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Abstract
●  Cytosine methylation (mC) is a crucial 
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● We use three neural network models that are the 
Autoencoder (AE), variational Autoencoder (VAE), 
and a Gaussian Mixed VAE to interpret the adult 
prefrontal cortex in terms of in-group variance, 
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Conclusions
1. Our models demonstrate the reduction of noise within 
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3. A noteworthy observation is that our Autoencoder performs best 
at noise reduction but our Gaussian Mixed Variational 
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Concatenated high variance block and low
variance block iiin the latent space
conditioned on q - membership probabilities

Autoencoder

Autoencoder Architecture Latent Space of Autoencoder:
Captures some general structure
but needs more model complexity.
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Predicted Leiden
Clusters
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Annotations

Predicted UMAP vs.
Original UMAP
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Type Variation
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Inh-MGE-MAN1A1 Cell-
Type Variation

Variational Autoencoder (VAE)

Variational Autoencoder Architecture Latent Space of VAE: Capturing more detailed
global features but we can improve this with
GMVAE.
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Gaussian Mixed VAE (GMVAE)

Gaussian Mixed Variational Autoencoder
Architecture

Latent Space of GMVAE: Our goal in order
to eventually use to drive the low
variance features
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Notes for Improvement
1. Priority Number One: UMAP is 

not always a meaningful 
method for determining 
biologically relevant 
information for it tends to 
distort the original 
manifold.UMAP suffers from 
noise and outliers, parameter 
sensitivity, and most 
importantly the balance 
tradeoff between local and 
global features. As shown in 
the analysis our models 
perform modestly on the high-
variance features but when it 
comes to the low-variance 
features our methods suffer 
from extremely high 
dimensionality and sparse 
data density. Our goal is to 
be able to take advantage of 
neural networks as a means to 
preserve global features 
displayed by high-variance 
features and use them to 
condition the low-variance 
features to limit the 
distortion exhibited by other 
dimensionality reduction 
techniques. 

2. Priority Number
Two: Validating batch 
correction via marker gene 
expression and imputation 
accuracy. 

3. Priority Number
Three: Determining highly 
variable features and lowly 
variable features plays a 
substantial role in the 
performance of our models. 
For further analysis, we 
would work towards using 
different thresholds and 
methods for determining our 
high variance features.
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