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(F) Change-O and partis diverge in selection strength estimation. 
The clone of change-o showed less selection strength in IκBε-/- 
sample among all BCR region, whereas partis’s clone didn’t. The 
positive selection in CDR region and negative selection in FWR were 
conserved between the softwares.

F
Selection is estimated by the observed frequency of 
replacement and silent mutations normalized by their 
expectated frequency based on a targeting model [10].

Σ

• Estimating Selection Strength Σ:

• Σ>0: Positive selection
• Σ<0: Negative selection

• R: the number of replacement mutations 
• S: the number of silent (i.e. synonymous) mutations.
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• Antibody profiling is a dynamic research field -- multiple software have been developed.

• Typical repertoire metrics include CDR3 characteristic, clonal diversity, mutation rate and selection pressure.

• Change-O and MixCR have a completed BCR profilling pipeline and is more user-friendly.

• Different software showed consistency in concluding clonal diversity and CDR3 length distribution in the 
antibody repertoire.

• Different softwares diverged in the exact numerical quantification of mutation rate and selection strength in 
antibody repertoire, with consisency in drawing qualitative conclusion between IκBε-/- sample and WT.
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3. Computational tools yielded consistency in identifying positive selection in CDR 
and negative selection in FWR, but diverged in quantifying the selection

E

(E) Boxplot of mutation frequency from different software. Generally, more 
mutation frequency in IκBε-/- sample was observed among different softwares although 
different software diverged in quantifying the exact value of mutation frequency.

(D) Phylogenetic tree constructed based on somatic hypermutation (SHM) 
distance from germline by MixCR. The largest phylogetic tree were visualized with 
their CDR3 amino acid sequence in each clone. IκBε-/- sample have more 
complecated mutational landsacape than WT, with more mutation distance and more 
clone in the SHM tree.

(C) Rank-abundance curve. The more even the curve is, the more diverse the sample is. IκBε-/- 
repertoire shows more even distribution in rank-abundance curve, suggesting higher diversity than WT.

• CDR3 length is associated with a B-cell’s ability to 
recognize diverse antigens. Long CDR3 has been 
associated with auto-reactivity and polyreactivity in 
previous study [5]. 

(B) CDR3 nucleotide length box plot. Longer 
CDR3 length in IκBε-/- sample was conserved 
among different softwares, suggesting 
auto-reactivity or polyreactivity.

(A) CDR3 nucleotide length distribution. All 
computational tools shows that the CDR3 
distribution in IκBε-/- have more tendency to be 
Gaussian-like distribution than WT, indicating a 
more diversified repertoire in IκBε-/-.

• The distribution of CDR3 length is associated with 
the polymorphism of the clone: a CDR3 length 
distribution that is “skewed” or “perturbed” may 
indicate oligoclonality whereas the distribution 
similar to a Gaussian-like distribution is associated 
with being polyclonal and more diverse [7].
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2. Increased mutation rate is consistently observed in IκBε-/- over WT, 
but softwares diverge in their numerical quantification
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1. Consistent estimates of CDR length and the rank abundance curve 
indicate greater clonal diversity in IκBε-/- mice

Abstract
B-cell undergoes somatic recombination and hypermutation to construct diverse B-cell 
receptors (BCRs) to bind different antigens. The diversity in these BCR sequences poses 
challenges in drawing biologically meaningful conclusions, calling for effective computational 
software. In the past decade, several tools have been developed to assign germline genes, 
determine complementarity-determining region 3 (CDR3), and characterize sequence mutation 
frequency and selection landscape. However, no work has been done to benchmark the 
performance of these tools and guide the selection of software. Here, we implemented a few of 
the highly cited software (Change-O, MixCR, and Partis) to compare the BCR repertoire 
between NFκB mutant and wide-type mice. We found that these software packages showed 
consistency in summarizing clonal diversity and CDR3 length distribution but diverged in 
quantifying mutation frequency and selection pressure. Our results demonstrate the value of 
comparing software using real data, and provide insights into software selection in BCR 
repertoire analysis. 

Methods & Results

Background

1. B cell randomly selects V, D, and J 
gene segments from the gene pools in 
the body.

2. B cell randomly deletes nucleotides 
at both ends of the V-D and D-J 
junction regions.

4. B-cell undergoes somatic 
hypermutation (SHM), generating 
diversified B-cell receptors (BCRs).

3. B cell randomly inserts nucleotides 
in the same junction regions as the 
deletions (N = non-templated insertion).

• Grouped by clonal 
sequence (CDR3 
region by default)

• Input: .vdjca
• Output: .clns / Able 

for AIRR-tsv
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A collection of 
tools performing 
V(D)J alignment 
and clonal cluster-
ing

Evaluate all possible 
recombination 
scenarios for the 
read based on given 
or learned model 
with its probabilities

An R package for 
mutation and 
selection 
quantification

3. Many computational tools were developed to analyze BCR repertoire

Perform Raw 
sequence pro-
cessing prior 
to alignment

A compositive 
immune reportoire 
processing pipe-
line with multiple 
preset for commer-
cial sequencing kit 

A pipeline performing 
sequence annotation, 
simulation, clonal 
clustering and muta-
tion profilling

• Single-end
• Paired-ends
• Input: fastq or 

fasta format
• Able to perform 

UMI based 
correction

• Single-end
• Paired-ends
• Input: fastq or fasta 

format
• Can do amplification 

error correctionbe 
chosen based on the 
sequencing methods

• VDJ+C
• Output: .vdjca / 

AIRR-tsv

• VDJ alignment 
based on IgBlast

• Output: AIRR-tsv

• VDJ alignment based 
on hidden-markov 
model

• Output: .yaml / Able for 
AIRR-tsv

• VDJ alignment 
• The learning of the 

new model is based on 
pygor

• Output:  series of .csv 
file /grouped to 
AIRR-tsv in pygor

• Grouped the clonal 
sequence by ham-
ming distance on 
CDR3 region (AA 
or nucleotides)

• Output: .tab/ Able 
for AIRR-tsv

• First find the most likely 
germline sequence 
(common ancester) then 
group each cluster by 
hamming distance

• Output: .yaml / Able for 
AIRR-tsv

• Can be estimated 
based on clonal 
AIRR-tsv 

• Can be estimated 
based on clonal  
AIRR-tsv 

• Can be estimated 
based on clonal 
AIRR-tsv

• Can be done by 
SHazaM based on 
clonal AIRR-tsv

• Can be done by 
SHazaM based 
on clonal 
AIRR-tsv

• Can be done by 
SHazaM based on 
clonal AIRR-tsv

• Have bulid-in function 
to plot out the SHM

• Input: AIRR-tsv
• Quantification of 

mutational load

• Can be done by 
SHazaM based on 
clonal AIRR-tsv

• Can be done by 
SHazaM based on 
clonal AIRR-tsv

• Can be done by 
SHazaM based on 
clonal AIRR-tsv
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1. B-cell undergoes somatic recombination and hypermutation to construct diverse antibodies

2. IκBε deficiency in B cells results in increased
 stimulus-responsive proliferation and survival [1]
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