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One debate within the single-nucleus RNA sequencing (snRNA-seq) field involves 
whether to sequence many cells superficially or fewer cells deeply. To invesBgate 
this issue, we analyzed two single-nucleus human cortex datasets to detect cell-
type-specific differenBally expressed genes (DEGs) between auBsm spectrum 
disorder (ASD) and control groups. Dataset A profiled 83,958 nuclei (median 2,157 
counts/nucleus) using 10X Genomics (Velmeshev et al., 2019). Dataset B profiled 
18,666 nuclei (median 96,660 counts/nucleus) using snmCT-seq (Luo/Geschwind 
Lab). We invesBgated best pracBces for integraBng these datasets and detecBng 
DEGs. We observed that pseudobulk and cell-level DEG-idenBficaBon methods have 
correlated effect esBmates, but result in different sets of significant DEGs. Both 
datasets implicated mulBple cell types in ASD with a surprising non-neuronal 
signature; however, Dataset B yielded a greater number of results, including SFARI-
validated auBsm-related genes that were absent in Dataset A, such as SHANK3, 
CAMK2A, and UBE3A. 
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• Integra(on with cell atlases like Azimuth is a useful method with the current 

limita(ons of available dataset-integra(on tools.
• Having deeper coverage of cells allows for the capture of validated DEGs that would 

be missed with shallow-level sequencing.
• Although pseudobulk is the default method for DEG analysis, cell-level modelling may 

be a more powerful op(on when the data consists of more cells.
• Gene expression differences related to au(sm were found in non-neuronal cells such 

as astrocytes and VLMC that warrant further inves(ga(on.
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Effect Size Correla/on Between Datasets was Higher in 
Cell-Level Modelling 

Dataset B Has More Features, Counts, and 
Higher Variance than Dataset A

Various ABempts at Dataset Integra/on 
Were Unsuccessful

Final Clustering with Azimuth

Dataset B Generally Iden/fied More Significant DEGs

Dataset A (VLMC) Dataset B (VLMC)

Given poor integraBon, we used 
Azimuth human cortex reference 
data for cluster annotaBon.

• Number of significant genes with 
total number of genes tested.

• In pseudobulk, Dataset B iden@fied 
a greater propor@on of significant 
DEGs* (p < 0.05) in all clusters.

• The difference is less pronounced 
for cell-level modelling, but Dataset 
A s@ll has a lower absolute number 
and mean propor@on of significant 
DEGs than Dataset B.

*Most clusters had no significant results 
when considering FDR adjusted p-values < 0.1

Pseudobulk Cell-Level Modelling

r ̄= 0.038

• Number of SFARI genes found 
significant with total number of 
SFARI genes included in analysis. 

• In pseudobulk, Dataset B found a 
greater propor@on of SFARI genes 
to be significant across all clusters. 

• This trend was not as strong in cell-
level analysis, but Dataset B s@ll 
found a greater absolute number of 
SFARI genes significant.

Dataset A Dataset B

• Of the 428 SFARI genes found significant in Dataset B but not Dataset A with pseudobulk:
• 11 were filtered out for low number of reads.
• 23 were filtered out for not being expressed in 50% of par(cipants.
• 226 were filtered out due to low variance.

• With cell-level modelling, 61 out of 76 SFARI genes found significant only in Dataset B 
were filtered out of Dataset A due to low variance, including RAC1, MEF2C, and ANKRD11.

*SFARI genes for this analysis were defined as either Category 1 or Syndromic SFARI genes.

NFIB (Endo) MKX (IN-SST)VEZF1 (Oligodendrocytes)

Downsampled read  
counts in Dataset B

IntegraBon with 
Harmony

IntegraBon with 
RPCA

Pseudobulk and Cell-Level Modelling are Well-Correlated

Donor Demographics Cell Counts Per Cluster
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Pseudobulk

Cell-Level Modelling

Workflow for ABempted Integra/on and DEG Analysis

CAMK2A (Exc L5 ET) SHANK3 (Exc L6 CT) UBE3A (Exc L6 IT Car3)

logFC = 6.12e-2
p-value = 0.798 

logFC = 1.92e-3
p-value = 0.990 

logFC = -0.213
p-value = 0.490 

logFC = -3.54 
p-value = 1.04e-3

logFC = -1.59
p-value = 4.99e-2

logFC = -2.21
p-value = 1.29e-2

logFC = 4.48e-2
p-value = 0.771 

logFC = 6.97e-3
p-value = 0.718

logFC = 5.82e-2
p-value = 0.211 

logFC = 0.428
p-value = 3.42e-2 

logFC = 0.264
p-value = 2.39e-3

logFC = 0.356
p-value = 3.23e-2 

Dataset A Dataset B
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•  Single-nucleus RNA sequencing (snRNA-seq) offers 
higher resolution transcriptome analysis than 
conventional bulk tissue approaches. 

• Data Collection: 10X Genomics versus snmCT-seq  
o 10X Genomics uses droplet-based technology. 
o snmCT-seq is plate-based, capturing multiomic 

data but with lower throughput with respect to 
number of cells. 

• DEG Analysis: Pseudobulk versus cell-level modeling 
o Pseudobulk aggregates RNA counts from multiple 

cells of the same type. 
o Cell-level modelling preserves individual cell heterogeneity. 

§ While the original Velmeshev et al. paper used MAST, we used a 
comparable method called Dream. 

• ASD research has Implicated genes like MEF2C, SHANK3, CAMK2A, and UBE3A 
that influence synaptic function and neural plasticity. 

• However, non-neuronal cells, including glial and immune cells, are becoming 
increasingly associated with ASD pathology. 

 
 

Downsampled number 
of cells in Dataset A

snmCT-seq

r ̄= 0.600

r ̄= 0.233

Dataset A
(10X, Velmeshev)

Dataset B
(snmCT, Luo/Geschwind)

Correla'on between datasets in cell-level modelling seems to be 
higher for clusters with more cells.
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Significant Au/sm-Related SFARI Genes* Only Found in Dataset B

NeuronalNon-neuronal NeuronalNon-neuronal

— y = x Pearson r ̄= 0.602
— y = x

— y = x— y = x


