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Abstract

To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed 
using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three 
statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended 
haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) 
were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically 
significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response 
loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the 
peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican 
populations’ immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to 
encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in 
immune response. Our results shed light on past selective events influencing the host response to modern diseases, both 
pathogenic infection as well as autoimmune disorders.
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Significance
Infectious diseases are known to shape immune response alleles worldwide, and population-specific variants that pre
viously underwent natural selection could determine immunity to modern pathogens as well as the development of 
autoimmune disorders. Here, we identify a list of immune response genes in specific immune-related pathways that 
show extreme signatures of natural selection among an Indigenous Mesoamerican cohort. These genes are ideal can
didates for future studies identifying host genetic factors influencing both susceptibility and resistance to modern patho
gens. This study demonstrates the importance of natural selection in shaping the diversity of immune response alleles 
among Indigenous populations from Mexico.
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Introduction
Infectious diseases are among the strongest selective pres
sures acting on the human genome. Indeed, many genes 
subject to local positive natural selection (e.g., CD40) or bal
ancing natural selection (e.g., CCR5, genes of the MHC 
complex) are associated with susceptibility to infectious dis
ease (Hughes and Yeager 1998a; Bamshad et al. 2002; 
Sabeti et al. 2002a). Population genomic studies of global 
human populations show evidence of population-specific 
selection at immune response loci (Fan et al. 2016). 
Despite these advances, there remains a critical gap in our 
knowledge concerning selection at immune response loci 
among Indigenous Americans.

The diversity of infectious diseases in the Americas prior 
to colonial contact differed from the infectious diseases of 
Afro-Eurasia and Oceania. This was an outcome of both 
geographic isolation and differences in zoonotic biota 
(e.g., insects and fauna) that served as disease vectors. 
Therefore, selection likely did not act on the genomes of 
Indigenous Americans for variants that protected them 
from the Afro-Eurasian infectious diseases. Rather, pre- 
colonial populations in the Americas adapted to diseases 
that were locally prevalent, such as Chagas, tuberculosis, 
syphilis, and hepatitis (Merbs 1992; Klaus et al. 2010; Bos 
et al. 2014; Steverding 2014). Indigenous Americans’ isola
tion from Afro-Eurasian infectious diseases ended with dev
astating effects. Beginning with European colonial contact 
in the late 15th century, there was a steady influx of novel 
infectious diseases to the Americas such as variola virus 
(smallpox) and measles virus—diseases for which indigen
ous communities across the Americas did not possess spe
cific immunity. Across the Americas, famine, slavery, 
infectious disease, and warfare, contributed to the popula
tion collapse of various Indigenous American societies 
(Livi-Bacci 2006). Mitochondrial DNA data corroborate 
these historical accounts by demonstrating a population 
bottleneck 500 years ago coincident with European contact 
(O’Fallon and Fehren-Schmitz 2011). Accordingly, the evo
lutionary pressures for survival were strong. However, our 
knowledge of Indigenous American genetic variation in 
general and at loci related to infectious disease and im
mune response is limited. To date, only a few studies 
have identified genes under selection in Indigenous 
American populations (Eichstaedt et al. 2014; Lindo et al. 
2016; Crawford et al. 2017; Mychaleckyj et al. 2017; 
Reynolds et al. 2019; Avila-Arcos et al. 2020). Among 
Mesoamericans, selection at immune response loci may 
have been particularly robust given this region’s population 
density and level of urbanization throughout both pre- and 
post-colonial time periods (Smith 2005; Livi-Bacci 2006; 
Mummert et al. 2011). Furthermore, historical records 
from the colonial era indicate that novel infectious disease 
introduced by European colonizers (e.g., variola virus that 

causes smallpox) killed upwards of 90% of the indigenous 
communities in the region (Lockhart 1992; Feldman 1999; 
Restall et al. 2005; Leon-Portilla 2011). This high mortality 
rate led us to hypothesize that colonial contact left a 
strong signature of natural selection in the genomes of 
Mesoamericans at immune response loci.

Here, we interrogated SNP genotype data from 
Indigenous Mesoamericans for evidence of natural selec
tion. We expected to identify a high proportion of immune 
response genes and pathways under natural selection given 
the history of infectious disease exposure among 
Mesoamericans across time.

Results

Mesoamerican Population Characteristics

Our Mesoamerican cohort included 39 individuals geno
typed using the Affymetrix Genome-Wide Human SNP 
Array 6.0 containing 906,600 SNPs representing 25 Maya 
from the Yucatan Peninsula of Mexico, two Nahua, seven 
Mixtec, and five Tlapanec speakers from Guerrero, 
Mexico previously described in Bigham et al. (2010). 
Together, these individuals from different linguistic groups 
form a metapopulation that provides a shared history of se
lection in the population of Indigenous American particu
larly considering the much later diversification of 
languages than the dates calculated for the origin of the 
haplotypes under selection (Campbell 2000). Similar genet
ic data show that even though population substructure oc
curs among linguistic groups, the south forms a cluster with 
each other in Mesoamerica (García-Ortiz et al. 2021). We 
carried out statistical analysis using 857,481 autosomal 
SNPs that passed QC. We removed six individuals from 
the dataset that were first, second, or third-degree rela
tives, leaving us with a sample size of n = 33 individuals 
(supplementary table S1, Supplementary Material online; 
Manichaikul et al. 2010).

Indigenous Mesoamerican populations are known to ex
hibit varying degrees of European admixture (Bryc et al. 
2010; Magalhaes et al. 2012). We performed a principal 
component analysis (PCA) in Plink 1.9, to visualize the rela
tionship between our populations (fig. 1A; Purcell et al. 
2007; Chang et al. 2015). In order to identify and remove 
the effects of European admixture from our selection scan, 
we estimated global ancestry using ADMIXTURE (Alexander 
and Lange 2011). We tested for four-way admixture includ
ing ancestry from the Americas, Europe, Africa, and East 
Asia (fig. 1B). Individual admixture estimates ranged from a 
maximum of 100% Indigenous American ancestry to a min
imum of 75% Indigenous American ancestry, with most of 
our cohort possessing Indigenous Ancestry estimates above 
90% (supplementary table S1, Supplementary Material on
line). European admixture was the most common of the three 
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non-American ancestries (fig. 1C ). It was detected in 15 indi
viduals, ranging from 1% to 25%. Ten individuals had de
tectable East Asian ancestry ranging from 1% to 6%. 
African Ancestry was detected in two individuals at 3% 
and 2%.

Given the presence of non-Indigenous American ances
try within our final cohort of study participants, we as
signed locus-specific ancestry to each chromosomal 
segment/haplotype using RFMix (Maples et al. 2013). To 
correct for admixture, which could be incorrectly detected 
as regions of selection, we set non-Indigenous American 
ancestry segments to missing and imputed the missing gen
otypes with SHAPEIT4 using the Indigenous American an
cestry tracts from our dataset as the reference population 
(Delaneau et al. 2019). ADMIXTURE analysis performed 
on the masked and imputed Mesoamerican dataset indi
cated that this analysis effectively eliminated European 
and African ancestry from the Mesoamerican genomes 
(fig. 1D; supplementary tables S1 and S2, Supplementary 
Material online). After imputation, only three individuals 

had detectable East Asian ancestry less than 2%. 
Although recent scholarship such as Rodríguez-Rodríguez 
et al. (2022) has found substantial East Asian ancestry in 
Southern Mexico, we did not control for it as our IBD ana
lysis also failed to detect any significant East Asian seg
ments, therefore these are more likely due to shared 
ancestry rather than recent admixture events.

Mesoamerican Genomes Show Evidence of a Population 
Bottleneck

Mitochondrial DNA and historical records indicate that 
Indigenous American populations underwent a severe 
population bottleneck coincident with European contact 
beginning in the early 1500s (Lockhart 1992; Feldman 
1999; Restall et al. 2005; Leon-Portilla 2011; O’Fallon and 
Fehren-Schmitz 2011). This bottleneck is hypothesized to 
be in large part caused by the introduction of novel infec
tious disease into the region. To detect evidence for this 
bottleneck, we estimated the historical effective population 

A B

C D

FIG. 1.—Individual ancestry estimates. Individual ancestry was estimated for Mesoamerican study participants using ADMIXTURE. (A) Principle component 
analysis for Mesoamericans, CEPH Europeans (CEU: Northern and Western Europeans from Utah), East Asians (CHB: Han Chinese from Beijing + JPT: Japanese 
from Tokyo), and Africans (YRI: Yoruba). PC1 explains 41.35% of the variance, while PC2 explains 17.63% of the variance observed. (B) ADMIXTURE global 
estimates (K = 4) of ancestry for Mesoamericans prior to masking admixture and removing related individuals. (C) All 39 Mesoamerican individuals prior to 
removing related individuals and correcting for admixture. (D) ADMIXTURE results for N = 33 and K = 4, after removing admixed segments using RFMIX2 and 
imputing missing genotypes using the unadmixed individuals for that specific chromosome from our cohort.
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size of our cohort consisting of 33 Mesoamericans using 
the program AS-IBDne (Browning and Browning 2015; 
Browning et al. 2018). Our power is limited to reconstruct 
population effective size only to the first 50 generations 
as we used array data (Browning and Browning 2015). 
These data confirm that Mesoamericans went through a re
cent bottleneck, most likely associated with colonial con
tact (fig. 2). Fifty generations ago (∼1,250 years ago), 
Mesoamericans had a population size of roughly 86,400 
people (95% bootstrap CI: 37,400−163,000). The vertex 
of the curve, or highest population effective size, was 42 
generations ago with a population size of 94,100 
(95% bootstrap CI: 36,700–21,0000). The data changes 
by a factor of 10 (from 104 to 103) between generations 
15–16 (∼375–400 years ago). The base of the curve is evi
dent at eight generations ago (∼200 years ago) with an ef
fective population size of 4,800 (95% bootstrap CI: 3,270– 
6,130). While the confidence intervals are large throughout 
the dataset as a function of the small sample size analyzed, 
the effect of the bottleneck is noticeable with tighter 
95% confidence intervals throughout the bottleneck 
(supplementary table S3, Supplementary Material online). 
This supports the bottleneck previously observed for 
individuals of Indigenous American ancestry (Browning 
et al. 2018; Mooney et al. 2018).

Mesoamerican Genomes Show Evidence of Selection  
at Immune Response Loci

To detect evidence of positive directional selection in 
Mesoamericans, we performed a selection scan using 33 
Mesoamerican genomes whose non-indigenous chromo
somal ancestry tracts were masked and imputed. We iden
tified genomic signals of natural selection using three 
statistics: 1) locus-specific branch length (LSBL) (Shriver 
et al. 2004), 2) cross-population extended haplotype 
homozygosity (XP-EHH) (Sabeti et al. 2007; Pickrell et al. 
2009), and 3) integrated haplotype score (iHS) (Voight 
et al. 2006). The EHH-based haplotype tests, XP-EHH and 
iHS, were calculated in Selscan (Szpiech and Hernandez 
2014). In so doing, we leveraged both allele frequency differ
ence and haplotype homozygosity to identify putatively 
selected regions of the genome. LSBL was calculated for 
each SNP in the dataset with a MAF ≥ 0.05 (497,699 SNPs) 
by comparing Mesoamericans to East Asians and 
Europeans. We identified 4,976 SNPs falling in the top 1% 
of the empirical distribution out of 497,699 total SNPs ana
lyzed (fig. 3A). These SNPs exhibited Mesoamerican LSBL va
lues from 0.442 to 0.887. The SNP with the most extreme 
LSBL value was MRTFA intronic variant rs17425081 located 
on chromosome 22. XP-EHH and iHS were calculated for 
non-overlapping windows of 100 kilobase pairs (kb). 
XP-EHH compared Mesoamericans to East Asians at 
826,691 SNPs to look specifically for haplotypes present in 

Mesoamerican populations that arose after their split from 
Asian populations. iHS was calculated for 455,845 SNPs after 
filtering low-frequency variants. We identified 319 and 206 
statistically significant 100 kb windows at the 1% level for 
XP-EHH and iHS, respectively (fig. 3B and C). These windows 
were scattered across the autosomes. Chromosome 6 con
tained the most significant windows of any chromosome 
for both XP-EHH and iHS, with 59 and 28 windows, 
respectively.

To reduce false positives, we identified regions of the 
genome showing statistical significance for LSBL and at 
least one of the two haplotype tests, XP-EHH and iHS. To 
be considered significant, the XP-EHH and iHS windows 
were designated to be in the 1% tail by Selscan and that 
window needed at least one significant LSBL SNP also at 
the 1% level. Ninety-five significant regions at P < 0.01 
were identified for the LSBL/XP-EHH analysis and 63 for 
the LSBL/iHS analysis (fig. 4). These regions were scattered 
across the genome and found on every autosome except 
chromosome 9 and chromosome 22. For the iHS/LSBL ana
lysis, chromosomes 3 and 6 tied for the most significant re
gions of any chromosome, with 10 windows falling in the 
top 1% on each of the two chromosomes. Chromosome 
6 contained the most significant regions for the XP-EHH/ 
LSBL analysis with 15 windows, followed by chromosomes 
3 and 12 with 10 each. Most of the significant results for 
chromosome 6 were identified in and around the major 
histocompatibility complex (MHC), a region essential for 
the adaptive immune response.

One of the largest contiguous regions of statistical 
significance was found on chromosome 3 (chr3: 
12,300,001–12,700,001). This 4 MB region consisted of 
four, tandem significant 100 kb windows containing the 
following genes: PPARG, MKRN2, MKRN2OS, TSEN2, and 
RAF1. Twenty-four of the 64 SNPs genotyped for this re
gion fell in the top 1% of the empirical distribution for 
LSBL. Here, our most extreme LSBL value was 0.683 (rank 
116) for the intronic SNP rs4684106 located in TSEN2 fol
lowed by the TSEN2 upstream variant rs17279604 
(LSBL = 0.683, rank 117) and intronic variant rs17036821 
(LSBL = 0.683, rank 118). There were several other extreme 
LSBL values including the RAF1 non-coding transcript vari
ant rs1051208 (LSBL = 0.640, rank 274), the MKRN2OS in
tronic variant rs17036922 (LSBL = 0.593, rank 671), and 
the PPARG intronic variant rs17793693 (LSBL = 0.581, 
rank 824). The most extreme iHS value was for the regula
tory region variant to PPARG, rs9833097 (iHS = −3.73082). 
Furthermore, 11 of the 24 SNPs analyzed in this gene fell in 
the top 1% of the LSBL empirical distribution.

A second compelling result was the identification of two 
related regions on separate chromosomes. The first region 
was a 500 kb window located on chromosome 16 
(chr16:11,000,001–11,500,001) containing the immune 
response genes SOCS1 and CIITA, along with DEXI, 
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CELC16A, PRM1, PRM2, PRM3, TNP2, MIR548H2, and 
RMI2. This region, particularly CIITA, is known to directly 
regulate MHC Class II expression, the second related region 
for which we found strong evidence of natural selection 
(Devaiah and Singer 2013; Sarmah et al. 2019). 
Within the first region, a 300 kb window (11,200,001– 
11,500,001) was significant for XP-EHH/LSBL and two 
100 kb windows (11,000,001–11,100,001 and 11,200, 
001–11,300,001) were significant for iHS/LSBL. SNP 
rs4414511, located in the putative uncharacterized protein 
LOC400499, had the highest LSBL value (LSBL = 0.723, 
rank 49) for the region. Four additional extreme LSBL out
liers, rs17605165, rs40448, rs28769, and rs193773, 
ranked 64, 68, 69, and 74, respectively, were identified in 
this region. Each of these four SNPs were in the lincRNA 
RP11-396B14.2, lying immediately upstream (∼30 kb) of 
SOCS1. The second related region was a 200 kb window lo
cated on chromosome 6 (chr6:33,000,001–33,200,001) 
containing the genes HLA-DPA1, HLA-DPB1, HLA-DPB2 
(pseudogene), COL11A2, HCG24, HSD17B8, MIR219A1, 
RING1, RXRB, and SLC39A7. This region was significant 
for XP-EHH/LSBL and included a nested 100 kb window 
(33,000,001–33,100,001) that was significant for iHS/ 
LSBL. In fact, this region contained the highest number of 
significant LSBL/XP-EHH and LSBL/iHS windows of any re
gion analyzed. Our highest LSBL value was for rs3128918 

(LSBL = 0.752, rank 27), followed by rs3130578, 
rs3130179, rs3128952, and rs3130180 (ranked 98, 99, 
201, and 202, respectively). Eight additional SNPs fell in 
the 1% XP-EHH/LSBL tail. To resolve which HLA alleles 
were part of the signature of selection, we imputed the 
classical HLA alleles for HLA-DPA1 and HLA-DPB1 using 
the multi-ethnic HLA reference panel in the Michigan 
Imputation Server (Das et al. 2016; Luo et al. 2021). 
HLA-DPA1 was resolved to be HLA-DPA1*01:03 
(AF = 0.93, rsq = 0.67) and HLA-DPB1 was resolved to be 
HLA-DPB1*04:02 (AF = 0.89, rsq = 0.78). Given the high 
frequency in our dataset, these alleles form a single long- 
range haplotype, HLA-DPA1*01:03/DPB1*04:02. These al
lele frequencies and HLA haplotypes (HLA-DPA1*01:03/ 
DPB1*04:02) were cross-referenced and concordant with 
previously reported HLA allele frequencies across Mexico, 
Central, and South America in the Allele Frequency Net 
Database (AFND) (Gonzalez-Galarza et al. 2019). To further 
confirm our imputed HLA allele frequencies and rule out 
unknown alternatives contributing to our imputation re
sults, we accessed the publicly available high coverage 
whole genomes for individuals belonging to the Maya, 
Mixe, Mixtec, and Zapotec populations (N = 28) in the 
HGDP and SGDP projects (Mallick et al. 2016; Bergström 
et al. 2020). We used HLA-LA to call the DPA1 and DPB1 
HLA alleles at the G-group resolution level (Dilthey et al. 

FIG. 2.—Effective population size estimates. Effective population sizes were calculated using AS-IBDNe. The y-axis represents the effective population size 
(Ne). The x-axis represents the generation time. Mesoamericans experienced a bottleneck effect, with the lowest effective population size at eight generations 
ago (200 years ago, assuming a 25-generation time).
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2019). For DPA1, coverage ranged from 30.4 to 96.4, with 
an average of 45.5. For DPB1, the coverage ranged from 
18.9 to 70.9, with an average of 43.9. In this new dataset, 
DPA1*01:03’s frequency was 94.33% and DPB1*04:02’s 
frequency was 74.47%. While our DPA1*01:03 frequency 
was similar between the two datasets, 93% versus 
94.33%, our DPB1*04:02 frequency was higher in our da
taset, 89% versus 74.47%. However, both DPB1*04:02 
frequencies are high, giving us confidence in our 
imputation.

A third compelling result was a 200 kb window located 
on chromosome 5 (chr5:153,800,001–154,000,001) con
taining the genes GALNT10, HAND1, MIR3141, SAP30L, 
and SAP30L-AS1. For this window, 6 of the 18 SNPs tested 
for LSBL and all 54 of the SNPs tested for XP-EHH fell in the 
top 1% of the results. The intergenic SNP, rs4958377, ex
hibited the highest LSBL value, 0.580 (rank 829), followed 
by the non-coding transcript exon variant, rs2351485, lo
cated in lncRNA region CTB-158E9 (LSBL = 0.560, rank =  
1,149). The most extreme XP-EHH value within the window 
was 4.67 for SNP rs880083. Of note, the haplotype “core” 
for XP-EHH may be present just outside of the window, 
where rs7710430 had the max XP-EHH score for that re
gion (chr5:153,797,277, XP-EHH value = 4.761, LSBL =  
0.556, rank 1,207).

For our combined LSBL-haplotype analysis, we identified 
several other significant chromosomal regions containing 
genes involved in immune response pathways that stood 
out given what is known about Mesoamerican population 
history. They included regions on chromosomes 2, 5, 6, 8, 
12, and 15 that included the immune response genes 
CHIA, IL18R1, IL18RAP, DOCK2, CYP7A1, IL17F, RPAP3, 
ENDOU, and TCF12 (table 1). Windows containing these 
genes displayed LSBL values ranging from 0.791 (rank =  
10) for the DOCK2 intronic variant, rs264838, to 0.449 
for the CHIA intronic variant, rs1266828 (rank = 4,612). 
Five of these windows contained LSBL values falling in the 
top 200 and included the genes DOCK2, TCF12, RPAP3/ 
ENDOU, and CYP7A1. Of note, upstream from the 
RPAP3/ENDOU window lies an extreme LSBL value for 
the regulatory region variant, rs2051827 (LSBL = 0.837, 
rank = 7). Six windows were significant for XP-EHH with va
lues ranging from 2.43 for the regulatory region variant 
rs10201184 located in the window containing IL18R1/ 
IL18RAP to 4.02 for RPAP3/ENDOU intergenic SNP 
rs667610. Two windows contained significant iHS scores 
including DOCK2 (rs155239 = −3.70).

We performed gene ontology pathway enrichment 
analysis in DAVID (Huang et al. 2009a, 2009b) to identify 
overrepresented associations of genes and gene groups. 

A

B

C

FIG. 3.—Manhattan plots of selection-scan statistics. For each plot, the value of the statistic is represented on the y-axis. Chromosome location is depicted 
along the x-axis. The thick horizontal lines indicate significance thresholds for each test statistic. (A) Distribution of LSBL values across the genome for 
Mesoamerican branch length calculated using East Asians and CEPH European Americans as outgroups. The line represents the 1% significance. (B) Plot 
of the absolute value of iHS scores for Mesoamericans. The line indicates scores of 2. The proportion of scores above 2 for each window is taken into con
sideration for determining the 1% significance. (C) Plot of XP-EHH comparing Mesoamericans to East Asians. Values above indicate directional selection in 
the Mesoamerican population whereas values below 0 indicate direction selection in East Asians. The line represents the values above or below 2, which 
Selscan flags as potentially significant above the 5% level.
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We limited our analysis to the significant regions identified 
from the LSBL/XP-EHH or the LSBL/iHS analysis. DAVID ana
lysis identified 21 biological processes gene ontology (GO) 
terms for the LSBL/XP-EHH analysis (supplementary table 
S4, Supplementary Material online) and 16 biological pro
cesses GO terms for the LSBL/iHS analysis (supplementary 
table S5, Supplementary Material online). We also per
formed a DAVID analysis using the combined set of signifi
cant genes for both LSBL/XP-EHH and LSBL/iHS, identifying 
33 biological processes GO terms (supplementary table S6, 
Supplementary Material online). Several pathways related 
to immune function were identified including positive regu
lation of chemokine secretion, immune response, signal 
transduction, positive regulation of transcription from 
RNA polymerase II promoter, and positive regulation of 
interferon-gamma production. None of the fold enrich
ment P-values remained significant after correcting for mul
tiple tests.

In addition to our DAVID analysis, we performed a 
Reactome pathway analysis in SNP-NEXUS (Chelala et al. 
2009; Dayem Ullah et al. 2018; Jassal et al. 2019). Our 

iHS/LSBL hits falling in the 1% represent categories related 
to amino acid transport and transcriptional regulation 
(supplementary table S7, Supplementary Material online). 
For results in the 1% of the XP-EHH/LSBL analysis, our 
strongest signals were related to homeostasis, IL-18 signal
ing, TGF-β signaling, and pro-inflammatory response 
(supplementary table S7, Supplementary Material online). 
The combined XP-EHH/iHS/LSBL analysis introduced add
itional signal transduction categories (supplementary 
table S7, Supplementary Material online). Expanding the 
analysis to the 5% cutoff, we see overrepresentation of 
PPARG-related transcription factors, intracellular signaling 
by second messengers, and interferon-gamma signaling, 
among other immune-related categories (supplementary 
tables S8–S10, Supplementary Material online).

To determine whether imputing from our own dataset 
overly homogenized regions and biased our selection 
scan results, we generated admixture-corrected allele fre
quencies using the program Ohana with K = 4 to control 
for any European, East Asian, and African genetic contribu
tions to Mesoamericans (Szpiech and Hernandez 2014; 

iHS and LSBL

XP-EHH and LSBL

iHS, XP-EHH, and LSBL

Statistical Test

FIG. 4.—Genomic distribution of the 1% windows for iHS and XP-EHH when paired with LSBL. Regions that were in the 1% distribution for all three 
statistical tests are shaded in a lightest color. For both of the combined statistical tests, the majority of windows were found on chromosome 6, followed 
by chromosome 3.
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Cheng et al. 2022). Using the Ohana matrix results, we re
calculated LSBL on the Mesoamerican admixture-corrected 
allele frequencies. Our significant results remained 
significant in this new analysis. For instance, IL18R1 SNP 
rs4851007, had an LSBL value of 0.504 (P-value 
0.0047) for our original calculations and 0.493 (P-value 
0.0027) for the calculations using Ohana. Admixture 
adjusted LSBL values for our top candidate loci are reported 
in table 1, and they all remained in the 1% tail of LSBL va
lues. We also tested for the effects of imputation on 
XP-EHH and iHS. To do this, we used the original dataset 
(with admixture and without imputation) to recalculate 
XP-EHH/iHS and normalized as described above. Eight of 
the 11 regions under selection remained in the 1% signifi
cance for the haplotype tests (table 1). Three regions that 
contained HLA-DPA1, HLA-DPB1, HLA-DPB2, RING1, 
RXRB, IL17F, and TCF12 dropped to the 5% significance le
vel but only in the haplotype tests. For these regions, we re- 
estimated iHS and XP-EHH using only individuals with 
Indigenous American ancestry. We find that even though 
these regions fell to the 5% significance using the admixed 
individuals, using an unadmixed cohort brings the results 
back into the 1%. Therefore, our methods show that cer
tain important immune loci could be missed when looking 
at an admixed cohort with a small sample size.

To gain insight into the age and spread of putatively se
lected genomic regions identified here, we generated 
haplotype age estimates for eleven haplotypes using ex
tended haplotype homozygosity (EHH) scores based on 
the results of gene grouping related to immune response 
from the DAVID analysis. To do so, EHH scores were log- 
transformed and linearly regressed to the distance from 
the core SNP (Sabeti et al. 2002b; Voight et al. 2006; 
Szpiech and Hernandez 2014). The haplotypes showing 
evidence of selection range in age from roughly 4,000 to 
10,000 years (table 2). This translates to 162–380 genera
tions when assuming a 25-year generation time. Thus, their 
introduction predates colonial contact and has implications 
for natural selection operating on standing variation. For 
the HLA haplotype, HLA-DPA1*01:03/DPB1*04:02, we es
timated that it arose 6,000 years ago, and then increased in 
frequency through natural selection in response to infec
tious diseases.

Discussion
The pathogenic history of the Americas has undoubtedly 
impacted the suite of genetic variation present among 
Indigenous Americans. Nonetheless, our knowledge of 
Indigenous American genetic variation at immune response 
loci is incomplete, leaving a critical gap in our understand
ing of the genomic consequences of infectious disease ex
posure in the Americas. We hypothesized that genetic 
variation at immune response loci was shaped by natural Ta
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selection among Indigenous Americans during their unique 
history of infectious disease exposure, including exposure 
to pathogens prevalent in the Americas prior to European 
contact as well as newly introduced infectious diseases ar
riving during the contact period. We show that 
Mesoamerican populations experienced a sizeable popula
tion bottleneck coincident with the arrival of Europeans in 
the Americas. This lends support to the hypothesis that 
newly introduced infectious diseases shaped extant pat
terns of genomic variation. To this end, we find evidence 
of natural selection in regions of the genome involved in 
the body’s immune response in support of this hypothesis. 
Together, our data highlight the importance of immunity 
and adaptation among Mesoamerican populations 
whether deep in our evolutionary past, as recent as colonial 
contact, or continuously shaped by recent infectious 
diseases.

Leveraging two orthogonal population genomic statis
tics that detected departures from neutrality, LSBL and 
XP-EHH/iHS, we identified signatures of natural selection 
in regions of the genome involved in the body’s immune re
sponse. We identified 100 and 57 statistically significant 
windows for the LSBL/XP-EHH and LSBL/iHS analysis, re
spectively. Of these, three stood out as particularly compel
ling with respect to immune adaptation. The first was a 
4 MB region located on chromosome 3 (chr3:12,300,001 
− 12,700,001) containing the gene PPARG, or 
Peroxisome Proliferator-Activated Receptor Gamma. It is a 
ligand-activated transcription factor that contributes to 
gene regulation as part of the PPAR-γ signaling pathway, 
which regulates lipid and glucose metabolism through 
the expression of cytokines and chemokines (Le Menn 
and Neels 2018). Importantly, the PPAR-γ signaling path
way activates both pro- and anti-inflammatory macro
phages (Chawla 2010). The second was a region on 
chromosome 5 containing the gene GALNT10. GALNT10 
interacts with MHC complex genes as well as various inter
leukin cytokines (Kakoola et al. 2014) and is responsible for 
regulating CD4+ T cells infiltration of macrophages and de
creasing granzyme B expression in CD8+ T cells (Zhang et al. 
2020). CD4+ T cells are crucial to immune memory and 
CD8+ T cells are essential for protection against viruses, 
intracellular bacterial infection, and tumor cells 
(Worthington et al. 2012). It should be cautioned, given 
the continuous legacy of infectious disease exposure in 
Mesoamerica, any gene(s) in this region could have been 
the target of past selection.

The third compelling result included two related regions 
residing on separate chromosomes 6 and 16. The chromo
some 6 result was anticipated given the presence of the 
MHC, a known region of high genomic diversity that con
tains 224 genes largely related to immunity (Trowsdale 
1993; de Bakker et al. 2006). The MHC complex has been 

identified numerous times in natural selection scans per
formed in human populations and across other mammalian 
and aquatic species (Hughes and Yeager 1998b). We hy
pothesized that the haplotype, HLA-DPA1*01:03/ 
DPB1*04:02, is most likely the target of selection given its 
primary role as a cell surface receptor in antigen-presenting 
cells—crucial to recognizing foreign pathogens. Hepatitis B 
(HB) may have driven selection on this haplotype across 
time given the continuous presence of pre- and post- 
colonial lineages of the virus. Both HLA-DPA1*01:03 and 
HLA-DPB1*04:02 alleles independently have been shown 
to be protective for HB infection and known to play a role 
in developing long-term seroprotective immunity following 
HB vaccination among East Asian populations (Chung et al. 
2019; Ou et al. 2019, 2021; Wang et al. 2019, 2021; 
Sanchez-Mazas 2020). HB infection previously was thought 
to have originated in the Americas, but ancient DNA ana
lysis has demonstrated that it most likely co-evolved with 
humans as we dispersed across the globe (Muhlemann 
et al. 2018). Therefore, lineages existing in the Americas 
and novel HB lineages introduced through European con
tact, in conjunction with shifting social demographics, likely 
shaped the HLA diversity among Indigenous American po
pulations although uncertain to know for certain 
(Guzman-Solis et al. 2021). The second related region on 
chromosome 16 contained the genes, class II, major histo
compatibility complex transactivator (CIITA), known to 
positively regulate chromosome 6 MHC Class II expression, 
and suppressor of cytokine signaling 1 (SOCS1) (Reith et al. 
2005; Krawczyk and Reith 2006; Devaiah and Singer 2013). 
SOCS1 activation inhibits CIITA activation and therefore 
subsequent MHC Class II expression as part of the IFN-γ 
pathway (O’Keefe et al. 2001). We identified a cluster of 
SNPS exhibiting extreme LSBL values residing in the 
lincRNA, RP11-396B14.2. The gene targets of this 
lincRNA are currently unknown, but it lies immediately up
stream of SOCS1. This provides evidence for natural selec
tion acting on variation affecting transcription. Together, 
these two related windows on chromosomes 6 and 16 illus
trate the potential importance of selection acting on com
plimentary regions.

Given the lack of publicly available data for larger co
horts of Indigenous American populations, we did not com
pare Mesoamerican genomes to other Indigenous 
American genomes to identify region-specific selective 
events. Therefore, our study design was unable to distin
guish if a selective event was specific to Mesoamericans 
or affected Indigenous American populations more broad
ly. However, by comparing our results to other research 
identifying evidence of selection in the Americas, we 
were able to identify genes or chromosomal regions that 
overlap across studies or were distinct to our analysis. 
One particularly noteworthy gene with overlapping 
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evidence of selection in our Mesoamerican cohort as well as 
among the Amerindian ancestry component of Brazilians 
from Mychaleckyj et al. (2017) was CIITA. In two comple
mentary LSBL analyses performed by Mychaleckyj et al. 
(2017), one promoter region SNP, rs6498115, and one in
tronic SNP, rs45601437, from this gene where among the 
topmost differentiated SNPs. rs6498115 was included on 
the Affymetrix 6.0 array, whereas rs45601437 was not. In 
our analysis, rs6498115 was among four SNPs in the 
CIITA region that fell in the top 1% of the empirical distri
bution for LSBL. This overlap between our studies lends fur
ther support to the hypothesis that CIITA variation was the 
target of selection during the Asia to America migration or 
during the peopling of the Americas in a population ances
tral to both Mesoamericans and Brazilians.

Genes in pathways that control the body’s response to 
infectious disease, as well as to climate, altitude, and meta
bolic traits, show the strongest selection signatures in the 
human genome (Sabeti et al. 2007; Grossman et al. 
2013). Notably, our immune system is highly redundant 
and compensates for factors such as novel genetic variation 
that may be detrimental to specific pathways. Furthermore, 
genetic markers regulating the immune response are gen
eral and diverse in function. For these reasons, evolutionary 
changes in allele frequencies brought about by natural se
lection to more ancient pathogens are likely to affect the 
pathogenesis of modern infectious diseases. For instance, 
CIITA continues to be important by providing resistance fac
tors to modern infectious diseases such as Ebola virus and 
SARS-CoV-2 (Bruchez et al. 2020), and IL18R1 has been 
shown to confer protection against more severe clinical 
dengue phenotypes through IL1α downregulation (Yeo 
et al. 2014). However, not all genomic variation is protect
ive against modern infectious agents. Variants in SOCS1 in
crease susceptibility to and disease progression of Influenza 
A and SARS-CoV-2 (Bhattacharjee and Banerjee 2020; 
Johnson et al. 2020; Lee et al. 2020). Therefore, we can 

leverage regions of the genome showing signatures of se
lection to identify resistance and/or susceptibility loci to 
modern pathogenic infection. This approach can be a par
ticularly attractive strategy for studies with a limited-sized 
study population (Werren et al. 2021). In fact, focusing on 
genes under selection has proven beneficial in smaller 
sample sizes as demonstrated by several studies taking 
this approach (Park et al. 2012; Schwarzenbacher et al. 
2012; Karlsson et al. 2013; Perry et al. 2014). The immune 
response genes identified here can provide an excellent 
starting point for genomic susceptibility studies of infec
tious diseases burdening modern Mesoamerican popula
tions, while also providing greater statistical power to 
test fewer variants in smaller cohorts. Furthermore, they 
may be useful in studies seeking to understand cross- 
immunity between various infectious diseases of the 
period.

Similarly, targeting immune response genes subject to 
past natural selection can aid in the study of population- 
specific variants related to metabolic disease, autoimmune 
disease, or cancer given that many of the pathways are over
lapping. For example, PPARG and CYP7A1 regulate choles
terol homeostasis and metabolism, with documented 
effects of CYP7A1 polymorphisms on statin metabolism 
across worldwide populations (Chinetti et al. 2001; 
Kajinami et al. 2004; Thompson et al. 2005; Baker et al. 
2010; Wei et al. 2011; Li et al. 2013; Kadam et al. 2016). 
The IL-17 pathway, of which IL17F is a part of, is an import
ant target for various autoimmune disorders (Hu et al. 2011), 
and a variant in GALNT10 is highly associated with asthma 
susceptibility in a meta-analysis of populations of Latin 
American ancestry (Torgerson et al. 2011). Follow-up studies 
to our selection scan using highly differentiated alleles in po
pulations of Mesoamerican ancestry would increase statistic
al power to identify associations with complex disease as 
exemplified by the study of Ko et al. (2014) on risk alleles in
volved in dyslipidemia.

Table 2 
Estimate of Haplotype Ages Using EHH

Gene Chr Window (hg19) r2 Generations 
ago

Generations (95% 
CI)

Age  
(25 yr gen)

Age (95% CI)

CHIA 1 111,800,001–111,900,001 0.61 162.23 145.25–179.21 4,055.85 3,631.31–4,480.25
IL18R1, IL18RAP 2 103,000,001–103,100,001 0.87 335.29 322.24–348.34 8,382.20 8,056.00–8,708.50
PPARG, MRKN2, RAF1 3 12,300,001–12,700,001 0.86 320.46 298.43–342.49 8,011.50 7,460.71–8,562.27
GALNT10 5 153,800,001–154,000,001 0.93 192.58 187.92–197.25 4,814.55 4,697.97–4,931.14
DOCK2 5 169,100,001–169,200,001 0.90 212.81 205.39–220.24 5,320.35 5,134.83–5,505.90
HLA-DPA1, HLA-DPB1, HLA-DPB2, 
RING1, RXRB

6 33,000,001–33,100,001 0.89 240.13 231.13–249.13 6,003.28 5,778.34–6,228.23

IL17F 6 52,100,001–52,200,001 0.87 199.11 188.97–209.24 4,977.68 4,724.29–5,231.06
CYP7A1 8 59,400,001–59,500,001 0.97 362.09 353.06–371.11 9,052.28 8,826.50–9,278.00
ENDOU 12 48,000,001–48,200,001 0.65 264.20 233.38–295.01 6,605.00 5,834.56–7,375.24
TCF12 15 57,200,001–57,500,001 0.77 380.64 355.14–406.15 9,516.00 8,878.515–10,153.65
SOCS1, CIITA 16 11,000,001–11,500,001 0.91 186.63 176.85–196.41 4,665.78 4,421.33–4,910.23
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There were several limitations to our study. First, our re
sults are based on SNP microarray data, which inherently 
suffers from ascertainment bias. The Affymetrix 6.0 chip 
was designed to capture the diversity and haplotype struc
ture of the HapMap Project populations, European 
Americans of northern and western European descent 
(CEU), East Asians (JPT and CHB), and Yorubans (YRI). 
Linkage disequilibrium blocks and SNP distribution is ex
pected to differ in Mesoamerican populations. Therefore, 
our analysis may have failed to identify candidate genes 
and gene regions for natural selection, but it is unlikely to 
suffer from a high rate of false positivity. Additionally, this 
SNP microarray has been used successfully to identify signa
tures of natural selection in several human populations in
cluding Indigenous Americans, cementing its usefulness 
in population genomics studies of natural selection 
(Bigham et al. 2010). Second, the haplotype tests used in 
our analysis required ancestral allele information for each 
SNP. Any SNP without this information was removed 
from the XP-EHH and iHS analyses. As a result, several 
chromosomal windows contained insufficient SNP density 
for calculations of XP-EHH and iHS. Lastly, our analysis for 
effective population size was limited due to the number 
of individuals included in the analysis and the array ascer
tainment bias, leading to wider confidence intervals. 
However, a population bottleneck with much smaller con
fidence intervals was clearly visible, coinciding with the time 
period of colonial contact. A better designed SNP array or 
the interrogation of sequencing data would remedy these 
caveats in future studies.

Conclusions
We present the results of a natural selection scan per
formed in Indigenous Mesoamerican populations from 
Mexico. We find evidence for a population bottleneck coin
cident with the arrival of Europeans to the Americas and 
natural selection in genes related to both adaptive and in
nate immunity. We suggest that past selective events 
influence the host response to modern diseases, both 
pathogenic infection as well as autoimmune disorders. 
Therefore, searching for signatures of past natural selection 
in genes related to immune function is a particularly attract
ive strategy for identifying host genetic factors influencing 
both susceptibility and resistance to disease. Together, our 
findings provide valuable insight into Mesoamerican popu
lation history and identify candidate loci for studying loca
lized, biological responses to modern infectious and 
autoimmune disease.

Methods

Populations

Our Mesoamerican cohort included a total of 39 individuals 
representing the following populations: Twenty-five Maya 

from the Yucatan Peninsula of Mexico, two Nahua, seven 
Mixtec, and five Tlapanec speakers from Guerrero, 
Mexico previously described in Bigham et al. (2010). We ob
tained publicly available data from The 1000 Genomes 
Project Consortium for the following control populations: 
60 Europeans of Northern and Western European ancestry 
(CEU), 90 East Asians from Beijing, China (CHB) and Tokyo, 
Japan (JPT), and 90 Yoruba from Ibadan, Nigeria (YRI) 
(International HapMap Project 2003; The 1000 Genomes 
Project Consortium 2012, 2015).

Genome-wide SNP Data

All samples were previously genotyped using the Affymetrix 
Genome-Wide Human SNP Array 6.0 containing 906,600 
SNPs (Bigham et al. 2010). We analyzed autosomal SNPs 
with call rates >95. The X and Y-chromosome as well as 
mitochondrial DNA (mtDNA) SNPs were excluded from 
our analyses as we chose to focus on the autosomes. No 
SNPs were removed based on departure from Hardy- 
Weinberg equilibrium (HWE) as this could potentially re
move SNPs under selection that would mimic HWE depar
tures. After QC, we carried out statistical analysis using 
857,481 autosomal SNPs.

Phasing and File Manipulation

All files were haplotype-phased using SHAPEIT4, processed 
using PLINK 1.9/2.0, and manipulated using VCFtools and 
BCFtools (Purcell et al. 2007; Li et al. 2009; Danecek et al. 
2011; Chang et al. 2015; Delaneau et al. 2019). 1000 
Genomes Project phase 3 populations were used for phas
ing the SNP data (The 1000 Genomes Project Consortium 
2015).

Relatedness

We calculated relatedness using kinship coefficients as esti
mated with the Kinship-based INference for Genome-wide 
association studies (KING) (Manichaikul et al. 2010). We re
moved six individuals from our dataset that were first, se
cond, and third-degree relatives, leaving us with a sample 
size of n = 33 individuals.

Admixture Analysis

PCA was conducted in PLINK 1.9 (Purcell et al. 2007; Chang 
et al. 2015). Global estimate of admixture for each 
Mesoamerican individual (n = 39) was calculated using an 
unsupervised model in ADMIXTURE (K = 4) (Alexander 
and Lange 2011). Chromosomal segment ancestry was es
timated using RFMix2, assuming approximately 20 genera
tions since initial admixture, which corresponds to 
admixture on Spanish encomiendas in the Yucatan 
(Machuca Gallegos 2016); (Maples et al. 2013). A 3-popu
lation admixture model between Indigenous Americans 
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(SGDP), Africans (YRI), and Europeans (CEU) was assumed, 
as we believe the segments containing East Asian ancestry 
were due to shared ancestry and not a result of admixture. 
We used the Viterbi segment assignments to extract haplo
types demonstrating admixture, set genotypes in these re
gions as missing using bedtools, and imputed the missing 
segments on each chromosome with PBWT imputation in 
SHAPEIT4 using a customized reference panel (Quinlan and 
Hall 2010; Quinlan 2014; Delaneau et al. 2019). 
This customized reference panel was designed on a 
chromosome-by-chromosome basis comprised of our 
own unadmixed Mesoamerican individuals for that 
chromosome to impute the “missing” segments 
(supplementary table S2, Supplementary Material online). 
Given that the proportions of admixture were small, we 
imputed off our own dataset as the homogenization of 
haplotypes would be minimal.

Ancestral Alleles

Ancestral alleles were queried from the 1000 Genomes 
Project phase 3 VCF files using BCFtools (Li et al. 2009). 
VCF files were recoded using PLINK 2.0 to preserve phasing 
information (Purcell et al. 2007; Chang et al. 2015). The da
taset used for XP-EHH and iHS contained 841,217 SNPs, as 
only SNPs with ancestral allele information were used for 
haplotype testing.

Estimating Historical Effective Population Size

To estimate effective population size in our cohort, and ac
count for admixture, we used the Ancestry-specific Identity 
by Descent Effective Population size (AS-IBDne) (Browning 
et al. 2018). We used van Eeden et al. (2022)’s adapted 
snakemake AS-IBDne pipeline to calculate the Indigenous 
American effective population size in our 33 
Mesoamericans (https://github.com/hennlab/AS-IBDNe). 
The primary deviation from the original AS-IBDne method 
is that this pipeline incorporates the local ancestry from 
RFMix2 instead of the RFMix 1.5.4 output. For references, 
we used 22 Indigenous Americans from the SGDP project, 
22 Han Chinese, 22 European Americans, and 22 Yoruba 
from the HapMap project (International HapMap Project 
2003; Mallick et al. 2016). Breaks and gaps in the IBD seg
ments caused by phasing or genotype errors were filtered 
using the merge-ibd-segments program as part of the 
Refined IBD suite, setting no more than one discordant 
homozygote, and removing IBD segments shorter than 
0.6 cM (Browning and Browning 2013). Historical effective 
population size and its 95% confidence were calculated 
using default parameters with a filter to analyze segments 
larger than 4 cM as appropriate for array data in IBDne 
(Browning and Browning 2015). A generation time of 25 
years was assumed to transform the generations ago into 
years before present. Results were restricted to 50 

generations before present as IBDne underestimates effect
ive population size for SNP array data (supplementary table 
S3, Supplementary Material online; Browning and 
Browning 2015). After QC and filtering our IBD results, 
we only yielded AS-IBDne results for Indigenous 
American, European, and African ancestry. No putative 
East Asian segments passed our filters. As we are primarily 
interested in the effective population size of our 
Mesoamerican cohort, we only used the output corre
sponding to Indigenous American ancestry.

Selection Scan

We employed three statistics to identify regions in the gen
ome showing statistical evidence of natural selection: 1) 
LSBL (Shriver et al. 2004), 2) XP-EHH (Sabeti et al. 2007; 
Pickrell et al. 2009), and 3) iHS (Voight et al. 2006). LSBL 
compared Mesoamericans against European Americans 
and East Asians. We filtered the dataset for SNPs with an 
MAF > 0.05, which left us with 497,699 SNPs to analyze 
for LSBL. Fst values were computed for each SNP using 
Weir-Cockerham’s equation (Weir and Cockerham 1984; 
Shriver et al. 2004; Akey 2009; Bigham et al. 2010). 
Statistical significance was determined using an empirical 
distribution. PE(x) = (number of loci > x)/(total number 
loci) using a significance threshold of α = 0.01 (Akey et al. 
2002). LSBL results were then aggregated into 100 kilobase 
pair windows, that matched with the XP-EHH and iHS 
coordinates.

XP-EHH and iHS were calculated in Selscan (Szpiech and 
Hernandez 2014). XP-EHH was calculated for 826,691 
autosomal SNPs, whereas iHS was calculated for 455,845 
autosomal SNPs after filtering out low-frequency variants 
as this statistic was not designed to capture low-frequency 
variant information or alleles near fixation. XP-EHH was 
genome-wide normalized using the norm function. iHS 
was standardized based on allele frequency bins, normaliz
ing the SNPs in quantiles organized by similar frequencies, 
again using the norm function. We grouped each haplo
type statistic into non-overlapping windows of 100 kb 
pairs. We identified regions with the longest haplotypes 
reaching significance thresholds of α = 0.01. For XP-EHH, 
we compared Mesoamericans to East Asians to look specif
ically for haplotypes present in Mesoamerican populations 
that arose after their split from Asian populations. For 
iHS, the windows were binned by the number of SNPs for 
quantile estimation of percentile using Selscan’s norm func
tion. iHS scores were not computed for a MAF < 0.05. 
Windows with fewer than 10 SNPs were dropped from ana
lysis, which included the loss of 18,779 SNPs in the iHS da
taset and 24,245 in the XP-EHH dataset. Only windows in 
the 1% tail of bin distribution were considered. We found 
316 XP-EHH windows and 203 iHS windows significant at 
the 1% level.
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LSBL was paired the XP-EHH and iHS haplotype tests. 
Only windows that fell within the 1% tail for both paired 
tests were considered as candidates for positive selection. 
Here, we find that only 57 iHS plus LSBL windows and 
100 XP-EHH and iHS windows passed this threshold.

We tested how admixture and imputing from our own 
dataset affected our allele frequency analyses by using 
the program Ohana with our merged dataset consisting 
of the Mesoamerican cohort plus CEU, YRI, CHB + JPT. 
This program analyzes population structure and outputs 
admixture-corrected allele frequencies (Cheng et al. 
2022). We conducted a supervised population structure 
analysis with K = 4, and then used the output matrix of 
admixture-corrected allele frequencies to calculate pairwise 
Fst and LSBL for each SNP for the same populations used 
above. These results validated our original LSBL findings 
for our candidate regions under selection.

As our Allele frequency test was unaffected by the im
putation, we determined that our imputed dataset had 
been minimally affected by cryptic population substructure 
by homogenizing certain regions. To test this, we re-ran iHS 
and XP-EHH and normalized for the entire dataset with ad
mixed individuals at the locus of interest, if the region was 
still in the 1% further analysis was not necessary. If the re
gion dropped out of the 1% significance, a separate run 
was conducted for a subset of individuals who were unad
mixed at the window. To determine who was unadmixed at 
each specific locus, we used a 4-population admixture 
model between Indigenous Americans (SGDP), Africans 
(YRI), Han Chinese (CHB), and Europeans (CEU). We consid
ered each of the window assignments, pulling out only 
those individuals for which an Indigenous American ances
try was reported in both the paternally and maternally in
herited chromosomal haplotypes.

Annotation of Regions

For both the selection scan and introgression analysis, win
dows were annotated for genes using the bedmaps option 
from BEDOPS tools (Neph et al. 2012).

HLA Allele Calls

HLA allele calls were imputed using the multi-ethnic HLA 
(version 1.0 2021) reference panel as part of the 
Michigan Imputation Server HLA-TAPAS pipeline (Das 
et al. 2016; Luo et al. 2021). QC criteria used were MAF  
> 0.01 and rsq > 0.3 (Pistis et al. 2015). To confirm accuracy 
of the HLA calls, we downloaded the high coverage align
ment files for the HGDP and SGDP individuals from 
Central/Southern Mexico through the European 
Bioinformatics Institute (EMBL-EBI) endpoint on GLOBUS 
(Mallick et al. 2016; Bergström et al. 2020). These indivi
duals included 21 Maya, 3 Mixe, 2 Mixtec, and 2 Zapotec. 
HLA calls were generated using HLA-LA, which takes the 

alignment files and realigns them to a graph genome 
(Dilthey et al. 2019). One Zapotec sample failed to run 
and was removed from our analysis. Each individual’s 
HLA-DPA1 and DPB1 calls with coverage and probability 
are available in the supplementals.

Estimating Haplotype Ages

To estimate the haplotype age, we used a method that 
employs EHH scores and assumes a starlike phylogeny 
to assess the age of decay from a core marker (Reich 
and Goldstein 1999; Sabeti et al. 2002b; Voight et al. 
2006). We calculated the EHH statistic for our core SNPs 
using Selscan v1.3.0 until EHH decay reached 0.05 
(Hardwick et al. 2014; Szpiech and Hernandez 2014). 
Given that EHH≈Pr(Homozygosity), or the probability of 
homozygosity, we can use the following equation:   
Pr(Homozygosity)=e−2RG, R = haplotype length in M 
(morgans), G = generation time marker (Reich and 
Goldstein 1999; Sabeti et al. 2002b; Voight et al. 
2006). This equation can be rearranged and reduced to 
a simple slope-intercept form (y = mx + b) through the 
origin (b = 0) by taking the natural log of the EHH values 
and doubling the distance in morgans from the core, 
which gives us the equation −ln(EHH) = G × 2R. This re
arrangement of the data allows us to determine the gen
eration time (slope of equation) since the haplotype arose 
using a linear regression (Hardwick et al. 2014). We calcu
lated the regression coefficients using a linear model 
through the origin and generated a 95% confidence in 
R (Team 2013). The raw output, with residuals and coef
ficients, is available in the supplementals. To calculate a 
rough estimate of age in years, we assumed a 25-year 
generation time.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).

Data Availability
Data will be shared on the author’s GitHub page: https:// 
github.com/obedaram/Mesoamerican-Data.
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