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Cell Type-specific Gene Regulatory Network Atlas: A Repository of 
Cell-type Networks with Disease and Pathway Annotation 

RUOSHUI LIU, Michael Cheng, Julie Tran, Xia Yang 

SCING Method

Abstract
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• Gene regulatory networks (GRN) help understand physiology, but 
conventional tissue-level GRN inference lacks the resolution to capture 
cell-specific contributions in disease development; current cell-specific 
GRN algorithms are suboptimal in accuracy and speed.

• We developed Single Cell INtegrative Gene regulatory network 
inference (SCING), as it can capture cell-type characteristics. 

• We applied SCING to create a network atlas for different cell types and 
revealed that the networks exhibit a highly connected architecture 
adhering to a power-law distribution.

• We conducted Key Driver Analysis (KDA) on a hepatocype network 
along with Non-alcoholic fatty liver disease (NAFLD) genes, where the 
key driver hubs recapitulated known pathways significantly altered in 
NAFLD. 

Result: Network Statistics Result: Disease Annotation

• SCING mitigates scRNAseq gene sparsity by aggregating cells based on 
similar expression.

• SCING bootstraps from supercells to build GRNs to account for 
technical variation between networks.

• SCING trains a gradient boosting regressor on each gene and selects 
predictors/features based on K nearest neighbors in the principal 
component space.

• SCING creates the final GRN by retaining edges present in at least 20% 
percent of bootstrap networks.

• SCING uses three resolutions to create modules of different sizes. 
• SCING conducts pathway enrichment based on each module and filters 

the most frequent pathways. 
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• We performed KDA analysis on 
mouse hepatocyte network along 
with the differentially expressed 
genes (DEGs) extracted from a 
non-alcoholic fatty liver disease 
(NAFLD) study. 

• We conducted pathway 
enrichment on each hub. 

• Key driver hubs belong to 
pathways in apoptosis, 
metabolism, transmembrane 
transport, and blood clotting, 
which are consistent with the 
original study.  
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Result: Module Analysis

• We applied 3 module 
resolutions to each atlas 
network. 

• Each module of the 
same resolution covers 
a different set of genes.

• Different resolutions 
cover different module 
sizes. 

• We performed SCING inference 
on 12 human and mouse cell 
atlases and built 1305 networks 
from 91 tissues and 179 cell 
types. 

• The networks have around 
10,000 to 15,000 nodes and 
40,000 to 60,000 edges on 
average. 

• We combined atlas 
networks based on species, 
tissue, and cell type and 
formed 152 combined 
networks.

• The networks are sparse on 
the left side and follow a 
power-law distribution on 
the right side. 

• We conducted pathway 
enrichment for the modules 
in each network.

• Pathways from thyroid b cells 
are highly related to immune 
mechanisms and diseases. 

Combined Networks Characteristics

Module Properties

Pathway Annotation
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