded that volume plays a 357

greater role in constraining the structural design of Purkinje cells, while time plays a 358

greater role in constraining the structural design of motoneurons. 359
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Fig 3. Comparison of Radius Scaling Ratio Distributions of Cerebellar
Purkinje Cell and Motoneuron Dendrites A comparison of histograms showing
the distribution of radius scaling ratios observed in dendrites of Purkinje cells and
motoneurons, along with representative images. For Purkinje cells, we observe an
average radius scaling ratio of 0.69 ± 0.01, and for motoneurons, we observe an average
radius scaling ratio of 0.63 ± 0.01. In the figure, µ represents the mean and SEM
represents the standard error of the mean. The standard deviations of the distributions
are 0.19 for Purkinje Cells and 0.20 for motoneurons. We have restricted radius scaling
ratio data to values that are less than 1.0. The black solid lines denote the mean values
in the distributions, shown with error bars, and the red, green, blue, and magenta
dashed lines represent the theoretical predictions for various objective functions. The
closest theoretical prediction for Purkinje cells is the optimal scaling ratio for function
P, minimizing power with fixed volume, n−1/2 ≈ 0.71. The closest theoretical prediction
for motoneurons is the optimal scaling ratio for function P*, minimizing power with
fixed time delay, n−2/3 ≈ 0.63. The representative image for the Purkinje cell is from a
mouse [Murru et al., 2019] and the representative image for the motoneuron is from a
cat spinal motoneuron [Cullheim et al., 1987].

Peripheral Nervous System Neurons 360

In the Peripheral Nervous System (PNS), motoneurons play an important role in the 361

exchange of information with sensory neurons. Peripheral nerves carry sensory 362

information and interact with motoneurons, which directly innervate effector cells such 363

as muscles [Squire et al., 2013]. Thus, the importance of conduction time as a constraint 364

for motoneurons motivated us to examine data from other types of PNS neurons such as 365

sensory neurons. Figure 4 shows the radius scaling distribution of a sample of the PNS 366
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neurons labelled by region on NeuroMorpho.Org. This data was taken from flies and 367

mice. The mean radius scaling ratio, 0.76 ± 0.01, is closest to the theoretical prediction, 368

n−2/5 ≈ 0.76, for the objective function, T, that minimizes time for unmyelinated fibers, 369

ε = 0. This suggests that time is an important factor in optimizing structure for PNS 370

neurons. 371

Fig 4. Peripheral Nervous System Neurons A histogram showing the
distribution of radius scaling ratios in Peripheral Nervous System (PNS) neurons, along
with a representative image of the dendritic tree of a mouse sensory neuron [Shevalye et
al., 2015]. We observe an average radius scaling ratio of 0.76 ± 0.01. In the figure, µ
represents the mean and SEM represents the standard error of the mean. The standard
deviation of the distribution is 0.20. We have restricted radius scaling ratio data to
values that are less than 1.0. The black solid lines denote the mean in the distributions,
shown with error bars, and the red, green, blue, and magenta dashed lines represent the
theoretical predictions for various objective functions. The closest theoretical prediction
is n−2/5 ≈ 0.76, the optimal scaling ratio for the function T that minimizes time delay
for unmyelinated fibers, ε = 0.

Time Delay Scaling 372

So far, we have focused on predictions and data combined from species of a range of 373

sizes. Here, we consider how function varies across species of a range of body masses. 374

We used P*, the equation minimizing power with fixed time delay. As shown in the 375

Theory section, our theoretical calculations have led to the following relationship 376

between conduction time delay and mass: 377

T =
−λM
λ

M1/4 +
2C

λ
M (16)

In order to test this theoretical result, we analyzed experimental data to determine 378
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an observed relationship between time delay as a function of species size. Previous 379

experimental studies have looked at conduction time delay across species ranging from 380

shrews to elephants [More and Donlean, 2018]. A regression analysis of the data shows 381

that the 1
4 -power mass term is more significant than the linear term, as is shown in 382

more detail in Text S3. Furthermore, we used a log-log plot to determine the power of 383

the relationship, plotting the log of the conduction time delay data against the log of 384

the average body mass of each species. This plot is shown in Figure 5. 385

Fig 5. Scaling of Conduction Time Delay and Species Mass A scatter plot
showing the relationship between the log of the conduction time delay and the log of the
body mass of a range of species. Here, the slope, 0.30 ± 0.04, corresponds to the power
that relates species mass to conduction time delay. This is close to our theoretical result
of 1

4 (=0.25).

Our theoretical predictions suggest the presence of a 1
4 (=0.25) power law that 386

relates species mass to neuron conduction time delay. These experimental results 387

support this power law, as the power law determined from the data is 0.30 ± 0.04. The 388

available data focuses on a limited range of masses, and it is possible that at a wider 389

range of masses, a scaling law closer to the linear relationship might be observed. 390

Further data and analysis of the relationship between the size of individual neurons and 391

processes and species mass and between conduction velocity and time delay will provide 392

useful insight into this allometry. 393

Discussion 394

A comparative analysis of the radius scaling ratios of different processes and cell types 395

suggests that there are selection pressures for different functional roles that underlie the 396
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diversity in neuron branching patterns. There are a number of characteristic differences 397

observed between axons and dendrites. Axons are long and function to transmit signals 398

over large distances, sometimes between different regions of the nervous system [Rall, 399

1977]. Moreover, axons have the unique property of myelination, which provides an 400

important role in information transfer in the nervous system [Waxman and Swadlow, 401

1977]. Our results indicate that the radius scaling ratio mean for axons is closest to the 402

prediction that minimizes time for conduction through myelinated fibers, which 403

supports this notion that information processing speed is a key principle governing the 404

structure of axons. 405

In contrast, dendritic trees are relatively short, have more extensive branching, and 406

generally do not conduct action potentials [Rall, 1977]. Previous theoretical work on 407

wiring optimization in cortical circuits similarly proposes that there are differing 408

evolutionary selection pressures governing axons and dendrites. Rather than conduction 409

time delay, the key principle behind dendritic structure is passive cable attenuation 410

[Chklovskii, 2000]. Our results suggest that dendrites are optimized to minimize power, 411

which is related to a voltage drop, with a volume constraint that we have interpreted as 412

a cost in materials. Thus, minimizing power in our theoretical framework is effectively 413

minimizing the attentuation of the passive signals in dendrites. 414

There is a great deal of diversity in the branching structures of dendritic trees, and 415

the differences in scaling ratio distributions among the different types gives us important 416

insights into their distinct functional roles. We found that the structure of Purkinje cells 417

and motoneurons are both governed by power minimization, and Purkinje cell structure 418

is constrained by volume while motoneuron structure is constrained by time delay. The 419

predictions and results from the data for Purkinje cells and motoneurons are supported 420

by previous theoretical and experimental results [Hillman, 1979]. We conclude that time 421

plays a greater role in optimizing the structure for motoneuron dendrites. 422

Efficiency in information processing is a key function of neurons in the sensorimotor 423

system, and our results emphasize that function as a key feature governing their 424

structural design. When organisms are exposed to environmental stimuli, it triggers a 425

response in the motor system that must be executed very rapidly. Some of these 426

responses are innate, and some are learned through practice, gradually increasing in 427

speed [Vidal et al., 2015]. We found that structure of neurons in the peripheral nervous, 428
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such as the sensory neurons that relay information from the environment to 429

motoneurons, is governed by time minimization, which is consistent with the 430

evolutionary function of the sensorimotor system. The correspondence of our theoretical 431

predictions with empirical measurements from neurons of different types supports 432

intuitive notions about neuron computation in these specific cell types. 433

Major steps have been taken to advance and to quantitatively formalize the laws 434

first set forth by Santiago Ramon y Cajal for how functional principles dictate neuron 435

morphology. Notably, Hermann Cuntz’s group quantifies Ramon y Cajal’s laws of 436

conservation of time and material using principles from graph theory to computationally 437

generate biologically accurate axonal and dendritic trees [Cuntz et al., 2010]. 438

Furthermore, Dmitri Chklovskii formalizes the differences in structure and function 439

between axons and dendrites and even considers the role of cable diameter in wiring 440

optimization [Chklovskii, 2004]. Also of note is that material constraints related to 441

increasing diameter play a role in limiting the scaling of conduction speed in larger 442

animals, leading to longer delays [Ringo et al., 1994]. Finally, more recent work by 443

Samuel Wang, Simon Laughlin, and Terrence Sejnowski considers how energy 444

consumption constrains the design of neuronal networks, particularly when considering 445

differences across species of different sizes [Laughlin and Sejnowski, 2003, Wang et al., 446

2008]. Here, we have integrated results from these studies and provided a volumetric 447

explanation of these branching structures in terms of their biological and physical 448

function across scales that considers conduction speed, material costs, metabolic costs, 449

and space-filling. The correspondence between theoretical predictions and empirical 450

measurements of radius scaling ratios in neuron branching processes provides important 451

insights into the relationship between structure and function. 452

So far, we have looked at optimization problems minimizing power and time 453

individually. However, it is possible that there might be intermediate values, and 454

different cell types might have different relative importance of time and power in 455

determining structure. A possible avenue for future work is using numerical methods to 456

extend the number of functional principles we consider in each prediction. This might 457

provide a more biologically useful estimate for scaling ratios, as it is likely that neuron 458

cell structures are designed to optimize not only conduction speed or energy efficiency, 459

but a relative combination of both. 460
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The similarities in distributions of scaling ratios in radius and length between 461

neurons and cardiovascular networks suggest that a unifying framework underlies these 462

diverse biological systems. Although the WBE framework for cardiovascular networks 463

provides us with a solid framework to build upon in analyzing neuronal networks, there 464

is still much work to be done in adapting this model for neurons. It is widely 465

understood that the morphology of dendritic arbors are not static, but are constantly 466

modifying based on interactions with surrounding neurons and glia [Squire et al., 2013]. 467

Incorporating this dynamical aspect of neuron morphology will be useful in future 468

development of our model. Moreover, we have formulated the space filling constraint 469

based on the idea that cardiovascular networks are optimized such that vessels feed 470

every cell in the body. However, neurons exhibit more complex space filling patterns 471

new to their interactions with one another, such as tiling and self-avoidance [Cameron 472

and Rao, 2010]. It might also be fruitful to consider different formulations of the space 473

filling constraints for different types of neurons. For example, axons tend to have a 474

projections featuring a longer parent branch, and the daughter branches occur further 475

away from the soma. Indeed, previous work has extended the WBE model to look at 476

scaling in plants [Price and Enquist, 2007]. We might look into applying previous work 477

on space filling for plants such as palm trees, which have similar morphology. 478

Additionally, we have represented the energy consumption here as the power lost due 479

to dissipation during signalling. In neurons, however, maintaining the resting membrane 480

potential makes up a significant fraction of the energetic costs. Here, we assumed that 481

this cost is captured in the volume term in the model. However, it might be possible to 482

more explicitly formalize the inclusion of the resting potential via the incorporation of 483

additional factors that affect this cost. For example, myelination effects the capacitance 484

of axons, and the energy required to maintain the resting potential varies linearly with 485

capacitance [Wang et al., 2008]. Incorporating these complexities in our model might 486

improve its biological accuracy and usefulness when comparing predictions to empirical 487

data from neurons. 488

Another future direction is to employ alternate labeling schemes for the branching 489

levels in order to extract more meaningful results for length scaling ratios, we might 490

look into applying alternate labeling schemes for the branching levels. Previous work on 491

river networks has used an alternative labeling scheme - called Horton-Strahler labeling - 492
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where the first level begins at the tips, and higher levels are determined when two 493

branches of the same level combine. This has been applied to other networks in biology 494

[Turcotte et al., 1998]. Hermann Cuntz’s group has also applied this ordering method to 495

analyze dendritic trees, finding differences in branching metrics across neuron cell types 496

[Vormberg et al., 2017]. We hypothesize that applying this labeling scheme to define 497

branching levels for length will give a distribution of scaling radios that looks more like 498

the normal distributions observed for radius scaling ratios, and means that agree more 499

closely with our theoretical predictions. This is a major goal of our future work, both 500

for neurons and cardiovascular networks. Moreover, our analysis of the comparisons of 501

the theoretical predictions to the data involves simply information about the mean 502

values. We chose to look at the mean rather than the mode of the distributions to take 503

into account the spread of the distributions, but these values do not align in all cases. 504

Future work might look further into additional features of the distributions of radius 505

and length scaling ratios in order to extract more information from the data. 506

Throughout this model, we have assumed that branching is symmetric - the radius 507

and length of daughter branches are identical. Previous work has attempted to capture 508

asymmetry in cardiovascular networks and plants [Brummer et al., 2017]. Another 509

major goal of our future work is applying this theoretical framework to look at 510

branching of neuron processes, and using branching properties related to asymmetry to 511

compare different cell types. 512

Beyond the scaling ratios for successive branches in the individual neuron processes, 513

it is interesting to consider allometric scaling relationships of species size and functional 514

properties. Previous work on cardiovascular networks has extracted an allometric 515

scaling relationship that relates species size (or mass) with volume [Savage et al., 2008]. 516

Moreover, previous work on scaling has shown an allometric scaling relationship 517

between single cell neurons and animal body mass [Savage et al, 2007], and when brains 518

grow in size, they require more extensive axonal trees to traverse greater distances 519

[Bekkers and Stevens, 1990]. Building on these ideas from our theoretical formulation of 520

the objective function that minimizes power subject to the constraint of fixed 521

conduction time delay, we were able to extract a functional scaling relationship between 522

species size and time delay for unmyelinated fibers. We derived that there is a mixed 523

power law relationship between animal body mass and conduction time delay, including 524
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both a term with a 1
4 -power and a linear term. The presence of the 1

4 -power law is 525

supported by experimental data of conduction time delay from species of a range of 526

masses: the conduction time delay scales with the fourth root of the animal body mass. 527

An interesting aspect of this result is that neurons in larger animals have longer 528

conduction delays. These results are important to consider in the context of evolution - 529

longer delays might provide a functional explanation for the increased specialization of 530

brain function hemispheres. Due to the greater conduction time delays, it might be 531

advantageous for larger brains to exhibit more specialization, and organize cells with 532

information about related memories and skills in localized clusters [Ringo et al., 1994], 533

thus improving the efficiency of information processing. 534

We conclude that neuron function places profound constraints on neuron 535

morphology, thus cementing the foundations in Ramón y Cajal’s documentation and 536

resulting theoretical and computational formalism proposed by Cuntz and Chklovskii, 537

and extending it to include metabolic constraints and consider the volumetric aspect of 538

morphology. Our modern approach provides a technologically sophisticated way to 539

measure and quantify neuron morphology, and a mathematically and theoretically 540

advanced way to describe the influence of biophysical constraints in selecting 541

morphological patterns in neurons. Combining empirical measures with our theoretical 542

predictions, we showed fundamental differences between axons and dendrites and 543

between Purkinje cells and motoneurons in ways that in turn depend on the myelination 544

of axons and the dimension of space being filled by the branching processes. Future 545

work in this direction will shed even more light on these foundational questions by 546

obtaining larger amounts of data at higher resolutions across more species and more cell 547

types. Indeed, looking across species and cell types will also help reveal further 548

differences in neuronal function and tradeoff among different principles that may 549

transform how we understand the function and form of the brain. 550
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15. Cuntz H, Forstner F, Borst A, Häusser M. The TREES Toolbox—Probing the

Basis of Axonal and Dendritic Branching. Neuroinformatics. 2011; 9:91-96.

16. Cullheim S, Fleshman JW, Glenn LL, Burke RE. Membrane area and dendritic

structure in type-identified triceps surae alpha motoneurons. J Comp Neurol.

1987; 255(1):68-81.

July 1, 2021 27/32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452445
http://creativecommons.org/licenses/by/4.0/


17. de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A.

Distinct modes of neuritic growth in purkinje neurons at different developmental

stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One.

2009; 4(8):e6848.

18. De Munter S, Verheijden S, Vanderstuyft E, Malheiro AR, Brites P, Gall D,

Schiffmann SN, Baes M. Early-onset Purkinje cell dysfunction underlies

cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency. Neurobiol

Dis. 2016; 94:157-168.

19. Garrido-Charad F, Vega-Zuniga T, Gutiérrez-Ibáñez C, Fernandez P, López-Jury
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