Introduction

- A multitude of scoring methods have been developed to determine the pathogenicity of genetic variants, using structural, probabilistic, and evolutionary considerations to generate a score that quantifies the impact of variants on complex diseases.
- As different scoring methods may represent diverse aspects of the variant, we attempted to develop an approach that captures the combinatorial patterns of these scores.
- Here we present ScoreHMM, a hidden Markov model that takes genomic tracks of multiple scores as input and learns states that summarize their patterns.
- 51 scoring methods were used from dbNSFP, a database developed for prediction and annotation of nonsynonymous SNPs across the human genome.
- Different scoring distributions across the genome account for variation of which qualities are taken into account when scoring an variant.

Pipeline

Improvements

- Regions of analysis can be expanded to other chromosomes, noncoding regions, and other types of variants.
- Find better ways to binarize due to different distributions amongst scores; find ways to arbitrarily break ties within the top 10% of scores
- Segmentation can be used to study other conditions and diseases besides autism such as significant GWAS variants and other potential genetic disorder

Figures

Discussion

Acknowledgements

- Clusters in the emission graph confer to sites in the genome that have similar intensity in pathogenicity based on qualities common amongst the related scores.
- The enrichment analysis shows some common states that are overexpressed across chromosome 21
- Future steps must be taken to find more commonalities among chromosomes and states.
- More enrichment analyses can be conducted with other disease phenotypes

The Ernst Lab
ChromHMM
Gencode
dbNSFP
BIG Summer Program

