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ABSTRACT BACKGROUND

METHODOLOGY

Genetic variation in yeast impacts fitness in various environments. Saccharomyces cerevisiae 
strains have diversified genetically due to evolution in different settings. To study the genetic 
differences that contribute to varying fitness, genome-wide association studies (GWAS) or 
meiotic recombination techniques are employed to map quantitative trait loci (QTL). The aim is 
to identify strains or genetic variants with enhanced fitness in maltose growth conditions from a 
pool of one thousand, three hundred, and eight yeast strains. Genomic DNA is extracted from 
each representative pool, sequenced, and analyzed, using non-negative least squares regression, 
to calculate genotype frequency differences before and after growth in maltose conditions. The 
anticipated result is the identification of genetic variations from strains better adapted to maltose 
conditions. From this information, a pipeline is created to identify strains with higher fitness and 
outlier strains in different conditions for genetic mapping.

• Saccharomyces cerevisiae: a yeast species that plays a pivotal role in its ability to carry out various fermentation processes.
• S. cerevisiae's genetic diversity is also influenced by its long history of domestication and continuous evolution alongside 
human activities like brewing and baking. 
• To better understand and harness this diversity, we use quantitative trait loci (QTL) mapping.
• One such trait of interest is maltose metabolism, crucial for brewing and baking processes. 
• By applying QTL mapping, we can identify specific regions in the yeast's genome associated with maltose utilization 

efficiency, ultimately leading to the development of strains with enhanced maltose fermenting capabilities.
• Some strains cannot grow in maltose. We should be able to see this signature in our phenotypic assay.

• This knowledge of genetic diversity and QTL mapping in S. cerevisiae opens up exciting avenues for tailored yeast strains that 
can optimize brewing and fermentation processes, ensuring the production of high-quality beverages and fueling advancements 
in biotechnology and food industries.
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RESULTS

Figure 1: A phylogenic tree of the thousand strains that are 
pooled together. Peter et al., 2018. Nature 556, 339–344.

Figure 2: The experimental design to identify outlier strains in maltose growth 
conditions. The thousand strains are pooled together at first in YPD, a complete 
media used to maintain yeast culture, and is, later, transferred to YPM, a maltose 
selective media, for a two-day growth period. A subset of eight and three-
hundred strains from the thousand collection undergo the same experimental set 
up.

• Due to technical difficulties, we were unable to sequence and analyze the 
pools as described.
• The anticipated results would be an increased prevalence of strains with the 
MAL gene loci, maltose utilization genes.
•We will be able to empirically test what the maximum complexity of pooling 
is by identifying the percentage of strains that drop out through the various 
subsets of pools.
• Additionally, we can assess the sequencing depth required to adequately 
capture the extent of complexity by analyzing the input culture.

• The resulting pipeline unlocks the ability to quantify growth differences in 
complex environments, such as sourdough.
• Once growth differences are quantified, we can link the difference in genetic 
variants with GWAS or QTL mapping by crossing outlier strains.
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Figure 3: gDNA extraction and final library preparation process. 
(a) gDNA was extracted from the Day 0 and Day 2 samples and 
transposases added. (b) tagmentation to cleave the gDNA and add 
adapters. (c) gDNA fragment with adapter attached. (d) 
polymerase chain reaction (PCR)

Figure 4: Non-negative least squares regression method to infer strain frequency. 
(a) assign nucleotide bases to binary vectors. (b) encode the haplotype database 
and pooled sequencing results. (c) estimating haplotype frequency. (d) linear 
equations are constructed for each base proportions for each SNP. Chang-Chang 
et al., (2015). Bioinformatics, Volume 31, Issue 4, February 2015, Pages 515–522

Figure 5: A genome-wide association study (GWAS) to 
correlate strain frequency to the inheritance of specific 
variants using delta strain frequency and single nucleotide 
polymorphism (SNP).


