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same coverage of WGBS data. Using the k-nearest neighbors algorithm 1 _ —— — 80 -
(KNN), we can accurately extend methylation arrays using IHEC WGBS! ' ' ' . - . , , ,

methylation data as a reference. We calculated nearest neighbors and mEE KNN Imputation 10000 -
. . . 300000 - Nearest Array Probe Baseline

distances from the reference and used these to predict methylation
values for CpG sites not located on the array. We also transferred these 250000 - 8000 1
calculations to a different platform, the EPIC BeadChip array? 500000 -
downloaded using the recountmethylation package. Both studies using 60001
the KNN algorithm demonstrated higher correlations to the ground-truth 150000 - 1000 |
than when compared to a baseline. Using algorithms to impute 100000 -
methylation values rather than depending on WGBS data vastly reduces 5000 -
costs and efforts for EWAS studies. 200007
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methylation data. This is simply due to its high costs and 1.00 T Figure 4. CoGow — 7  Figure 5. CpG-wise lower in the KNN method. For the KNN method, the median site-wise RMSE values in
e - - . - I igure 4. LpL-wise performance of KNN nearly all tissues are lower than the median site-wise RMSE taken over all samples,
dIﬁICUIt_y to obtain. This cr_eate_s a restriction on what kinds 075 | L., Performance of KNN 0.8 60 predictions on recount data indicating that the KNN captures individual variation within tissue types.
of studies can be done with this data and who can do those predictions on IHEC WGBS against the variance of each . -
t d I d t k thS knd Of research more 020 1000 data against the variance of 0.6 CpG site. Pearson correlation A ' Te'St set Correlation RF = ¢ AUROC
S U |eS. n Or er O ma. e I | £ : c ' ) ey [ o ] e ] [ o T ] — - R o e [+ 101 . —
_ _ _ 3 each CpG site. A. Pearson 3 values are consistent across 1 Rttt . o =1
feasible, machine-learning methods are used to make g O soo  correlation values are £ o medium to high levels of e | AT T
predictions of WGBS data from methylation arrays, which £ 000 . ﬁ?g”hs'lzt\f;}gi?\?;ﬁamnig'U&g) - variznceh and mdatch WGBS CTSEIRR e . L -
- - 5 : i 5 0. trend. The trend appears more TR L e i { "
are much cheaper and easier to gather data with. The 3. wise performance was 3 . . 4 HEISHEEESE I
_ _ ) _ 0. _ : prominently in the WGBS, but T b S R : | :
combination of imputation and arrays allows labs to have o consistent across different 00 this is expected. A baseline G5 risnmrmmall I | o s
. . : : -0.50 variance levels, demonstrating could not be made for this e E| SR B 4 el - ool | i A0 8405281283350555
- 200 . . . = i % FHER M ] . e B 0.5 . . : : : :
WCOSIB?f I|It<e data of similar quality at a fraction of the cost - the re“%bmtyogtge ilgthm N analysis due to the nature of i kit ; o
and efiorts. 500 1000 1500 2000 2500 O eve_ngllv enatp d'SI'S ISI B 002 002 006 0.08 010 012 014 016 the Pearson correlation and Figure 9. Inter-tissue correlations of A. test-set WGBS data and B. KNN predictions.
CpG Variance variable actoss Indiviauass. . CpG Variance the selection of our baseline. Visually, the correlation matrices generated from the predictions on the test set and the test
h _ | Corgpatl)red tlp thethnegrest-array set itself are similar. C. Together with the AUROC, this indicates that the KNN may be
M et O d S B Neareglésé&agnPéeptg\?aar?g::gg ;Zé:rr{g::llsr.%iz?é‘fﬁglr:ance Eg?reelatg?]et:‘re]ia Sﬁov\?safﬁnnuch KNN Imputation CpGEgri%iSng?nr;?:Snce vs. CpG variance capturing variation between tissue types and may furthermore be denoising the data (Figure
1.00 000 higher level of at _ : 6). It is also possible that many CpG sites have their nearest neighbors as array probes with
The k-nearest neighbors algorithm, or KNN, is a learnin 075 bgzweereﬁ\;ﬁeopr(;%ri::etigr:gr;nd 071 " Sample Mean Baseline methylation values that differ between tissue types.
- : , ' i T Figure 6. CpG-wise
: J . J . : . J % the ground-truth. The clustering o6 T ) P
algorithm that makes predictions of a single point based on 050 performance of KNN

against the variance of each DI S C u S S I O n

1500 of low Pearson correlations in e predictions on recount data
sites with very low variances ' BRI

can be explained by the nature

100  Of using Pearson correlations.

the average of the k-nearest surrounding values of its
group. Using WGBS data as a reference, we calculated the

0.25
1250

0.4 1

CpG site. RMSE is a better
metric for lower variance sites.

0.00

RMSE

The KNN algorithm, using WGBS data as a reference, is a viable method of

Pearson Correlation

genomic distance between all IHEC CpG sites that overlap s _ Incases where there is 031 83% of predicted sites imputation for DNAm data. Performance analyses showed high quality levels
with the lllumina Epic BeadChip array and those that do not eXtr?g‘e'y 'EW variance, R'\QSE 02- performed better than the of predictions with the IHEC data (Figure 2). Distances and nearest-neighbor
. ~0.50 rovides a better metric an : : : f
Overlap_ Based on these d|StanceS’ all probes were ranked 200 ghowed similar quality results . baseline. Calculatlo_ns are transferable between platform_s and give similar performance
by closest-neighbor order. We selected a k value of 32 ~0.75 20 those analyses as well, | ¥ . resu!ts (Figure 3). The use o_f Pearson cc_)rrelatlons a_nd RMSEs accounted
based it formance on a tunina set of data (Figure oo . e T Tt e for different performances with more variable CpG-sites across samples
ased on s perorma uning s (Figu 00 a0 D00 2000 2500 o R A atevarance T (Figure 4, 5, 6). Tissue analyses showed high performance of imputation
1). The prediction for each non-probe site becomes the . within tissues as well as similar correlation of inter-tissue methylation values
average of k nearest probes on the array. Site-wise Cross-Platform COmpanSOﬂ between predictions and ground-truths (Figure 8, 9). Future directions
i iInvolve EWAS studies with the recount methylation data as well as more
Pearson Correlatlons and RMSE Va_lu_es were Calculated to A Performance Comparison of WGBS and Recount Predictions B Performance Comparison of WGBS and Recount Predictions tissue analvsis in the WGBS data y
analyze the accuracy of these predictions. o 0.6 - y '
0.7 - O
Acknowledgements
KNN RMSE Performance forK =1,2,4,8,...,512 KNN Pearson Performance for K = 1,2,4,8,...,512 0.6 1
1837 e o Lt e, The Ernst Lab, BIG Summer Program, International Human Epigenome Consortium, National
18.0 ' ° 0.5 1 0.47 Institutes of Health Gene Expression Omnibus, NIH DP1DA044371, UCLA Jonsson
s ] ° © Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine, Stem
' 0.86 1 n 047 N 0.3 - o Cell Research Ablon Scholars Program (J.E.), NIH Training Grant in Genomic Analysis and
17.0 1 i = = 8 'y Interpretation T32HG002536, NSF and REU Award Number 1758002
¢ E 0.84 ° 0.3
16.5 g 0 0.2 1
1 References
15.5 - . 0.1 1
15.0 . o 0-17 — — Hendrik G. Stunnenberg et. al, The International Human Epigenome Consortium: A Blueprint for
- et e A1 1 1 o 1 Scientific Collaboration and Discovery, Cell, Volume 167, Issue 5, 2016, Pages 1145-1149, ISSN
ooz 48 e @64 18 256 502 o248 e @ ed 28 256 502 0.07 . . . ' . . . 0092-8674, https://doi.org/10.1016/j.cell.2016.11.007.
WGBS Recount Mean Baseline WGES Recount Mean Baseline

Maden, S. K., Walsh, B., Ellrott, K., Hansen, K. D., Thompson, R. F., & Nellore, A. (2023).
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Figure 1. K-selection performance on tuning set of data to ensure no over-fitting.
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