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Abstract

Our study explores the effects of preprocessing and clustering on single-cell RNA sequencing 
(scRNA-seq) data, a revolutionary technology in cellular diversity and disease research. 
Specifically, this project analyzes whether excluding certain cells, be it the smallest cluster or 
a random selection would affect the stability of the clustering results as measured by the 
Adjusted Rand Index (ARI). We found that the ARI values between clusters created before 
and after the removal of certain cells indicated a high divergence between the two. This 
finding was consistent across multiple parameter values and datasets analyzed. These 
discrepancies could lead to errors in cell type identification, amplifying the need for improved 
clustering and dimensionality reduction algorithms. As we probe the expanding realm of 
single-cell genomics, our research underscores the need for effective, reliable, and 
interpretable analysis pipelines for single-cell data.
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Fig. 4: Heatmaps of ARIs. Low to moderate ARIs are observed across all data sets 
and runs indicating the impact of preprocessing on analysis outcomes.
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• How stable is the clustering 
process?

• How can we ensure observed 
differences or patterns in gene 
expression between cells are 
more likely to be biologically 
meaningful?

Objective:
• Quantify the impact of 

preprocessing and visualization 
decisions on cell-type 
identification in scRNA-seq 
data.

Fig. 1:The standard pipeline for pre-
processing for our scRNA-seq data.
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Future Work

• Significant impact of preprocessing on scRNA-seq data analysis.
• Continuous evolution in single-cell genomics.
• Importance of rigorous data analysis.
• Need for accurate and interpretable single-cell analysis.
• Potential of single-cell genomics in understanding complex systems.

Fig. 3: ARI – Statistical measure to evaluate the similarity between two 
sets of clustered data; ranges from zero to one, with zero equating to 
random labelling and one when the clusters are identical.

Fig. 8: UMAPs of data with randomly removed cells (4A) and of the orthogonally validated ground truth with (4B).
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Fig. 5: Line plot of ARI as resolution increases 
showcasing data-dependent decreases in ARI.

Fig. 6: Line plot of total clusters increasing as 
resolution increases comparing all data sets.

Resolution – Threshold within the Leiden clustering algorithm that allows 
differing clustered groups to join based on the modularity.

Number of Clusters at Different Resolutions

N
um

be
r 

of
 C

lu
st

er
s

Resolution

50

40

30

20

10

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0
Resolution

A
R

I

0.5

0.6

0.7

0.8

0.9

1.0

ARI vs Resolution

ARI Zheng Data

Standard

Smallest
Removed

Ground 
Truth

Random
Removed

Ground 

Truth
Standard

Small
est

Rem
ov

ed

Ran
dom

Rem
ov

ed

ARI Mouse Brain Data

Standard

Smallest
Removed

Random
Removed

Stan
dard

Ran
dom

Rem
ov

ed

Small
est

Rem
ov

ed

Standard

Smallest
Removed

Random
Removed

Stan
dard

Ran
dom

Rem
ov

ed

Small
est

Rem
ov

ed

ARI Hydra Data

Standard

Smallest
Removed

Random
Removed

Stan
dard

Ran
dom

Rem
ov

ed

Small
est

Rem
ov

ed

ARI C. Elegans Data

Standard

Smallest
Removed

Random
Removed

Stan
dard

Ran
dom

Rem
ov

ed

Small
est

Rem
ov

ed

ARI Mouse Kidney Data

Standard

Smallest
Removed

Random
Removed

Stan
dard

Ran
dom

Rem
ov

ed

Small
est

Rem
ov

ed

ARI Mouse Bladder Data 1.0

0.8

0.6

0.4

0.2

0

Fig. 7 : Illustrating the use of modularity in Leiden clustering
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Fig. 2: Methods
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