Characterizing short tandem repeat expansions in Tourette syndrome

VICTORIA BROWN¹,*, KARA HIRANO¹,*, Lingyu Zhan², Marcelo Francia³, Tourette Association of America International Consortium for Genetics (TAAICG), Roel A. Ophoff²

1 B.I.G. Summer Program, Institute for Quantitative and Computational Biosciences, UCLA
2 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
3 Department of Neuroscience, David Geffen School of Medicine, UCLA

*Contributed equally

We would like to thank the people who collected these samples and the donors. Research was supported by the National Science Foundation (NSF) and their Research Experiences for Undergraduates (REU) program under Award Number 1758002. Additionally, we would like to extend our gratitude toward UCLA and everyone here who has supported us: the Institute for Quantitative and Computational Sciences (QCBio), the Bruins-In-Genomics Summer Program coordinators, and the Ophoff Lab (the “Ophomies”).

Citations: Tstesos et al. (2023), Depienne & Mandel (2021), Chintalaphani et al. (2021), Dolzenko et al. (2017), tourette.org, https://www.pathologyoutlines.com/topic/molecularsshttandreptgenotyp.html

Background

- Short tandem repeats (STRs) are repeated DNA sequences of 1-6 base pairs and are considered to be a large source of genetic variation in humans
- Expansions in repeat length (RL) are known to cause a number of brain disorders
- Tourette syndrome (TS) is a neurological and neurodevelopmental disorder with an early age of onset (5-10yrs)
- Family studies estimate heritability to be 70%
- The role of STRs in TS disease susceptibility remains unknown

Methods

Table 1. Cohort overview of 497 family trios

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Father</th>
<th>Mother</th>
<th>Female Child</th>
<th>Male Child</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>57</td>
<td>26</td>
<td>108</td>
<td>392</td>
<td>553</td>
</tr>
<tr>
<td>non-TS</td>
<td>442</td>
<td>472</td>
<td>--</td>
<td>--</td>
<td>914</td>
</tr>
<tr>
<td>Total</td>
<td>499</td>
<td>498</td>
<td>108</td>
<td>392</td>
<td>1,497</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
</tr>
<tr>
<td>non-TS</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Results

Figure 2. Example of TCF4 realignment via ExpansionHunter

Figure 3. TCF4 RL was highly correlated between mid-parents and probands

Figure 4. AFF2 on chromosome X showed sex-specific RL correlation

Figure 5. RL estimations on chromosome X were biased between sexes

Figure 6. Samples with pathogenic expansions were identified in 11 known STRs

Figure 7. Trend analysis demonstrated more frequent TCF4 expansions in probands whose parents had longer expansions

Conclusion

- Our current analysis of 38 known STRs demonstrates a significant correlation between parental and proband allele lengths
- However, no known STR expansions are significantly associated with TS
- ExpansionHunter overestimates RL on sex chromosomes in females as compared to males
- Increased occurrence rate of TCF4 expansions compared to other loci suggests a potential role in TS susceptibility; future examinations are needed
- Further genome-wide investigation, rather than targeted analysis, of STR loci is needed to examine their causal relationship to TS and understand the impact of novel STR expansions on disease susceptibility

Acknowledgements

We would like to thank the people who collected these samples and the donors. Research was supported by the National Science Foundation (NSF) and their Research Experiences for Undergraduates (REU) program under Award Number 1758002. Additionally, we would like to extend our gratitude toward UCLA and everyone here who has supported us: the Institute for Quantitative and Computational Sciences (QCBio), the Bruins-In-Genomics Summer Program coordinators, and the Ophoff Lab (the “Ophomies”).