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Our cohort  

# patients 106

Mean age 63.7

# stage I 89 (84.0%)

# Female 52 (49.1%)

# 5-year 
recurrence or 
lung-cancer 
death 

26 (24.5%)

# 5-year 
recurrence 
and lung-
cancer death 

17 (16.0%)

Median time 
to even in 
days for non-
censored 

774
(157 – 1637)

Median 
follow-up in 
days for 
censored 

1378.5
(54 – 2136)

CT detected lung 
cancer (N=295)

CT scans and WSIs 
available (N=295)

At least one contour 
annotation available 

(N=106)

Recurrence info 
available and within 5 

years (N=132)

Radiomic Feature Extraction
q 256 deep features were extracted using the HSCNN model [2].
q 200 Pyradiomics [3] features were extracted from intratumoral and 

peritumoral regions. 
§ Intratumoral region: the radiologist-outlined nodule region.
§ Peritumoral region: dilating the nodule contour to a 20-mm 

peritumoral radius and subtracting the nodule contour from the 
dilated contour to generate a ring-shaped region.

q Nodule-level features were aggregated into patient-level features. 

Pathomic Feature Extraction
q 512 deep features were extracted from each tile using a LUAD 

histologic subtype classifier (unpublished). 
q 27 hand-crafted features were extracted from each tile. 

§  The hand-crafted features describe immune cell density and 
spatial colocalization with tumor cells within each tile [4,5]. 

q Tile-level features were aggregated into patient-level features. 

Survival Analysis 
q Features were selected via the Maximum Relevance Minimum 

Redundancy (mRMR) algorithm individually from each modality.
q Cox proportional hazards regression model with ridge regularization 

was used as the survival analysis tool. 
q Cross-validation: 5-fold cross-validation with 10 repetitions, 60% 

training, 20% validation, and 20% held-out testing patient cases. 

Training C-index Validation C-index Test C-index
(R, P) 0.8914 ± 0.0262 0.6311 ± 0.1279 0.6336 ± 0.1302
(R, P, C) 0.8924 ± 0.0258 0.6299 ± 0.1276 0.6273 ± 0.1236
(R) 0.7845 ± 0.0342 0.5829 ± 0.1416 0.6117 ± 0.1429
(P) 0.8520 ± 0.0382 0.6338 ± 0.1413 0.5838 ± 0.1494
(C) 0.6271 ± 0.0528 0.4985 ± 0.1456 0.4770 ± 0.1614

LUAD (N=163)

Stage I or stage II 
(N=146)

Surgery as 
treatment (N=146)

Figure 1. Dataset inclusion 
criteria for patient selection.

Table 1. Clinical information and 
outcome of patients in our cohort 
selected from NLST [1]. 

Figure 2. Flowchart illustrating the proposed method of using integrated radiomic- and 
pathomic-based models to predict progression-free survival in early-stage LUAD.

Table 2. Mean and standard deviation of concordance index (C-index) using repeated 5-fold 
cross validation. (R, P) is the fused model with radiomic and pathomic features. (R, P, C) is 
the fused modal with radiomic, pathomic, and clinical features. (R) is the radiomic-only model. 
(P) is the pathomic-only model. (C) is the clinical-only model.

Modality Feature type Number selected

Radiomic 
Deep feature 1.86

Pyradiomics feature 5.14

Pathomic 
Deep feature 6.14

Hand-crafted feature 0.86

Table 3. Summary of the average number of features selected in each type throughout  
repeated cross validation. 

Conclusion 

q The combined radiomic-pathomic model provides the most promising 
results.

q Pyradiomics radiomic and deep pathomic features were often selected 
as the most informative. 

q This multi-modal approach underscores the value of combining 
multimodal data for prognostication and presents promising results 
toward informing treatment strategies in lung cancer care. 

q In the future, other intermediate fusion techniques, such as canonical 
correlation analysis, can be explored, and datasets from other 
institutions will be added to further improve and validate the current 
model.
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q Non-small cell lung cancer (NSCLC) patients have a 
relatively high rate of recurrence after surgery, 
reflecting a need to identify patients with a high risk 
of recurrence and offer personalized adjuvant 
therapies. 

q Images from radiology and pathology provide 
valuable information for the NSCLC recurrence 
prediction task.

q How can the combination of radiomic and pathomic 
features extracted from pre-surgery computed 
tomography (CT) scans and hematoxylin and eosin 
(H&E)-stained whole slide images (WSIs) effectively 
predict progression-free survival in early-stage lung 
adenocarcinoma (LUAD) patients?

q Progression-free survival is defined as the time from 
surgical resection to disease recurrence or lung 
cancer death.


