The Role of Viral Central Carbon Metabolism in Coral Reef Degradation
MEENA KHAN', Chibundu Umunna’, Isha Tripathi', Aydin Karatas', Bobbie Patton!, Ben Knowles'4

'BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA; “Department of Ecology and Evolutionary Biology, UCLA  Hopeful Monsters

meenabkhan707@gmail.com

————t— , ey v B o AR sl Tl il 3-Phosphoglycerate
0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 F L P ROA G Erythrose-4-Phosphate

infect bacterial hosts, replicate, and kill host cells via lysis.
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Viral metagenomes were purified and processed from seawater samples collected from 17 coral
reefs in the Pacific Ocean. They were then annotated by BLAST against the SEED database on
MG-RAST. The correlation between the frequency of genes in a given function and viral community
temperateness were assessed using Spearman’s Rho.
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Figure 3. Changes in redox gene frequency in central carbon Figure 4. Ecosystem compartment model incorporating viral
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