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Abstract

Motivation: Genome-wide maps of epigenetic modifications are powerful resources for non-coding genome annota-
tion. Maps of multiple epigenetics marks have been integrated into cell or tissue type-specific chromatin state anno-
tations for many cell or tissue types. With the increasing availability of multiple chromatin state maps for biologically
similar samples, there is a need for methods that can effectively summarize the information about chromatin state
annotations within groups of samples and identify differences across groups of samples at a high resolution.

Results: We developed CSREP, which takes as input chromatin state annotations for a group of samples. CSREP
then probabilistically estimates the state at each genomic position and derives a representative chromatin state map
for the group. CSREP uses an ensemble of multi-class logistic regression classifiers that predict the chromatin state
assignment of each sample given the state maps from all other samples. The difference in CSREP’s probability
assignments for the two groups can be used to identify genomic locations with differential chromatin state
assignments. Using groups of chromatin state maps of a diverse set of cell and tissue types, we demonstrate the
advantages of using CSREP to summarize chromatin state maps and identify biologically relevant differences be-
tween groups at a high resolution.

Availability and implementation: The CSREP source code and generated data are available at http://github.com/erns
tlab/csrep.

Contact: jason.ernst@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide maps of chromatin marks such as histone modifica-
tions and variants provide valuable information for annotating non-
coding genome features (Barski et al., 2007; Ernst et al., 2011; Xie
et al., 2013; Zhu et al., 2013). Efforts by large consortia and individ-
ual labs have produced chromatin state maps for many cell and tis-
sue types (ENCODE Project Consortium, 2012; Roadmap
Epigenomics Consortium et al., 2015; Xie et al., 2013; Zhu et al.,
2013). A popular representation of such data is chromatin states
defined by the combinatorial and spatial patterns of multiple marks,
which are generated by methods such as ChromHMM and Segway
(Ernst and Kellis, 2010, 2012; Hoffman et al., 2012; Libbrecht

et al., 2021), and correspond to diverse classes of genomic elements
including various types of enhancers and promoters.

Chromatin state maps have been produced for hundreds of dif-
ferent biological samples. In many cases, there are multiple samples
representing similar cell and tissue types (Boix et al., 2021;
Roadmap Epigenomics Consortium et al., 2015). In such cases, to
simplify analyses and visualizations, it may be desirable to have a
single chromatin state annotation that summarizes the annotations
for all samples in a pre-defined sample group of interest. A straight-
forward approach to this task is to take the most frequent chromatin
state assigned at each position across samples in the group.
However, when the number of samples in a group is small or the
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number of states is large, such an approach can be particularly vul-
nerable to noise. Furthermore, such an approach does not consider
additional information available about the different chromatin
states. For example, if a location was assigned to three different
states in three samples, the summary annotation among these three
states based on the frequency-based method would be arbitrary.
However, by leveraging information about the co-occurrence of
state assignments genome-wide, there is additional information to
predict the most likely chromatin state annotation for a new sample
from the group.

A related challenge is to identify differences in chromatin state
annotations between two groups at a high resolution and on a per-
state basis. Several methods have been developed for comparing
chromatin state annotations between groups of samples, but typical-
ly either work at a coarse resolution or do not identify differences
on a per-chromatin-state basis. For instance, ChromDiff (Yen and
Kellis, 2015) presents a statistical testing framework to uncover pre-
defined broad regions such as gene bodies with significant differen-
ces for specific chromatin states across the two groups, but was not
specifically designed for detecting differences at the resolution of the
chromatin state annotations. EpiAlign (Ge et al., 2019) scores the
alignment patterns between two user-input sequences of chromatin
state annotations in two samples, hence is most applicable for com-
paring broad domains that encompass multiple chromatin state seg-
ments. Another method, chromswitch (Jessa and Kleinman, 2018)
also offers a framework to score the differential chromatin state
annotations within broader user-specified input genomic locus and
is not designed for detecting chromatin state differences genome-
wide at the same resolution of the annotations. EpiCompare (He
and Wang, 2017) is primarily a webtool that can be used for detect-
ing cell-type-specific chromatin state differences in terms of enhan-
cer or promoter states but does not support detecting differences for
individual states or other types of chromatin states. SCIDDO (Ebert
and Schulz, 2021) conducts fast genome-wide detection of differen-
tial chromatin domains between two groups of samples while incor-
porating a measure of similarity among states. However, as
SCIDDO provides a single differential score per position, it does not
directly answer the question of which chromatin states change at
each genomic position. Another method, dPCA (Ji et al., 2013),
works directly on chromatin mark signals and does not quantify
state differences across groups of samples.

To effectively summarize the chromatin state annotations for a
group of samples and prioritize the chromatin state differences be-
tween two groups on a per-state basis, at high resolution, we intro-
duce CSREP. CSREP leverages both the information about the input
samples’ chromatin states at a position, as well as information on
states’ co-occurrences in different samples within the same group
across the genome. CSREP does this by first generating probabilistic
estimates of chromatin state annotations to summarize a group of
samples using an ensemble of multi-class logistic regression classi-
fiers. These classifiers predict the state assignment in a sample at a
position, given the annotations in other samples at the correspond-
ing genomic position. From those predictions, CSREP is then able to
produce a single summary state assignment per position.
Furthermore, CSREP can use the difference of summary probabilis-
tic predictions for two groups of samples to quantify the difference
in state assignments between the two groups on a per-state basis,
e.g. one genome-wide score track per chromatin state. CSREP’s abil-
ity to summarize chromatin states for a group of samples beyond
simple counting is a unique feature of CSREP relative to existing
methods mentioned above for detecting differential chromatin states
or domains. CSREP is also distinguished from these existing meth-
ods by a combination of (i) considering differential chromatin state
annotations at the resolution of the input annotations instead of
over broad domains, (ii) generating outputs genome-wide instead of
at user-specified loci and (iii) providing state-specific and direction-
ally meaningful scores for all states.

Using CSREP, we generate the summary chromatin state maps
for 11 groups of tissue/cell types from Roadmap Epigenomics
Project (Roadmap Epigenomics Consortium et al., 2015), and for 75
groups from the EpiMap Portal (Boix et al., 2021), which can be

easily viewed on genome browsers (Data availability). We show that
CSREP can better predict chromatin state assignments in held-out
samples than a counting-based baseline method. We also verify that
the resulting summary chromatin maps show correspondence with
the group’s average gene expression profile. Additionally, we show
that CSREP’s differential scores can recover differential epigenetic
signals on chromosome X between Male and Female samples. We
also show that CSREP differential scores between samples from two
different tissue groups can predict regions of differential peaks for
various chromatin marks. The CSREP implementation is designed
to be user-friendly and includes a detailed tutorial, available at
https://github.com/ernstlab/csrep. We expect CSREP will be a useful
tool for summarizing chromatin state maps within groups and find-
ing differences across groups. Additionally, we expect the summary
annotations for different tissue groups that we generated with
CSREP to be a useful resource.

2 Materials and methods

2.1 CSREP’s summarization of a group of samples
Let G denote the number of genomic bins across the genome, S the
number of chromatin states, and N the number of samples in the tar-
get group of samples. Let Ci;n denote the chromatin state assigned to
sample n at genomic position i, which can take one value of
1; 2; . . . ; S. Let Nn denote the set of samples not including n, i.e.
Nn ¼ 1; . . . ;Nf g � nf g. In general, CSREP is an ensemble of N
multi-class logistic regression classifiers such that for each sample n,
CSREP trains a classifier to predict the chromatin state map of this
sample based on features from the remaining samples (Nn). The pre-
dictor variables for such a model include one-hot encoded chroma-
tin state maps of the N � 1 samples (all samples in the group except
n) and an intercept term, resulting in N � 1ð Þ � Sþ 1 predictor vari-
ables. The response variable is the chromatin state of the target sam-
ple n, which can take one value of 1; 2; . . . ; S.

In the multi-class logistic regression model, let Xi denote the vec-
tor of predictor variables at position i, which has length N � 1ð Þ �
Sþ 1 and takes values f0; 1g: The last entry of Xi is 1, correspond-
ing to the intercept term. Let Yi denote the value of the response
variable at position i, which takes values f1;2; . . . ; Sg. Since the in-
put chromatin state maps that we used segmented the genome into
200-bp bins, we refer to each genomic position as one 200-bp win-
dow in the genome. We randomly selected genomic positions for the
training dataset, such that these positions constitute 10% of the gen-
ome. We chose 10% as the training proportion because increasing
this parameter does not result in considerable increase in model ac-
curacy but increases runtime (Supplementary Fig. S1). Given the
training dataset, for each state s 2 f1; . . . ; S� 1g, the multi-class lo-
gistic regression model learns a coefficient vector bs with length
N � 1ð Þ � Sþ 1, corresponding to the number of predictor varia-

bles. The probability of sample n’s chromatin state assignment being
s at position i is then calculated as:

P Yi ¼ sð Þ ¼ ebs�Xi

1þ
PS�1

j¼1 ebj�Xi

for s 2 f1; :; S� 1g, and as the following when s ¼ S:

P Yi ¼ Sð Þ ¼ 1

1þ
PS�1

j¼1 ebj�Xi
:

The model is implemented using Python’s sklearn, pybedtools
packages and snakemake (Dale et al., 2011; Köster and Rahmann,
2012; Mölder et al., 2021; Quinlan and Hall, 2010). An L2-norm
penalty with the default regularization strength of 1.0 was used for
training. CSREP applies the model to generate probabilistic predic-
tions of a genome-wide chromatin state map for sample n, which is
presented in a matrix of size G� S. The output matrices from N pre-
dictions for N samples are then averaged, so at each genomic bin,
the sum of state assignment probabilities across S states is 1. In add-
ition, the chromatin state with the maximum probability in each
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row is recorded to produce a single representative chromatin state
map for the entire group of samples.

2.2 CSREP’s application to prioritizing differential

chromatin state changes between two groups of

samples
To calculate differential chromatin state maps between two groups
of samples, Group1 and Group2, CSREP first calculates the prob-
abilistic chromatin state map matrices for each group as described
above, denoted as R1 and R2, respectively. After this, CSREP sub-
tracts the two matrices to represent the differential chromatin state
map between Group1 and Group2 (denoted D12), i.e.
D12 ¼ R1 � R2. We note that we used signed and not absolute
difference here and thus the score ranges from �1 to 1. A score on
row i and column s of D12, denoted D12;i;s, being �1 means Group2
is estimated to have probability 1 of being assigned to state s at pos-
ition i while Group1 has probability of 0. Additionally, since CSREP
assigns S scores of differential chromatin maps to each genomic pos-
ition i, corresponding to S states, CSREP can uncover specific chro-
matin state changes. For example, if D12;i;s ¼ 0:8 when s ¼ 1 while
D12;i;s ¼ � 0:8 when s ¼ 2, we can infer that at position i, Group1
is likely to be in State 1 while Group2 is likely to be in State 2.

3 Results

3.1 CSREP method overview
CSREP takes as input chromatin state maps for a group of samples
learned in such a way that annotations for different samples have an
internally consistent set of defined chromatin states (Ernst and
Kellis, 2010, 2012). We note that the input is presented in BED file
format, with each file containing the chromatin state map for one
sample. CSREP then generates as output (i) a summary probabilistic
chromatin state assignment matrix and (ii) a summary state map
track for the group. The summary state assignment matrix repre-
sents the probabilities of each state being present at each genomic
position in a new sample of that group. To generate these, CSREP
takes a supervised learning approach, leveraging information about
the co-occurrence of states from the different samples across the gen-
ome. Specifically, for each group of input samples, CSREP trains an
ensemble of N multi-class logistic regression classifiers (Hastie et al.,
2009), where N is the number of samples in the group, to generate
probabilistic predictions for each chromatin state at each position
(Fig. 1A, Section 2). We used multi-class logistic regression classi-
fiers since they provide well-calibrated probabilities, are robust, and
relatively fast to train. Each classifier is trained with labels based on
the chromatin state assignments from one sample and features based
on the chromatin state assignments in other samples for the same
genomic positions. Each classifier then makes a probabilistic predic-
tion of the chromatin state assigned at each genomic position in the
target sample. The chromatin state input features to each logistic re-
gression classifier are represented with a one-hot-encoding of the
chromatin states. The classifiers are trained on randomly selected
genomic positions that constitute 10% of the genome, while the pre-
dictions are calculated genome-wide. The resolution of predictions
is the same as that of input samples’ chromatin state maps (200 bp
with default settings for ChromHMM). The prediction results for
each sample’s chromatin state map are represented in a matrix with
rows corresponding to genomic positions and columns chromatin
states. The values in each row, which sum to 1, represent the proba-
bilities of state assignments at a genomic position. The probabilistic
summary of a group is based on averaging the prediction output
matrices for each sample in the group. These probabilistic predic-
tions are then used to generate a summary chromatin state map for
the group of samples by assigning the state with maximum assign-
ment probability to each genomic position (Fig. 1A, Section 2).

CSREP’s summary probabilistic predictions can be directly used
to generate differential chromatin state maps for two groups with
multiple samples, where the input samples from both groups share
the same internally consistent set of defined chromatin states. This is

achieved by subtracting the summary chromatin state assignment
matrix of one group (first group) from the other’s (second group)
(Fig. 1B, Section 2). At each genomic position, CSREP’s chromatin
differential scores for individual chromatin states are bounded be-
tween �1 and 1. A score of 1 for state s means state s was predicted
to be the annotation for the first and second groups with probability
1 and 0, respectively, and vice versa for �1 (Fig. 1B and C,
Supplementary Fig. S2). Overall, in addition to summarizing the
state assignments for groups of samples, CSREP can calculate scores
of differential chromatin state assignments for pairs of groups at the
resolution of the input chromatin state maps.

3.2 CSREP is predictive of chromatin states on held-out

samples
We applied CSREP to a compendium of 18-state chromatin state
maps for 64 samples (reference epigenomes) from 11 tissue groups
generated by the Roadmap Epigenomics Project (Roadmap
Epigenomics Consortium et al., 2015). The tissue groups include
embryonic stem cells (ESCs), induced pluripotent stem cells (iPSC),
ESC-derived cells, blood & T-cells, HSC & B-cells, epithelial, brain,
muscle, heart, smooth muscle and digestive. The number of input
samples for each tissue group ranges from 3 to 12 (Additional File
2). We provide CSREP’s genome-wide summary probabilistic and
state assignments for the 11 tissue groups (Data availability). Given
our computing configuration, the run-time for CSREP to jointly pre-
process input data for all 64 samples was �40 min, and then the
time to output the predictions for each group ranged from �1 to 3 h
(Supplementary Fig. S3, Supplementary Methods).

We first visualized CSREP’s summary chromatin state maps for
groups of samples from digestive and heart tissue groups, which
have 10 and 3 samples, respectively (Fig. 2A, Supplementary Figs
S4–S7). We arbitrarily selected four 500-kb regions and for each
group, we visualized the input chromatin state maps and CSREP’s
output probabilistic state estimates and summary state map at such
genomic windows. We observed expected correspondences between
the groups’ input and output chromatin state assignment estimates
(Fig. 2A, Supplementary Figs S4–S7). We also visualized CSREP’s
summary chromatin state maps at the loci of two genes that had dis-
tinctly higher expression in Digestive and Brain cell types, LGALS4
and MT3, respectively, which highlighted the corresponding groups’
differences in the summary chromatin state maps (GTEx
Consortium, 2020) (Supplementary Figs S8–S10).

To quantitatively evaluate CSREP’s summary output for a group
of samples, we evaluated the accuracy of CSREP’s summary prob-
abilistic chromatin state predictions in a leave-one-out cross-valid-
ation analysis. In particular, for each chromatin state, we calculated
the area under the receiver operating characteristic curve (AUROC)
for predicting genomic locations assigned to the state in a held-out
sample, based on the summary chromatin state maps generated
from data in other samples from the group (Supplementary
Methods). We compared the performance of CSREP against a base-
line method, denoted base_count (short for counting-based baseline
method), which counts each state’s frequency across input samples
at each genomic position (Supplementary Methods).

CSREP showed strong predictive performance for chromatin
states in left-out samples with average AUROCs across 64 samples
varying from 0.871 to 0.993 for the 18 states. Across the 18 states,
CSREP consistently had better AUROC in recovering individual
states compared to the baseline method base_count (Fig. 2B). The
average AUROC improvement by CSREP compared to base_count
ranged from 0.003 (for state 18_Quies) to 0.157 (for state
4_TssFlnkD). Larger performance improvements by CSREP relative
to base_count were observed for all chromatin states when there are
fewer input samples in the group (Supplementary Fig. S11).

3.3 CSREP’s summary chromatin state maps’

association with gene expression
Transcription start sites (TSS) are marked by various histone modifi-
cations and variants that can correlate with transcription (Kimura,
2013; Soboleva et al., 2014). Here, we evaluated how CSREP’s
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Fig. 1. Overview of CSREP. (A) CSREP uses an ensemble of multi-class logistic regression models. In each model, the chromatin state map at the target sample is predicted

based on the one-hot encoding of chromatin state assignments at the corresponding genomic positions in other samples. Multi-class logistic regression outputs the probabilities

that each genomic position (row) in the target sample will be assigned to each state (column). CSREP averages the prediction matrices for target samples, to output the sum-

mary state assignment probability matrix. Sam., sample; P Si ¼ sð Þ; probability that genomic position i is annotated as state s. (B) The operations to obtain differential chroma-

tin state scores between two groups with multiple samples. CSREP calculates the summary chromatin state assignment matrices for two groups and then subtracts one group’s

summary matrix from the other’s to obtain differential chromatin scores. Differential chromatin scores are bounded between �1 and 1. (C) Visualization of CSREP’s output in

a genomic region (hg19, chr5:156012600–156022400). The top of the subpanel shows the CSREP’s summary chromatin state probabilities for 18 states across 7 Brain refer-

ence epigenomes. Each track shows the probabilities of assignment for one state, as named and colored on the left. The middle subpanel shows the 18-state chromatin state

maps for 7 Brain samples and 5 ESC samples from Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015), and the CSREP’s output summary chromatin state

maps for each group, boxed. States are colored as in legends at the left of this subpanel. The last subpanel shows the differential chromatin scores when Brain’s summary state

probabilities are subtracted from ESC’s (ESC—Brain). Each track shows one state’s differential scores. Scores between 0 and 1 are shown above each track, while those be-

tween �1 and 0 are below the corresponding track. This region is also shown in an expanded format in Supplementary Figure S2
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summary state map for a tissue group is predictive of the group’s
gene expression profiles at the TSS of genes. First, we obtained gene
expression data for available samples for the 11 tissue groups men-
tioned above and calculated the average protein-coding gene expres-
sion for each group (Supplementary Methods). Of the 11 groups, 8
had gene expression data available for at least one sample
(Supplementary Methods). We then calculated the Spearman correl-
ation between (i) the group’s average expression for protein-coding
genes and (ii) CSREP’s summary state assignment probabilities for
state 1_TssA (active TSS state) at the corresponding genes’ TSSs. We
did the same evaluation for base_count. CSREP had significantly
higher correlations than base_count (Fig. 2C, paired t-test P-value

< 0.0062, average 0.65 versus 0.59, Supplementary Methods). We
next extended this analysis for a larger dataset of 552 samples in 75
groups from EpiMap repository based on state 1_TssA from the
same 18-state annotations (Boix et al., 2021) (Supplementary
Methods). The 75 groups were previously formed based on tissue
types and developmental stages with the number of samples per
group ranging from 3 to 38 (Supplementary Methods, Additional
File 2). Of the 75 groups, 65 also had gene expression data available
for at least one sample. Across these 65 groups, again CSREP had
significantly higher correlations than base_count (Fig. 2C, paired t-
test P-value < 2.2e-16, average 0.63 versus 0.59, Supplementary
Methods). Overall, CSREP’s summary chromatin state maps at TSS

Fig. 2. Performance of CSREP in summarizing multiple samples’ chromatin state maps from a group. (A) Visualization of one arbitrarily selected 500-kb region (chr5:

42821109–43321109, hg19). The first 10 tracks show chromatin state maps of 10 samples of the Digestive group from the Roadmap Epigenomics Consortium, which were in-

put to CSREP. The following track shows the summary chromatin state map from CSREP, which shows strong agreement with the input. States are colored based on the le-

gend on the lower left. In the following 18 tracks, each track shows CSREP’s probabilities of assignment for each of 18 states, with the state annotations shown in the legend

on left. (B) Boxplots showing the CSREP and base_count methods’ average, range and 25, 75% quantiles of the AUROCs across 64 samples, for each of the 18 chromatin

states. The AUROCs were calculated in leave-one-out cross-validation analysis where we used a group’s summary probabilistic chromatin state map to predict genomic loca-

tions of individual chromatin states in a left-out sample from the same cell/tissue group (Supplementary Methods). States 1–18 (x-axis) are annotated as in (A). (C) Boxplots

showing the Spearman correlations between a group of samples’ (1) summary probabilities of state 1_TssA (active TSS) at annotated TSSs and (2) the corresponding group’s

average gene expression (Supplementary Methods). We obtained the correlations for 8 groups of cell types from the Roadmap Epigenomics Project and 65 groups from

EpiMap. Each dot shows the Spearman correlation for data from a group of samples. Results of paired t-test to compare CSREP versus base_count’s output correlations are

shown on top. The alternative hypothesis for the t-test is that correlations resulted from CSREP are higher than those from base_count (Supplementary Methods)
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for the TssA state show significantly higher correspondence with
gene expression levels compared to the base_count method.

3.4 CSREP detects differential chromatin regions

associated with different sexes
We next investigated the performance of CSREP at identifying bio-
logically meaningful chromatin state changes between groups of
Male and Female samples based on its ability to prioritize chromatin
state differences on chromosome X (chrX) relative to autosomal
chromosomes. Specifically, we applied CSREP to calculate differen-
tial chromatin state scores between 25 Female and 44 Male samples
from Roadmap Epigenomics (Supplementary Methods) (Ge et al.,
2019; Yen and Kellis, 2015) by subtracting CSREP’s summary state
probability matrix for the Female samples from the corresponding
matrix for the Male samples.

We analyzed CSREP’s differential scores for all chromatin states
across autosomal chromosomes and chrX (Fig. 3A, Supplementary
Figs S12 and S13). Three states with the largest magnitude of differ-
ence in mean Male–Female differential scores between chrX and
autosomes were states 13_Het (heterochromatin, marked by
H3K9me3), 17_ReprPCWk (weak polycomb repressive complex)
and 18_Quies (quiescent) (Supplementary Fig. S13). In contrast, ac-
tive promoter/enhancer states showed minimal difference in the dis-
tribution of Male–Female differential scores for chrX versus
autosomes (Fig. 3A, Supplementary Figs S12 and S13). In chrX,
compared to autosomal chromosomes, the distribution of differen-
tial scores for states 13_Het and 17_ReprPCWk showed a larger tail
of negative values. ChrX’s average score minus the autosomes’ aver-
age score values for states 13_Het and 17_ReprPCWk were �0.039
and �0.054, respectively (Supplementary Fig. S13), implying that
on chrX, Female samples are more often assigned to these states
compared to Male samples. State 18_Quies showed the opposite
trend with a difference of 0.11 (Fig. 3A, Supplementary Fig. S13).
These results are consistent with sex-specific chrX inactivation,

which is used in Female mammals to achieve dosage compensation
between the two sexes (Wutz, 2011; Yen and Kellis, 2015).

We next compared the performance of CSREP and other meth-

ods in recovering annotated transcription start sites (TSSs) on chrX,
using the above-mentioned states, given varying numbers of input
samples (Supplementary Methods, Fig. 3B). To do this, we random-
ly selected 30 subsets of size n Male and n Female samples from the
set of available 44 Male and 25 Female samples, where n is varied

within the set of 3, 5, 9, 12 or 15 samples. Given each set of input
Male and Female samples, we calculated the AUROC when using
differential chromatin scores between Male and Female groups to
predict locations overlapping annotated TSSs on chrX, against the

background of those overlapping all annotated TSSs in the genome
(Supplementary Methods). The methods we compared CSREP
against include SCIDDO, the count difference from base_count, the
Mann–Whitney U-test [used by ChromDiff (Yen and Kellis, 2015)],
and the Fisher’s exact test [used by EpiCompare (He and Wang,

2017)] (Supplementary Methods). The Mann–Whitney U and
Fisher’s exact tests were applied at each genomic position, using two
input sample groups’ chromatin state annotations at the respective
position. We considered other related methods for detecting differ-
ential chromatin domains not appropriate for direct comparison

against CSREP (Supplementary Methods). We observed that CSREP
showed the largest advantage over other methods, as measured by
AUROCs, when the number of input samples from Male and
Female groups is relatively small, e.g. three samples in each group
(Fig. 3B). As the number of input samples from each group increases

sufficiently, the overall performance advantage of CSREP relative to
base_count, Mann–Whitney U-test and Fisher’s exact test goes
away. In all cases, CSREP showed better performance compared to
SCIDDO (Ebert and Schulz, 2021) (Fig. 3B). Overall, CSREP
showed the clearest advantage over other approaches when the

number of samples is relatively small, which occurs frequently in
practice.

Fig. 3. CSREP shows signals of differential chromatin state scores in chrX when comparing Male and Female samples. (A) Each subpanel shows the histogram of CSREP’s dif-

ferential scores in autosomes and chrX, for states associated with heterochromatin (13_Het), weak polycomb repressed domains (17_ReprPCWk), quiescent regions

(18_Quies), and active transcription start site (1_TssA). The x-axis shows differential scores, with positive values implying Male samples have higher probabilities of being in

the state compared to Female samples, and vice versa for negative values. Histograms of scores for all states are in Supplementary Figure S12. (B) AUROCs of recovering

regions overlapping annotated TSSs on chrX, using differential chromatin scores of three states as in (A), outputted by CSREP, base_count, SCIDDO, Mann–Whitney U-test

(based on ChromDiff) and Fisher’s Exact test (based on EpiCompare) for Male and Female groups (Supplementary Methods). The AUROCs based on Mann–Whitney U-test

showed values close to those based on base_count, hence the plotted average AUROCs from these two methods were overlapping. We calculated the AUROCs using different

sets of input Male and Female samples, with varying numbers of samples in each group (x-axis). For each number of samples (x-axis), we conducted the analysis for 30 sets of

Male and Female input samples (Supplementary Methods). The plots show the average (dots) and standard deviation (error bars) of the AUROCs across the 30 sets of input

samples. SCIDDO did not successfully generate output for the case of 15 input samples, thus no results are reported for that
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3.5 CSREP’s differential scores recover differential

chromatin mark peaks
We next analyzed how well CSREP’s differential chromatin state
scores can predict genomic regions overlapping differential signals
of DNase I hypersensitivity (DNase), H3K9ac and H3K27ac be-
tween samples from embryonic stem cell (ESC) and brain. DNase
and H3K9ac signals were not used for learning the 18-state model
used to annotate the two groups’ input samples, providing an inde-
pendent validation. While H3K27ac was used in learning the input
chromatin state maps, since all the methods being compared
(CSREP, base_count, SCIDDO, Mann–Whitney U-test based on
ChromDiff and Fisher’s exact test based on EpiCompare) had access
to the same chromatin state maps as input, and H3K27ac is a well-
established mark of cell-type-specific activity (Creyghton et al.,
2010), we still considered H3K27ac in the evaluations of methods’
performance.

For each of the three chromatin marks, we first obtained a set of
bases that overlap with peaks in all samples from ESC but not in any
from the Brain group and vice versa (Supplementary Methods,
Additional File 2). We then calculated CSREP and base_count dif-
ferential chromatin scores by subtracting the summary chromatin
state map of Brain from that of the ESC. Additionally, we applied
SCIDDO, Mann–Whitney U-test (ChromDiff’s approach) and
Fisher’s Exact test (EpiCompare’s approach) to the same set of input
data (Supplementary Methods). We evaluated, in terms of AUROC,
how well the methods prioritize regions overlapping bases in the
ESC-/brain-specific sets of peaks (Supplementary Methods). For
CSREP, base_count, Mann–Whitney U-test and Fisher’s exact test,
we conducted separate evaluations for each chromatin state but did
not for SCIDDO since it outputs one score track that measures the
overall difference across the chromatin state landscape between the
two groups.

Across the different marks and groups (ESC-specific or Brain-
specific peaks) we evaluated, CSREP’s differential scores from either
promoter- or enhancer-associated states resulted in the highest
AUROCs, with few exceptions (Fig. 4, Supplementary Fig. S14). For
example, for identifying Brain-specific H3K9ac peaks, CSREP had
an AUROC of 0.717 based on the evaluation with state 9_EnhA1,
an active enhancer state, while the maximum AUROCs achieved for
base_count, Mann–Whitney U-test, Fisher’s exact test and SCIDDO
were 0.617, 0.636, 0.601 and 0.564, respectively. In total across the
six evaluations, among the top-3 highest AUROCs per evaluation,
15 of the 18 AUROCs were based on CSREP’s differential scores for

individual chromatin states (Fig. 4). The AUROCs for states not
usually associated with these marks (transcription, heterochromatin,
repeats/ZNF gene, quiescent and polycomb repressed states) tended
to be near 0.5 or in some cases lower (Supplementary Fig. S14).
These analyses suggest that CSREP differential scores tended to bet-
ter correspond to locations of individual mark differences between
two groups of samples genome-wide, compared to other
approaches. Even though SCIDDO incorporated a measure of dis-
similarity among states, it showed lower AUROCs compared to the
maximum obtained by CSREP. This is potentially because SCIDDO
outputs one score per genomic bin to measure the general difference
across all states, while CSREP generates state-specific scores. Hence,
CSREP should have better power to predict regions associated with
differential signals of marks that are present in only specific states
(e.g. H3K27ac is present in enhancer states but not in repressive
states). Additionally, this may also be because CSREP produces
scores that show the direction of differences (with positive/negative
scores implying one group’s higher state assignment probabilities
compared to the other’s) while SCIDDO’s scores do not have a spe-
cific direction associated with them.

4 Discussion

Here, we proposed CSREP, a method for probabilistically summa-
rizing the chromatin state maps from a group of samples. CSREP
achieves this by training multi-class logistic regression models to
predict the chromatin state annotations of one sample using data
from others, and then averaging the prediction probabilities across
all samples in the group. CSREP outputs the probabilities of each
chromatin state being assigned to each genomic position, at the
same resolution that chromatin states are annotated. We applied
CSREP to generate summary 18-state chromatin state assignment
probability matrices for 11 groups of cell and tissue types from
Roadmap Epigenomics Project (Roadmap Epigenomics Consortium
et al., 2015), and 75 groups of samples stratified by cell and tissue
types and developmental phases from EpiMap (Boix et al., 2021),
and have made them publicly available (Data availability,
Additional File 2).

Our analyses reveal that CSREP’s probabilistic summary of state
assignments better predicts the chromatin states of held-out samples
compared to the counting-based baseline approach. We also showed
that CSREP’s summary assignment probabilities of state 1_TssA at

Fig. 4. Evaluation of recovery of differential chromatin marks signals between ESC and Brain. The table shows AUROCs for differential scores’ predictions of genomic regions

associated with differential peak signals for one chromatin mark, from left to right: DNase, H3K27ac and H3K9ac. For each chromatin mark, it shows the AUROCs of pre-

dicting signal peaks observed in Brain and ESC exclusively (Brain-spec and ESC-spec, respectively). Differential scores outputted by CSREP, base-count, Mann–Whitney U-test

(used by ChromDiff) and Fisher’s exact test (used by EpiCompare) are shown for active promoter and enhancer associated chromatin states (rows). In each category of com-

parisons (a chromatin mark in either ESC or Brain), the top three scores that show the highest AUROCs are in bold and underlined. Along the bottom is the AUROC for

SCIDDO. Only active promoter and enhancer states are expected to be associated with differential DNase, H3K27ac and H3K9ac signals, but the AUROCs corresponding to

all states are shown in Supplementary Figure S14
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TSS were well correlated with the average gene expression of the
group and significantly higher than those achieved by the counting-
based baseline.

CSREP can also be used to directly quantify the difference in
chromatin state maps between two groups with multiple samples, at
the resolution of the input annotations. CSREP produces differential
scores for each chromatin state at each genomic position, which rep-
resent the difference in probabilities that samples from the two input
groups are assigned to each specific state. Therefore, CSREP differ-
ential scores are bounded (�1 to 1), interpretable with respect to
specific chromatin state changes, and indicative of the direction of
change, which contrasts it with other approaches that provide a sin-
gle score showing the magnitude of difference per genomic position.
We used CSREP to compare the chromatin state annotations be-
tween Male and Female samples from Roadmap Epigenomics
(Roadmap Epigenomics Consortium et al., 2015) and showed that
CSREP can better predict regions overlapping genes’ TSS on chrX,
particularly when there are few samples in each group. CSREP’s dif-
ferential scores for states associated with active enhancers and pro-
moters better recovered tissue-group-specific peaks of DNase,
H3K27ac and H3K9ac signals compared to alternative approaches,
suggesting that CSREP provides useful additional information for
analyzing epigenomic changes across tissue types.

Here, we presented applications of CSREP on samples that were
grouped based on cell and tissue types and based on sex. In general,
CSREP assumes the dominant signal of any variation between
groups is associated with the grouping variable of interest. In cases
in which the experimental design used to collect the data cannot en-
sure this, other known covariates can be used to detect if there are
potential confounders.

CSREP works directly off of chromatin state annotations, which
makes CSREP agnostic to the specific methods used to produce
those annotations. Some methods for learning chromatin state anno-
tations have the option to expose posterior probability estimates of
annotations. However, in general, it is not clear how well calibrated
those estimates will be, and assuming accurately determined poster-
ior probability estimates are available as input would also make
CSREP less generally applicable. A possible direction for future
work would be to extend CSREP to make use of posteriors or pos-
sibly other information that CSREP does not directly consider, such
as the individual mark signal in each sample.

We note that CSREP’s summary chromatin state maps offer
complementary benefits to the recently developed universal chroma-
tin state annotation, which provides a single integrative annotation
of the genome based on a model defined from over a 1000 epige-
nomic datasets from over 100 cell and tissue types (denoted the
full-stack model) (Vu and Ernst, 2022). The full-stack model jointly
captures activity across many diverse cell and tissue types and hence
can capture annotations corresponding to both constitutive and cell-
type-specific activities (Supplementary Fig. S2). CSREP, on the other
hand, provides a more direct and focused chromatin state annota-
tion representative specifically of the individual input samples’
annotations.

To facilitate the use of CSREP, we provide an implementation of
CSREP as a snakemake pipeline (Köster and Rahmann, 2012;
Mölder et al., 2021) with a detailed tutorial that only requires users
to modify parameters in a yaml file. The program can be run either
on local computers or on computing clusters, in which case snake-
make will optimize the workflow for execution.

We expect CSREP to be a useful tool and the CSREP output we
provided to be a valuable resource for summarizing chromatin state
maps from groups of samples, and for prioritizing regions with dif-
ferential chromatin state changes across pairs of groups of samples.
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