
Figure 9.  Inter-tissue correlations of A. test-set WGBS data and B. KNN predictions. 

Visually, the correlation matrices generated from the predictions on the test set and the test 

set itself are similar. C. Together with the AUROC, this indicates that the KNN may be 

capturing variation between tissue types and may furthermore be denoising the data (Figure 

6). It is also possible that many CpG sites have their nearest neighbors as array probes with 

methylation values that differ between tissue types.
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The k-nearest neighbors algorithm, or KNN, is a learning 

algorithm that makes predictions of a single point based on 

the average of the k-nearest surrounding values of its 

group. Using WGBS data as a reference, we calculated the 

genomic distance between all IHEC CpG sites that overlap 

with the Illumina Epic BeadChip array and those that do not 

overlap. Based on these distances, all probes were ranked 

by closest-neighbor order. We selected a k value of 32 

based on its performance on a tuning set of data (Figure 

1). The prediction for each non-probe site becomes the 

average of k nearest probes on the array. Site-wise 

Pearson correlations and RMSE values were calculated to 

analyze the accuracy of these predictions. 

Background

Whole-genome bisulfite sequencing (WGBS) is a powerful and expensive 

tool that provides genome-wide single-base resolution of methylated 

cytosines. Methylation arrays are a cheaper alternative and are 

commonly used for cohort and EWAS studies, but they suffer from low 

CpG site coverage. Imputation of missing CpGs is necessary to meet the 

same coverage of WGBS data. Using the k-nearest neighbors algorithm 

(KNN), we can accurately extend methylation arrays using IHEC WGBS1 

methylation data as a reference. We calculated nearest neighbors and 

distances from the reference and used these to predict methylation 

values for CpG sites not located on the array. We also transferred these 

calculations to a different platform, the EPIC BeadChip array2 

downloaded using the recountmethylation package. Both studies using 

the KNN algorithm demonstrated higher correlations to the ground-truth 

than when compared to a baseline. Using algorithms to impute 

methylation values rather than depending on WGBS data vastly reduces 

costs and efforts for EWAS studies.
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WGBS data, while extremely valuable for methylation 

studies, is not the most practical method of collecting 

methylation data. This is simply due to its high costs and 

difficulty to obtain. This creates a restriction on what kinds 

of studies can be done with this data and who can do those 

studies. In order to make this kind of research more 

feasible, machine-learning methods are used to make 

predictions of WGBS data from methylation arrays, which 

are much cheaper and easier to gather data with. The 

combination of imputation and arrays allows labs to have 

WGBS-like data of similar quality at a fraction of the cost 

and efforts. 

Recount Array Data Tissue Analysis

Figure 2.  CpG-wise performance of KNN predictions on IHEC WGBS data against a 

nearest-array probe baseline. Predicted methylation values range between 0 and 100. 

Predicted values were significantly different compared to the nearest array probe 

baseline (p-value < 0.01).   

Figure 3.  CpG-wise performance of KNN predictions on recount data against 

a nearest-neighbor baseline. Predicted methylation values range between 0 

and 1. Predicted values were significantly different compared to the sample-

mean baseline (p-value < 0.01). 

Figure 4.  CpG-wise 

performance of KNN 

predictions on IHEC WGBS 

data against the variance of 

each CpG site. A.  Pearson 

correlation values are 

consistent across medium to 

high levels of variance. CpG-

wise performance was 

consistent across different 

variance levels, demonstrating 

the reliability of the algorithm 

even when a CpG site is 

variable across individuals. B.  

Compared to the nearest-array 

probe baseline, the Pearson 

correlation trend shows a much 

higher level of correlation 

between the predictions and 

the ground-truth. The clustering 

of low Pearson correlations in 

sites with very low variances 

can be explained by the nature 

of using Pearson correlations. 

In cases where there is 

extremely low variance, RMSE 

provides a better metric and 

showed similar quality results 

in those analyses as well. 

IHEC WGBS Data

Figure 5.  CpG-wise 

performance of KNN 

predictions on recount data 

against the variance of each 

CpG site. Pearson correlation 

values are consistent across 

medium to high levels of 

variance and match WGBS 

trend. The trend appears more 

prominently in the WGBS, but 

this is expected. A baseline 

could not be made for this 

analysis due to the nature of 

the Pearson correlation and 

the selection of our baseline. 

Figure 7.  RMSE comparison between A. site-wise WGBS performance, recount performance, and a baseline of means for each CpG-site. B.  Is the same 

comparison of performances, but sample-wise. In both cases, the WGBS and Recount data are significantly different than the mean baseline (p-value < 0.01). 

Figure 8.  Intra-tissue comparison of sample-wise prediction performance compared to a 

nearest-neighbor baseline for each tissue. For each tissue, the median site-wise RMSE is 

lower in the KNN method. For the KNN method, the median site-wise RMSE values in 

nearly all tissues are lower than the median site-wise RMSE taken over all samples, 

indicating that the KNN captures individual variation within tissue types.
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Figure 6. CpG-wise 

performance of KNN 

predictions on recount data 

against the variance of each 

CpG site. RMSE is a better 

metric for lower variance sites. 

83% of predicted sites 

performed better than the 

baseline. 

The KNN algorithm, using WGBS data as a reference, is a viable method of 

imputation for DNAm data. Performance analyses showed high quality levels 

of predictions with the IHEC data (Figure 2). Distances and nearest-neighbor 

calculations are transferable between platforms and give similar performance 

results (Figure 3). The use of Pearson correlations and RMSEs accounted 

for different performances with more variable CpG-sites across samples 

(Figure 4, 5, 6). Tissue analyses showed high performance of imputation 

within tissues as well as similar correlation of inter-tissue methylation values 

between predictions and ground-truths (Figure 8, 9). Future directions 

involve EWAS studies with the recount methylation data as well as more 

tissue analysis in the WGBS data. 

Figure 1.  K-selection performance on tuning set of data to ensure no over-fitting. 
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