
Bruins in Genomics Summer 2023 
An analysis of deconvolution methods for spatial transcriptomics data in biopsies of patients with melanoma who received immune checkpoint blockade therapy

Chelsea Lai1,2, Nataly Naser Al Deen, PhD2, Egmidio Medina2, Antoni Ribas, MD, PhD2

1. BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA    2. David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA

Abstract

Spatial Transcriptomics is a cutting-edge molecular profiling method that can profile 
the transcriptome while preserving the morphological context. However, a limitation of 
the technology is that each spot (55 µm) may be derived from multiple cells. 
Fortunately, methods exist to resolve cellular heterogeneity by quantifying the relative 
contribution from cell types in every spot, termed deconvolution. Melanoma is 
characterized by a complex tumor microenvironment, thus, studying the cellular 
mechanisms spatially helps delineate progression and responses to immune 
checkpoint blockade (ICB) treatment of the malignancy. This study explores and 
compares several existing deconvolution methods on spatial transcriptome datasets 
from patients with melanoma who received ICB therapy. We analyzed the 
deconvolved results alongside the histopathologic annotation, which was used as a 
reference, to measure the performance of the deconvolution method. Our results 
reveal that RCTD and CARD performed superior to other methods in resolving cell 
type deconvolution at the spot level.   

Background

Figure 1. Visium Spatial Gene Expression is a sequencing-based spatial 
transcriptomics (ST) technology that maps the whole transcriptome with 
morphological context but lacks the single-cell resolution; each spot is derived from 
multiple overlapping cells. Deconvolution is a tool developed to dissect the single cell 
type profile composition of the Visium spots. 1

A summary of various deconvolution methods. The methods explored in this project 
are bolded. These tools require Spatial Transcriptomics data (all) and scRNA-seq 
reference dataset (all except STdeconvolve). The algorithms underlying each method 
can be divided into 5 categories. Data from Zhang, Y., et al., Comput. Struct. 
Biotechnol. J., 2023, 21, 176. 

Methods

Figure 4. STdeconvolve is a scRNA-seq reference-free deconvolution method. This 
method utilizes Latent Dirichlet Allocation (LDA) to deconvolve latent cell types per 
spots. Each spot is defined as a multinomial distribution of cell type probabilities and 
each cell type is defined as a probability distribution over all the genes present in the 
spatial dataset. 4

Figure 3. Robust cell-type decomposition (RCTD) utilizes statistical modeling to 
identify cell types proportions per spots. The expression of each cell type given a spot 
(the observed gene counts) is assumed to be Poisson distributed and is optimized 
using maximum-likelihood estimation (MLE). A notable asset of RCTD is that it 
explicitly addresses platform effects. 3

Figure 5. Conditional AutoRegressive Model-based Deconvolution (CARD) uses NMF  
in linking scRNAseq data, spatial spot composition, and residual error. Additionally, 
CARD takes advantage of the spatial correlation structure to enable accurate and 
robust deconvolution of ST data even in the presence of mismatched scRNA-seq 
references. 

Figure 6. Histopathologic assessment for melanoma (S100) and CD8+ T-cells (CD8) 
A) and cell type clustering B) of a baseline biopsy from a patient with desmoplastic 
melanoma who responded to anti-PD-1 therapy shows slight co-localization of some 
melanoma areas (on the biopsy edges) with CD8 expression. 

Figure 8. Spot level deconvolution of the selected immune cell clusters shows different 
performance using A) SPOTlight B) STdeconvolve C) RCTD Doublet Mode D) RCTD Full 
Mode E) CARD, F) CARDFree extension, G) CARD Single-Cell Resolution Mapping. 

Conclusion
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Figure 9. Deconvolution Results from CARD Single-Cell Resolution Mapping showed the 
best performance compared to histopathologic staining for the patient baseline biopsy.

Spatial transcriptome technologies are powerful tools in cancer research. However, current 
ST sequencing technologies are incapable of reaching single-cell resolution. Several 
deconvolution methods were developed to address this issue. Studying SPOTlight and 
STdeconvolve results shed light on two main issues with current deconvolutional methods:  
1. Deconvolution is critically dependent on the availability and accuracy of scRNA-seq data 
2. Technical variations between scRNA-seq and Spatial Transcriptomics data exist
Being aware of to these issues led to a more educated exploration of deconvolution methods 
including RCTD and CARD. Our results show that both methods have been successful in 
addressing at most one of the issues.  
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Methods

Figure 2. SPOTlight utilizes a seeded non-negative matrix factorization (NMF) 
regression with non-negative least squares (NNLS) to determine cell type 
composition per spots. Factorization is carried with using a non-smooth NMF which 
produces sparser results which promotes cell-type-specific topic profile and reduces 
overfitting. 2
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Figure 7. Expression levels of selected immune cell types using spatial feature plot 
show generally that most of the immune cell clusters are outside of the melanoma cell 
cluster, with varying expression.
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