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We present a statistical simulator, scDesign3, to generate realistic single-cell
and spatial omics data, including various cell states, experimental designs

and feature modalities, by learning interpretable parameters from real
data. Using a unified probabilistic model for single-cell and spatial omics
data, scDesign3 infers biologically meaningful parameters; assesses the
goodness-of-fit of inferred cell clusters, trajectories and spatial locations;
and generates in silico negative and positive controls for benchmarking
computational tools.

Single-cell and spatial omics technologies provided unprecedented
multimodal views of individual cells. First, single-cell RNA sequencing
(scRNA-seq) was developed to measure cells’ transcriptomes, enabling
the discovery of discrete cell types and continuous cell trajectories™.
Later, other single-cell omics technologies were developed to measure
additional molecular feature modalities, including chromatin acces-
sibility®*, DNA methylation® and protein abundance®. More recently,
single-cell multiomics technologies were invented to measure more
than one feature modality simultaneously”. In parallel to single-cell
omics, spatial transcriptomics technologies were advanced to profile
transcriptomes with cells’ spatial locations recorded’ ™.

Thousands of computational methods have been developed for
various tasks", making method benchmarking a pressing challenge.
Fair benchmarking demandsinsilico data that contain ground truths
and mimic real data, thus calling for realistic simulators. Two bench-
mark studies of simulators™” found that reference-based scRNA-seq
simulators, which require training on real data, were more realis-
tic than de novo simulators, which use preset theoretical models®.
The two studies also found that, although some reference-based
simulators'®"® generated realistic scRNA-seq data from discrete cell
types'*?®, few reference-based simulators could generate data from
continuous cell trajectories™’ 2, Moreover, realistic simulators were
lacking for single-cell omics other than scRNA-seq”’, not to mention
single-cell multiomics and spatial transcriptomics (see Supplemen-
tary Methods for discussion on recent advances). Hence, a large gap
existed between the diverse benchmarking needs and the limited
functionalities of existing simulators.

To fill in the gap, here, we introduce scDesign3, a simulator that
generates realistic synthetic data from diverse settings, including
cell latent structures, feature modalities, spatial locations and
experimental designs (Fig. 1a). Supplementary Table1lists a detailed
comparison of scDesign3 with the previous two versions, scDesign**
and scDesign2". scDesign3 offers a probabilistic model that unifies
the generation and inference for single-cell and spatial omics data.
The model’sinterpretable parameters and likelihood enable scDesign3
to generate customized in silico data and unsupervisedly assess the
goodness-of-fit of inferred cell latent structures (for example, clusters,
trajectories and spatial locations) (Fig. 2a).

Asanoverview, we verified scDesign3’s two functionalities—simula-
tionand interpretation—sequentially. First, we show that the scDesign3
modelis reasonableinthatits synthetic data well mimic real datagiven
high-quality cell-type labels and cell trajectories. Second, assuming
the scDesign3 model is reasonable, we show that scDesign3 allows
model-based interpretation of real data, including assessment of
the goodness-of-fit of inferred cell latent structures.

scDesign3 functionality 1 (simulation)
We verified scDesign3 as arealistic and versatile simulatorin four exem-
plar settings: (1) scRNA-seq of continuous cell trajectories, (2) spatial
transcriptomics, (3) single-cell epigenomics and (4) single-cell multi-
omics (Fig.1). We show that the synthetic data of scDesign3 resembled
the left-out test data consistently.

Inthe firstsetting, scDesign3 mimicked three scRNA-seq datasets
containing single or bifurcating cell trajectories (EMBRYO, MARROW
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and PANCREAS in Supplementary Table 2). Figure 1b-c, Extended Data
Figs.1and 2¢,d and Supplementary Fig. 1c,d show that scDesign3 gener-
ated realistic synthetic cells that resembled left-out real cells, reflected
by high mean local inverse Simpson’s index (mLISI) values®. More-
over, scDesign3 preserved eight gene-and cell-specific characteristics
describedin Methods (Extended Data Figs.1and 2a,b and Supplemen-
tary Fig.1a,b). Due tothelack of reference-based simulators for contin-
uous cell trajectories, we benchmarked scDesign3 against ZINB-WaVE,
muscat and SPARSIM—three top-performing simulators for discrete
cell types™*—and a deep-learning-based simulator, scGAN. scDesign3
outperformed these simulators in generating more realistic synthetic
cellsandinbetter preserving the gene- and cell-specific characteristics,
especially cell-cell distances and gene-gene correlations (Fig. 1b,c,
Extended Data Figs.1and 2 and Supplementary Fig. 1).

Inthe second setting, scDesign3 emulated four spatial transcrip-
tomics datasets generated by the 10x Visium and Slide-seq technolo-
gies (VISIUM, SLIDE, OVARIAN and ACINAR in Supplementary Table 2).
First, Fig. 1d,e and Extended Data Fig. 3 show that scDesign3 reca-
pitulated the expression patterns of spatially variable genes. Second,
Extended DataFig.4a,b and SupplementaryFigs.2,3 and 4a,b show that
scDesign3 preserved the eight gene- and cell-specific characteristics.
Third, Extended Data Fig. 4c,d and Supplementary Figs. 2,3 and 4¢,d
use two-dimensional cell embeddings to confirm that the synthetic
dataof scDesign3 resembled the test data. Fourth, scDesign3 mimicked
spatial transcriptomics data so that three prediction algorithms had
highly consistent performance when trained on real data or scDe-
sign3 synthetic data (Extended Data Fig. 5). Fifth, the scDesign3 model
adapted to complex spatial patternsin less-structured cancer tissues
(Extended Data Fig. 6). Sixth, given a pair of scRNA-seq data and
spot-resolution spatial transcriptomics data (where each spot con-
tains multiple cells), scDesign3 can generate realistic spot-resolution
spatialtranscriptomics datawith cell-type proportionsspecifiedateach
spot (Fig. 1f and Extended Data Fig. 7a). Using this functionality to
benchmark cell-type deconvolution algorithms for spatial transcrip-
tomics data, we had consistent results with a benchmark study?”
that CARD? and RCTD?® outperformed SPOTIlight” in estimating cell-
type proportions, though we also found that the three algorithms
performed similarly well in estimating each cell type’s relative abun-
dance distribution across the spots (Extended Data Fig. 7b).

In the third setting, scDesign3 resembled two single-cell chro-
matin accessibility datasets profiled by the 10x single-cell assay for
transposase-accessible chromatin using sequencing (scATAC-seq) and
single-cell combinatorial indexing assay for transposase-accessible
chromatin using sequencing (sci-ATAC-seq) protocols (ATAC and
SCIATAC in Supplementary Table 2). For both protocols, scDesign3
generated synthetic cells whose read counts in peak regions resem-
bled those of real cells (Figs. 1g and 1h, left, Extended Data Fig. 8 and

Supplementary Fig. 5). Moreover, coupled with our newly developed
read simulator scReadSim*°, scDesign3 enabled the generation of
realistic synthetic reads, unblocking the capacity for benchmarking
read-level bioinformatics tools (Fig. 1h, right).

In the fourth setting, scDesign3 mimicked a cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) dataset (CITE
in Supplementary Table 2) and simulated a multiomics dataset from
‘separately’ measured RNA expression and DNA methylation modalities
(SCGEM in Supplementary Table 2). First, scDesign3 resembled the
CITE-seq dataset by simultaneously simulating the expression levels
of genes and surface proteins (Extended Data Fig. 9a,c,d). Figure 1i
shows that the RNA and protein expression levels of three exemplary
surface proteins are highly consistent between the synthetic data
and thetest data. Moreover, scDesign3 recapitulated the correlations
between RNA and protein expression levels (Extended Data Fig. 9b).
Second, scDesign3 simulated a single-cell multiomics dataset with
joint RNA expression and DNA methylation modalities by learning
from two single-omics datasets (Fig. 1j, left) with joint low-dimensional
cellembeddings found by Pamona®. This synthetic multiomics dataset
preserved the cell trajectory in the two single-omics datasets (Fig. 1j,
right). The functionality to generate multiomics data from single-omics
dataallows scDesign3 to benchmark the computational methods that
integrate modalities from unmatched cells*.

scDesign3 functionality 2 (interpretation)

Providing a universal probabilistic model for single-cell and spatial
omics data, scDesign3 has broad applications beyond generating
synthetic data. We investigated three prominent applications of the
scDesign3 model: model parameters, model selection and model
alteration (Fig. 2a).

First, the scDesign3 model has aninterpretable parametric struc-
ture consisting of genes’ marginal distributional parameters and pair-
wise gene correlations. Moreover, the scDesign3 model is flexible to
incorporate diverse cell covariates via the use of generalized additive
models (GAMs) and Gaussian process (Methods), which allow the esti-
mation of nonlinear gene expression changes along cell trajectories
(Fig. 2b) and across spatial locations (Fig. 2c). Besides inferring indi-
vidual genes’ expression characteristics, scDesign3 also estimates pair-
wise gene correlations conditional on cell covariates, thus providing
insights into potential gene regulatory relationships. Specifically,
scDesign3 estimates gene correlations by two statistical techniques,
Gaussian copula and vine copula, which have complementary advan-
tages (Methods): Gaussian copulais fast but outputs only a gene cor-
relation matrix; vine copula is slow but interpretable by outputting
agene ‘vine’ with the top layer indicating the most highly correlated
genes (thatis, ‘hub genes’). Applied to an scRNA-seq dataset of human
peripheral blood mononuclear cells with four cell types (ZHENGMIX4

Fig.1|scDesign3 generates realistic synthetic data of diverse single-cell

and spatial omics technologies. a, An overview of scDesign3’s simulation
functionalities: cell states (for example, discrete cell types, continuous
trajectories and spatial locations); multiomics modalities (for example, RNA
sequencing (RNA-seq), ATAC-seq, CITE-seq and methylation); and experimental
designs (for example, batches, conditions, sex and age). ADT, antibody derived
tag. b,c, scDesign3 outperformed existing simulators scGAN, muscat, SPARSim
and ZINB-WaVE in simulating scRNA-seq datasets with asingle trajectory (b) and
bifurcating trajectories (c). Larger mLISI values represent better resemblance
between synthetic dataand test data. d,e, scDesign3 simulated realistic gene
expression patterns in spatial transcriptomics datasets measured by 10x Visium
(d) and Slide-seq (e). Large Pearson correlation coefficients (r) represent similar
spatial patternsin synthetic data and test data. f, Using paired scRNA-seq data
and spatial transcriptomics data (MOB-SC and MOB-SP in Supplementary

Table 2) as input, we defined the ‘ground truth’ cell-type proportions at each
spot (left), with the cell types including granule cells (GC), periglomerular

cells (PGC), mitral/tufted cells (M/TC) and olfactory sensory neurons (OSNs).
Each color represents a cell type. With the cell-type proportions, scDesign3

generated synthetic spatial transcriptomics datain which every spotisa
mixture of synthetic single cells, given the spot’s cell-type proportions. The four
cell-type marker genes exhibit similar spatial expression patterns in real data
(right top) and synthetic data (right bottom). Large r values represent similar
expression patterns in synthetic data and test data. g, scDesign3 simulated a
realistic scCATAC-seq dataset at the count level. DC, dendritic cells; DN T, double-
negative T cells; mono, monocytes; NK, natural killer cells; pDC, plasmacytoid
dendritic cells. h, scDesign3 simulated a realistic sci-ATAC-seq dataset at both
the count level (left, Uniform Manifold Approximation and Projection (UMAP)
visualizations of real and synthetic cells based on peak counts) and the read
level when coupled with scReadSim™ (right, pseudobulk read coverages).

HPCs, hematopoietic progenitor cells. i, scDesign3 simulated realistic CITE-seq
data. Three genes’ protein and RNA abundances are shown on the cell UMAP
embeddingsin test data (top) and synthetic data (bottom). Large r values
represent similar expression patterns in synthetic data and test data. j, scDesign3
generated amultiomics (RNA expression + DNA methylation) dataset (right)

by learning from two real single-omics datasets with RNA expression or DNA
methylation only (left). The synthetic data preserved the linear cell topology.
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inSupplementary Table 2), Gaussian copularevealed similar gene cor-  cell types (CD14" monocytes versus naive cytotoxic T cells) (Fig. 2d,
relation matrices for similar cell types (regulatory T cells versus naive  top); vine copula discovered canonical cell-type marker genes as hub
cytotoxic T cells) and distinct gene correlation matrices for distinct ~ genes: LYZfor CD14* monocytes and CD79A for B cells (Fig. 2d, bottom).
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Fig. 2| scDesign3 enables comprehensive interpretation of real data.

a, Summary of scDesign3’s interpretation functionalities. DE, differentially

expressed; NonDE, non-DE. b, scDesign3 estimated six genes’ expression trends

along cell pseudotime (PANCREAS in Supplementary Table 2). ¢, scDesign3

estimated six genes’ spatial expression trends (VISIUM in Supplementary Table 2).

d, scDesign3 estimated cell-type-specific gene correlations (ZHENGMIX4 in

Supplementary Table 2): correlation matrices by Gaussian copula (top); vine

representations by vine copula (bottom), with genes in the first layer (roughly

the genes strongly correlated) labeled. e, scDesign3’s unsupervised assessment

of goodness-of-fit. On synthetic sScRNA-seq data with true pseudotimes (based

on EMBYRO in Supplementary Table 2), the scDesign3 BIC and the supervised

R*were evaluated oninferred pseudotimes of TSCAN (blue), Monocle3 (green)

and Slingshot (orange), with perturbed true pseudotimes (black) as reference.

Top, relative BIC (rBIC = BIC minus the smallest BIC) versus R?; the Pvalue (P)

is from the one-sided test of Spearman’s rank correlation p (Hy: p = 0; H;: p < 0).

Bottom, UMAP visualization of the three methods’ inferred pseudotimes. f, In

CD16 mono B

the CONDITION dataset (Supplementary Table 2), gene IF/6 was up-regulated
inboth CD16" monocytes and B cells from control (green) to stimulation (red).
scDesign3 simulated data where /FI6 was up-regulated in both cell types (cond++),
unchanged inboth cell types (cond—-) or up-regulated in CD16* monocytes only
(cond+-). The box center lines, bounds and whiskers denote the medians, firstand
third quartiles, and minimum and maximum values within 1.5 x the interquartile
range of the box limits, respectively (the control and stimulation conditions have
Neontror = 1,772 and Nggmuiaion = 2,188 cells, respectively). The Pvalues (P) are from the
two-sided Wilcoxon rank-sumtest. g, The BATCH dataset (Supplementary Table 2)
contains two batches (left), which were measured by 10x Chromium Version 2 and
Version 3 (10x V2 and 10x V3), respectively. scDesign3 preserved the batch effects
insynthetic data generation (batch+) or generated synthetic data without batch
effects (batch-). h, The ZHENGMIX4 dataset (Supplementary Table 2) contains
two cell types (left). scDesign3 resembled the real data under the alternative
hypothesis (H,: two cell types existed) (middle) or generated synthetic data under
the null hypothesis (H,: one cell type existed) (right).

Second, scDesign3 embraces likelihood-based model selection cri-
teria such as Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), allowing scDesign3 to evaluate the ‘goodness-of-fit’
of amodel to data and to compare competing models. A noteworthy
applicationis evaluating how inferred cell latent structures (clusters,
trajectories and spatiallocations) describe data, that s, assessing latent
structures fromthe goodness-of-fit perspective without ground truths
or external knowledge. Although the scDesign3 model does not repre-
sent ground truths, we demonstrated that scDesign3 AIC and BIC are
useful ‘unsupervised’ criteria for assessing how well latent structures
agree with data under the scDesign3 model.

For cell clustering, we benchmarked scDesign3 BIC against
the ‘supervised’ adjusted Rand index (ARI) (Methods) and the
newly proposed ‘unsupervised’ clustering deviation index* on eight
datasets with known cell types®. The results show that scDesign3 BIC
agreed well with ARI (mean Spearman correlation <-0.7) and had
better or similar performance compared with clustering deviation
index (Extended Data Fig.10b). For pseudotime inference, scDesign3
BIC correlated well (mean Spearman correlation <-0.7) with
the ‘supervised’ R? (Methods) on multiple synthetic datasets with
true pseudotimes (Fig. 2e, top, and Extended Data Fig. 10a). Applied
to three pseudotime inference methods, scDesign3 BIC found the
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pseudotimes inferred by Slingshot™® agreed better with data (smaller
BIC) than those inferred by TSCAN** and Monocle3? (Fig. 2e, bottom).
For spatial location inference, we found scDesign3 AIC correlated
well (mean Spearman correlation < -0.7) with the ‘supervised’ mean
cosine similarity (Methods) on two spatial transcriptomics datasets
(MOUSE-CORTEX and MOUSE-VISUAL in Supplementary Table 2),
suggesting that scDesign3 AIC is effective in assessing spatial loca-
tions’ goodness-of-fit (Extended Data Fig. 10c). Note that scDesign3
AlC outperformed BIC in this case, possibly because AIC prefers more
complex models, which can better fit complex spatial data.

Third, scDesign3 has a model alteration functionality: given the
scDesign3 model parameters estimated on real data, users can alter
these parameters toreflecta hypothesis and generate the correspond-
inginsilico datawithreal data characteristics. This functionality makes
scDesign3 advantageous over deep-learning-based simulators®, which
cannot be easily altered to reflect a hypothesis. We demonstrated
how to use this functionality in three examples. First, scDesign3
can generate synthetic data with different cell-type-specific condi-
tion effects (Fig. 2f). In a real dataset (CONDITION in Supplementary
Table 2), gene IFI6’s expression was up-regulated after stimulation in
both CD16" monocytes and B cells (Fig. 2f, top-left). With scDesign3’s
fitted model, we altered /F/6's mean parameters to make /F/6’s expres-
sionup-regulated (Fig. 2f, top-right) or unchanged (Fig. 2f, bottom-left)
in both cell types, or up-regulated in CD16" monocytes only (Fig. 2f,
bottom-right). Second, scDesign3 can generate synthetic data
with or without batch effects (Fig. 2g). Trained on a real dataset
(BATCH in Supplementary Table 2) containing two batches (Fig. 2g,
left), scDesign3 generated synthetic data retaining the batch effects
(Fig. 2g, middle); then we altered the batch parameter in the fitted
scDesign3 model to generate synthetic data without batch effects
(Fig. 2g right). Third, scDesign3 can generate synthetic data under
the null hypothesis (H,) that only one cell type exists and the alter-
native hypothesis (H,) that two cell types exist (Fig. 2h). Given a real
dataset (ZHENGMIX4 in Supplementary Table 2 and Fig. 2h, left), under
H,, we fitted the model using cell-type labels (Fig. 2h, middle); under
H,, we fitted the model by assuming all cells are of one type (Fig. 2h,
right). Using the two fitted models, scDesign3 generated synthetic
data under H, and H,. Particularly, the synthetic data under H, can
serve as theinsilico negative control for benchmarking cell-typeiden-
tification methods.

In summary, scDesign3 accommodates various cell statuses,
diverse omics modalities and complex experimental designs. Although
the scDesign3 model should notbe treated as the true model, itsinter-
pretable parameters precede functionalities besides datasimulation.
First, scDesign3 model parameters offer acomprehensive interpreta-
tion of real data. Second, scDesign3 allows likelihood-based model
selectionto assess the goodness-of-fit of inferred cell clusters, trajec-
tories and spatial locations. Of course, this unsupervised model-based
assessment cannot replace supervised metrics or compare models
with different types of cell latent structures (for example, cell clusters
versus trajectories). Third, scDesign3 can generate synthetic data
under specific hypotheses by having its model parameters altered.
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Methods

The generative model of scDesign3

Mathematical notations of scDesign3's training data. The train-
ing data of scDesign3 contain three matrices: a cell-by-feature
matrix (for example, features are genes or chromatin regions),
a cell-by-state-covariate matrix (for example, cell-state covariates
includethe cell type, pseudotime or spatial coordinate) and an optional
cell-by-design-covariate matrix (forexample, design covariates include
the batch or condition).

Mathematically, first, we denote by Y=[Y¥;]e R™™" the
cell-by-feature matrix with n cells as rows, m features as columns
and Y as the measurement of feature j in cell i. For single-cell
sequencing data, Y is often a count matrix (that is, Y € N*™, with ¥;
indicating the read or unique molecular identifier (UMI) count
of feature j in cell i); then the sequencing depth (that is, the total
number of readsor UMIs)isN =3, &7 ;.

Second, we denote by X =[xy, ---,X,] € R™? the cell-by-state-
covariate matrix with n cells as rows and p cell-state covariates as
columns. In X, the ith row x; € R? is cell i’s state covariate vector.
Typical cell-state covariates include the cell type (p =1 categorical
variable), the cell pseudotime in p lineage trajectories (p continuous
variables) and the two- or three-dimensional cell spatial locations
(p=2or3continuous variables).

Third, we denote by Z = [z, ---,z,]" € R™7 the cell-by-design-
covariate matrix with n cells as rows and g design covariates as columns.
InZ,theithrow z; € RYis cell i's design covariate vector. Example design
covariates are categorical variables such as the batch and condition.
Note that Z is optional: it is not required if cells are from a single
condition and measured in a single batch. To simplify the discussion,
in the following text, we write Z = [b, ¢], where b = (b,,...,b,)' has
b,e 1, ..., B} representing cell i’s batch, and ¢=(c,....c,)' has
c;efl, ..., Cirepresenting cell i's condition.

Modeling features’ marginal distributions. For each featurej=1, ...,m
inevery celli=1, ..., n, the measurement ¥;—conditional on cell i’s
state covariates x; and design covariates z; = (b,,c;)' —is assumed
to follow a distribution F( - |x;, z; i, 0, p;), which is specified as the
generalized additive model for location, scale and shape (GAMLSS)*’
(thatis, the distribution family F; depends on feature j only, but the
parameters u;, 0;and p;depend on both featurejand cell i):

Yilxi, z; ifld Fi(1x;, Z;; iy, 0, pyj)

Oy = o + Aip, + e, + fic, (%) (1)
log(oy) = Bjo + By, + Bic, + 8jc,(X2)

logit(py) = Vjo + Vjp, + Vi, + hjc, (X))

where 0, - ) denotes feature j’s specific link function of the mean
parameter u;, depending on F; (Supplementary Table 3); o; denotes
the scale parameter (for example, standard deviation or dispersion);
and p; denotes the zero-inflation proportion parameter. Note
that u;, 0; and p; do not always coexist, depending on the form
of F; (Supplementary Table 3). To ensure model identifiability, for
Jj=1, ... m,weset ay, = Bj, =V, =0whenb;=1and a;, = B, = v, =0
whenc;=1.

0,(u;) isassumed to have feature's specificintercept ajo, batch b/s
effect ay, (specific to feature j), condition ¢/s effect a;, (specific to
featurej) and cell-state covariates x;’s effect £ (x;) (specific to feature
Jjand conditionc)).

log(oy) is assumed to have feature j's specific intercept f;,, batch
b/s effect B, (specificto featurej), condition ¢/s effect g, (specificto
featurej) and cell-state covariates x;s effect g, (x;) (specific to feature
Jjand conditionc)).

logit(p;) is assumed to have feature,’s specificintercept y,, batch
b/'s effect y;, (specific to featurej), condition ¢;’s effect y;., (specific to

featurej) and cell-state covariates x;’s effect Ay (x;) (specific to feature
jand conditionc)).

For 6;(u;), 10g(0;) and logit(p;), the interaction effects are consid-
ered between the condition and cell-state covariates, but not between
thebatch and cell-state covariates. This modeling choice is made based
on empirical observations and the simplicity preference®.

Note that if only the mean parameter p; is assumed to depend
on the state covariates x;, batch b,and condition c; then the GAMLSS
degenerates toa GAM™.

Depending on the modality of feature; (for example, agene’s UMI
count), scDesign3 specifies F;to be one of the six distributions: Gauss-
ian (Normal), Bernoulli, Poisson, Negative Binomial (NB), Zero-inflated
Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB); see Sup-
plementary Table 3 for the specifications. Different specifications
of F; correspond to different link functions 8/ - ) and parameters; see
Supplementary Table 3 for the details.

Depending on cell i’s cell-state covariates X;, scDesign3 specifies
the functions fi,(-).8,(-) and k() in the corresponding forms. See
Supplementary Table 4 for the details. Below are the three typical forms
of fie,().

(1) When the cell-state covariate is the cell type (out of a total

of K.cell types) and X = (x;, ..., x,)" is a 1-column matrix with

xefl, ... K3

f,;‘c,» (X) = e,

which corresponds to cell-type x;'s effect on featurej in condition c;.

Note that for identifiability, a;.,,, = 0if c;=1orx;=1.

(2) When the cell-state covariates are the cell pseudotimesin p
lineage trajectories, that s, x; = (x, ... ,x,-,,)T with x; indicating
cell i's pseudotime in the /th lineage trajectory

p K

S %) =203 b Xi)Bic,ues

[=1k=1

where Zle bie.ix(Bicu is a cubic spline function for pseudotime in
thelthlineage. This formulation means that featurejunder condition
c;has a specific smooth pattern in lineage [. The exact choice K, the
dimension of the basis governing the flexibility of f, is not critical as
long as K is not too small (because automatic penalization would
be used in the estimation of f; by the R package mgcv, which is used
in the R package gamlss®); we set K=10 as default; K cannot be
larger than the number of data points.
(3) When the cell-state covariates are two-dimensional spatial
locations, that is, x; = (x;,x;;)" indicating cell i's two-dimensional
spatial coordinates

.I}Ci(xi) =ij|‘P (XiI’XiZ) K)’

alow-rank Gaussian process smoother described inrefs. 39,40, where
K is the dimension of the basis governing the flexibility of f. This
formulation means that feature j under condition c; has a smooth
two-dimensional function (thatis, a surface). The exact choice Kis not
critical as long as K is large (because automatic penalization would
beusedintheestimation of f;, by the R packagemgcv, whichisusedin
the R package gamlss®); we set K =400 as default; K cannot be larger
than the number of data points.

Thedistribution of (Y;|x;, z;) inequation (1) is fitted by the function
gamlss () inthe R package gamlss (v.5.4-3) or the function gam ()
in the R package mgcv (v.1.8-40). The fitted distribution is denoted
as (X, z).i=1,....nj=1,...,m.

Modeling features’ joint distribution. For cell i =1, ..., n, we denote
itsmeasurements of the m featuresasarandomvector Y; = (Yy, ..., Vi),
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whosejointdistribution—conditional on cell i’s state covariates x;and
design covariates z,—is denoted as F(-|x;,z;)) : R™ - [0,1]. The section
‘Modeling features’ marginal distributions’ specifies F( - |x; z,),
the distribution of (Y|x; z,),j=1, ..., m. In scDesign3, the joint
cumulative distribution function (CDF) F( - |x;, z,) is modeled from the
marginal CDFs Fy( - |x;, Z), ..., F,,( - |X;, Z,) using the copula C( - |x;, z,):
[0,1]"~>[0,1]:

Fyilxi, z;) = CCR0alXi, 2, -+ FrnOim X3, 20)1X;, 2:)

wherey; = 3y, ..., Vi) isarealizationof Y; = (Y, ..., Vim) -

The copulaC(- |x;, z;) canbe (1) the Gaussian copulaor (2) the vine
copula, specified below.

The Gaussian copulais defined as:

CFOulXi-2p), - s FnQim|Xi, Z) X4, Z;)
= O, (O FGalXp2)), -+, O Fp(ValXi, 2)) R(X;, 2))

where @ denotes the inverse of the CDF of the standard Gaussian
distribution,and ®,( - ; R(x;, z;)) denotes the CDF of an m-dimensional
Gaussiandistribution withazero meanvector and a covariance matrix
equal to the correlation matrix R(x;, z,).

Anissue with the Gaussian copulais that the likelihood calculation
isnotstraightforward in the high-dimensional case when mis large and
the sample correlation matrix R(x;, z;), as an estimator of R(x;, Z,), is not
invertible. Then, the likelihood cannot be computed based on R(x;, z,).
To address thisissue, we consider the vine copula.

The vine copula is a way to ‘decompose’ a high-dimensional
copulainto a sequence of bivariate copulas, in which every pair of
features is modeled as a bivariate Gaussian distribution. In short, the
vine copula provides a regular vine (R-vine) structure that uses con-
ditioning to sequentially decompose an m-dimensional copulainto a
sequence of bivariate copulas; then the m-dimensional copula density
functionis approximated by the product of the bivariate copula density
functions*. The vine copula is advantageous to the Gaussian copula
because it enables the likelihood calculation in the high-dimensional
case. A detailed definition of the vine copula is in Supplementary
Methods.

Toestimate C( - |x;, ;) as either the Gaussian or vine copula, we use
the plug-in approach that takes the estimated F£,(:|x;, z)), ..., Frn(-1X;, Z)
from the section ‘Modeling features’ marginal distributions’. Specifi-
cally, when F;(-x;, ;) is a continuous distribution, each observed y; is
transformed as u; = F;(y;1x;, z;). When F;(|x;, z;)isa discrete distribution
with the support on non-negative integers (for example, the Poisson
distribution), uy, ..., u,; follow a discrete distribution. Since the
Gaussian and vine copulas assume that features follow continuous
distributions, we use the distributional transformation as in ref. 16:

u; = Q- vpFy — 1x,2) + vF (VX 2), ¥ =1,2,...,

where v;’s are sampled independently from Uniform[0,1],i=1, ..., n;
Jj=1, ..., m.Tounifyand simplify our notations, we write u; = F;(y;|X;, ),
where F;(:|x;,z;) is the CDF of a continuous distribution.
Then, C(- |x, z,) is estimated fromu,, ..., u,, where w; = (g, ..., i) -
For the Gaussian copula, we use the function cora () inthe R package
Rfast (v.2.0.6); specifically, R(x;, z;) is the sample correlation matrix
of {d7(u): (x;,z)isina predefined-Tsized neighborhood of (x;, z))},
where ®~1(u)) = (@~ (uy), ..., D~ (u;,)) . Forthevine copula, we use the
functionvinecop () inR package rvinecoplib (v.0.6.2.1.1).
Then, the estimated joint distribution F(-|x;, ;) is

Fyilxiz)) = C(ROulXi 20, -+ i Xi: 2)1X12 Z;) . 2

Model likelihood, AIC and BIC. Given equation (2), the estimated
probability density function of cell i’'s m-dimensional feature

vector y; conditional on the cell-state covariates x; and the design
covariates z; is

m
Syilxnz) = E(FL(YalXi D), - Fn(Vim X6 ZD)IX1, Z;) H];'(yiﬂxi’ zZ;),
=1

where ¢(|x;, z;) is the probability density function of ¢(|x;,z;), and
f{¢1x;,z;) is the probability density function of 7;(|x; z;). Hence, the
log-likelihood is

¢ = Z:llng(Yi|xi’zi)

™=

I
-

n - m -
log ¢ (FiVulXi 2), -+ Fin(Vim | Xi, ZD)IX1, Z;) + Zl 21 logf(y;lx;,z;)
i=1j=

6;Copu|a + eMarglnaI,

so the log-likelihood ¢ can be written as the sum of a copula log-
likelihood

n
¢Copula — Z log é(Fl(yillxia 2, F(Yim !X, ZDIX;, Zi)
i=1

and a marginal log-likelihood

n -m
pMarginal _ Z Z Iogj;(yij\xi, z)).
i)

Given k model parameters and n cells (that is, the sample size n
is the number of cells), the AIC and BIC are

AIC = 2k —2¢;
BIC = 2klog(n) — 2¢,

sosmaller AICand BIC valuesindicate better goodness-of-fit of amodel
to data.

Because of the likelihood decomposition, the AIC and BIC are also
decomposable

AIC = A]CCopuIa +Acharginal;

BIC = BlCCopuIa + Bcharginal’

where AIC®P"and BIC*°P" only include the number of parameters in
é(-Ix;,z;), and AICM€n and BICM"&"! only include the total number of
parametersin f,(-x;, z;), ... .f,,C|x;, Z)-

Synthetic data generation by scDesign3

To generate a synthetic cell-by-feature matrix Y’ € R”*", which
contains n’ synthetic cells and the same m features as in the training
data, scDesign3 allows the specification of a cell-by-state-covariate
matrix X’ € R”>*? and an optional cell-by-design-covariate matrix
Z' e N> (depending on whether the training data have Z) for the n’
synthetic cells. Note that X’and Z’ can be specified by users, generated
by resampling the rows of X and Z, or sampled from some generative
models of the rows of Xand Z.

Given X, Z and the fitted distributions in sections ‘Modeling
features’ marginal distributions’and ‘Modeling features’joint distribu-
tion’, scDesign3 samples n’ synthetic cells in the following steps.

First, for each synthetic cell 7, given its cell-state covariates x;
and design covariates z;, we independently sample an m-dimensional
vector (withvaluesin [0, 1]) from the m-dimensional copula estimated
inthe section ‘Modeling features’ joint distribution”:

Uty oo Upm) " ~ CCIXp,2), 0 =1,...,10.
'l i'm i Ei
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Second, based on the m features’ fitted marginal distributionsin
the section ‘Modeling features’ marginal distributions’, we calculate
the conditional distribution of ¥,;, the measurement of feature; in
synthetic cell i/, given the synthetic cell’s cell-state covariates x; and
design covariates z; = (b;, ¢y y', where by €fl,...,B}and ¢; €{1,...,C};
thatis, the distribution of Y,|x;, z;:

Fi-1Xy,20) = Fi(-Xir Zir3 s 0o By )

where
) = Qjo + Qjp, + Ay, +}§-Ci, Xpr),
log(6)) = Bjo + /}jb[, + [3jc,-, +8i, (X),
logit (B,)) = Pjo + Vo, + Ve, + Fje, X).

Note that /1, 6;; and p,; may not all be required, depending on the
form of F;(Supplementary Table 3).

Then, the m-dimensional feature vector of synthetic cell i
is (Yip ..., Yom) ', Where

1 R
Yoi=F; (Upjlxp,2), j=1,...,m.

Thanks to the parametric form of £;(|x;,z;), users can generate
the synthetic data in their demand by modifying the parameters. For
instance, if users want the expected sequencing depth of Y’ to
change from N (the sequencing depth of Y) to &, they can scale the
mean parameter; thatis, the distribution of Y,|x; ,z, becomes:

Bz = -

N
Xirs Zirs 5 Bijs Ouj Py ) .

If users want to remove the batch effects, they can set
&p, =B, =M, =0,

foralli =1,..,n";j=1,...,m.
If users want to remove the condition effects, they can set

&e, = Bie, = Vje, = 0;
Fie, O = Fa (%
&, () = 8,
ﬁjc,.,(') = hy(),

foralli =1,..,n";j=1,...,m.

The comparison of scDesign, scDesign2 and scDesign3. Supplemen-
tary Table1lists a detailed comparison of scDesign3 with the previous
two versions scDesign® and scDesign2'®. Note that scDesign2 is a special
case of scDesign3 for generating sScRNA-seq data from discrete cell types.

Data analysis

Data preprocessing. Supplementary Table 2 lists thereal datasets from
17 published studies, which were used in this study. Since scDesign3
can directly model count data, we did not perform data transforma-
tion (for example, logarithmic transformation) on the cell-by-feature
count matrices.

For each cell-by-feature count matrix Y (except for the
SCGEM-METH and SCGEM-RNA datasets), feature screening was used
to selectinformative features and save computation time.

« Forevery scRNA-seq dataset (BATCH, EMBRYO, IFNB, MARROW,
PANCREAS and the RNA datain CITE), we used the R package
scran (v.1.20.1)* to select the top 1,000 highly variable genes.

«  Forthe10x scATAC-seq dataset (ATAC), we used the R package
Signac (v.1.7.0)* to first obtain a cell-by-peak matrix and then
select 1,133 differentially accessible peaks.

« Forthesci-ATAC-seq (SCIATAC) dataset, the preprocessing and
feature selection steps were described™.

»  Forthe10x Visium datasets (ACINAR, OVARIAN and VISIUM),
we used the R package seurat (v.4.1.1)** to select the top 1,000
spatially variable genes.

« FortheSlide-seq dataset (SLIDE), we selected the top 1,000
genes with the smallest Pvalues outputted by SPARK-X".

« Forthe pair of single-cell and spatial datasets (MOB-SC and
MOB-SP), we used the R package scran (v.1.20.1) to select the
top 50 marker genes for each cell type in MOB-SC.

« For datasets MOUSE-CORTEX, MOUSE-VISUAL and ZHENGMIX4,
we used the genes selected in the original studies***.

For each dataset, the cell-by-state-covariate matrix X was from
the original study (if the cell-state covariates are cell types or spatial
locations) or inferred by the R package S1ingshot (v.2.2.1)* (if the
cell-state covariates are pseudotime values in trajectory lineages).

For each dataset, the optional cell-by-design-covariate matrix Z
was from the original study if available.

Dimensionality reduction and visualization. To compare scDesign3’s
synthetic datawith real test data, we used the R package irlba (v.2.3.5)
for principal component analysis (PCA), that is, to calculate the top
50 principal components of the test cell-by-feature matrix (after
log-transformation); next, we used the R package umMaP (v.0.2.8.0)
to project the test cells from the 50-dimensional principal compo-
nentspace to the two-dimensional UMAP space. Then, we applied the
same PCA-UMAP projection to scDesign3’s synthetic cells using the
Rfunctionpredict () .Usingthe same projectionensures that the test
cells and synthetic cells are embedded in the same two-dimensional
space and thus comparable.

Unless otherwise noted, the figures were made by the R package
ggplot2 (v.3.3.6). The coverage plot in Fig. 1g was generated by 1Gv
(v.2.12.3).

Evaluation metrics.

< mLISI: To measure the similarity between test cells and synthetic
cells in the two-dimensional space, we used mLISI* as the metric.
Specifically, if a cell’s neighboring cells are from one group (for
example, test cells or synthetic cells), the cell’s local inverse
Simpson’sindex (LISI) is 1; otherwise, if a cell’s neighboring cells
comprise two groups equally, the cell’s LISl is 2. The mLISI s the
average of all cells’ LISIs. Hence, an mLISI close to 2 means that
the test cells and synthetic cells are well mixed. The mLISIis
calculated by the function evalIntegration () inthe
R package ce11Mixs (v.1.8.0)".

« Pearson correlation between spatial patterns: To measure the
per-feature similarity between real data and synthetic data when
the cell-state covariates are spatial locations, we compared
supervised learners trained on real data and synthetic data sepa-
rately. In detail, for every feature (for example, gene), we con-
ducted the following analysis. First, treating the feature as the
outcome, we trained a flexible learner, the generalized boosted
regression model (GBM), separately on real data and synthetic
data to predict the feature’s values from the cell-state covariates,
using the R package caret (v.6.0-93). Second, we measured the
Pearson correlation r between the two GBMs’ predicted feature
values from the synthetic data’s spatial locations (note that the
cell-state covariates could be replaced by a random sample from
the location space). An r close to 1 means that the two GBMs are
similar; that is, the feature’s ‘relationship’ with spatial locations
is similar in the real data and the synthetic data. If all features
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have rvalues close to 1, we concluded that the synthetic data
resemble the real data.

< Summary statistics: In Extended Data Figs. 1,2, 4,8 and 9 and
Supplementary Figs. 1-5, we compared the distributions of eight
feature-level, cell-level, feature-pair-level and cell-pair-level
summary statistics between real data and synthetic data. Note
that in scRNA-seq and spatial transcriptomics data, every gene
is a feature; in scATAC-seq and sci-ATAC-seq data, every peakis a
feature. The eight summary statistics are:

(1) Mean of log expression (feature-level statistic): a feature’s
mean of log( count + 1) values across all cells.

(2) Variance of log expression (feature-level statistic): a feature’s
variance of log( count + 1) values across all cells.

(3) Featuredetectionfrequency (feature-level statistic): afeature’s
proportion of nonzero counts across all cells.

(4) Feature-feature correlation (feature-pair-level statistic): the
correlation between two features’ log(count +1) values
across all cells.

(5) Cell library size on the log scale (cell-level statistic): a cell’s
log-transformed total read or UMI count (that is, log per-cell
sequencing depth).

(6) Cell-cell distance (cell-pair-level statistic): the Euclidean dis-
tance between two cellsinthe 50-dimensional principal compo-
nent space (constructed from the cell-by-gene log( count + 1)
matrix).

(7) Cell detection frequency (cell-level statistic): a cell’s propor-
tion of nonzero counts across all features.

(8) Cell-cell correlation (cell-pair-level statistic): the correlation
between two cells’ log( count + 1) values across all features.

Feature-feature correlations were calculated for the top 100
highly expressed features in each real dataset and the corresponding
synthetic datasets. To measure the similarity between the real and
synthetic correlation matrices, we calculated the Pearson correlation
racross all 100° entries of the correlation matrices.

Boxplots and scatter plots. The boxplots (Fig. 2f) were plotted using
the function geom_boxplot () in the R package ggplot2 (v.3.6.6).
Ineachboxplot, the center horizontal line represents the median, the
box limits represent the upper and lower quartiles, the whiskers cover
the 1.5 x interquartile range and points are outliers. The P value was
calculated by the two-sided Wilcoxon rank-sum test.

The scatter plots (Fig. 2e and Extended Data Fig. 10) were plot-
ted using the function geom_scatter () inthe R package ggplot2
(v.3.6.6).Ineachscatter plot, the Pvalue associated with the Spearman’s
correlation coefficient p was calculated by the one-sided test in the
function cor. test () intheR package stats(v.4.4.2).

scDesign3’s simulation of spot-resolution transcriptomics data with
true cell-type proportions. To generate the synthetic spot-resolution
spatial transcriptomics data with true cell-type proportions at each
spot, we used a pair of an scRNA-seq dataset (MOB-SC) and a spatial
transcriptomics dataset (MOB-SP) that measured the same biological
sample (mouse olfactory bulb). The simulation procedure consists of
three steps: the first two steps for parameter estimation fromreal data
and the last step for data simulation.

First, we used scDesign3 to estimate each gene’s mean expression
level of each cell type (from scRNA-seq data) and the same gene’s mean
expression level at each spatial spot (from spatial transcriptomics data;
Extended DataFig. 7a, Step1).

Second, using the four cell types’ gene mean expression vectors
(one vector per cell type; the cell types are the columns in Extended
DataFig.7b; each vector’s elements correspond to genes’ mean expres-
sion levelsinthe cell type) as the reference data and the spatial spots’
gene mean expression vectors (one vector per spot) as the query data,

we used the cell-type decomposition method CIBERSORT**** to esti-
mate each spot’s cell-type proportions (Fig. 1f, left, and Extended Data
Fig.7b, top row), which we then considered asthe spot’strue cell-type
proportions in scDesign3’s simulation. As a sanity check, we show
CIBERSORT's fitted gene expression levels at each spot in Extended
Data Fig. 7a, Step 2. Note that CIBERSORT could be replaced by other
decomposition methods.

Third, we used scDesign3 to generate synthetic sCRNA-seq data
of the four cell types after training scDesign3 on the real scRNA-seq
data. Then, we simulated spot-resolution transcriptomics data as fol-
lows. For each real spot, we sampled 100 cells from the four cell types
based onthespot’strue cell-type proportions. Specifically, if the true
cell-type proportions are p,, ..., p,, then the numbers of cells sampled
from the four cell types would be drawn from a multinomial distribu-
tion, Multinomial(100, (p,, ..., p,)). Then, we added the sampled cells’
gene expression vectors and divided the summed vector by 10 to form
the spot’s gene expression vector (so every spot corresponds to10 cells
onaverage, consistent with real data) (Extended DataFig. 7a, Step 3).

Using the synthetic spot-resolution spatial transcriptomics data,
webenchmarked three spatial transcriptomics cell-type deconvolution
algorithms: CARD*, RCTD?® and SPOTlight*, using the R packages
CARD (v.1.0), spacexr (v.2.1.6) and sPOT1ight (v.1.0.1), respectively.
We chose these three algorithms to demonstrate scDesign3’s bench-
marking functionality because of a published benchmark study?,
whichfound CARD and RCTD to have similarly good performance and
to have outperformed SPOTlight. Hence, we considered CARD, RCTD
and SPOTIlight as representative algorithms to check if our benchmark
results based on scDesign3 could be consistent with the published
study that used anindependent approach?.

scDesign3’s simulation of a multiomics dataset from single-omics
datasets measuring different modalities. To simulate a multiomics
datasetfromrealsingle-omics datasets with unmatched cells, scDesign3
relies on an integration method that projects single-omics data
to a joint low-dimensional space. Then, scDesign3 considers each
cell’s low-dimensional embedding as the cell-state covariates in
the modeling.

In Fig. 1j, we used an scRNA-seq dataset and a single-cell methyl-
ation dataset with unmatched cells. The two datasets’ cells’ joint
low-dimensional embeddings were inferred by the integration method
Pamona®, which could bereplaced by otherintegration methods. Then,
wetrained scDesign3 for each modality (RNA or methylation) using the
low-dimensional embeddings of the modality’s real cells. Finally, using
the fitted models (one per modality), we generated asynthetic cell with
both modalities from each real cell’s low-dimensional embedding.

scDesign3’s assessment of cell clusters’ goodness-of-fit. To show
that scDesign3 can assess the goodness-of-fit of cell clusters, we used
the eight datasets from the R package buoClustering2018(v.1.10.0),
in which each dataset contains cell-type labels (‘truth’) and various
clustering methods’ results with varying numbers of clusters. The
ARI, a‘supervised’ measure calculated between each clustering result
and cell-type labels, was used as the benchmark standard. Assuming
the NB distributionin the scDesign3 model, we calculated scDesign3’s
marginal BIC (in the section ‘Model likelihood, AIC and BIC’), an
‘unsupervised’ measure that uses only the clustering result but not
thecell-typelabels, for each clustering resultin each dataset. We used
scDesign3’s marginal BIC because we observed that it better captured
the goodness-of-fit of cell clusters than the scDesign3 BIC. A possible
reasonis thatthe scDesign3 BIC is dominated by the copula BIC, which
largely reflects the number of parameters instead of the clustering
goodness-of-fit.

In Extended DataFig.10b, we benchmarked scDesign3’s marginal
BIC against the ARl and found them to have negative correlations on
the eight datasets consistently, suggesting that scDesign3’s marginal
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BIC is an effective assessment measure of clustering goodness-of-fit:
alower BIC indicates better goodness-of-fit.

scDesign3’s assessment of cell pseudotimes’ goodness-of-fit. To
show that scDesign3 can assess the goodness-of-fit of cell pseudotimes,
we used five synthetic datasets generated by the R package dyngen
(v.1.0.3)” and three synthetic datasets generated by scDesign3; each
dataset contains cells’ true pseudotime values (‘truth’) ranging from
0 to 1. To generate perturbed pseudotimes with varying quality, we
randomly replaced 0%, 10%, 20%, ..., 100% of truth pseudotime values
with randomly sampled values from the Uniform[O, 1] distribution.
We also considered the inferred pseudotimes by the R packages
Slingshot (v.2.4.0), Monocle3 (v.1.0.0) and TSCAN (v.1.34.0). The
benchmark standard was the ‘supervised’ R*between the true pseudo-
time values and the perturbed or inferred pseudotime values. Using the
NB distribution in the scDesign3 model, we calculated scDesign3’s
marginal BIC (inthe section‘Modellikelihood, AICand BIC’), an ‘unsuper-
vised’ measure that only uses the perturbed or inferred pseudotime
values but not the true pseudotime values, for each set of perturbed or
inferred pseudotime values in each dataset. We used scDesign3’s
marginal BIC because we observed that it better captured the
goodness-of-fit of cell pseudotimes than the scDesign3 BIC. A possible
reasonis that the scDesign3 BIC is dominated by the copula BIC, which
largely reflects the number of parameters instead of the pseudotime
goodness-of-fit.

InExtended DataFig.10a, we benchmarked scDesign3’s marginal
BICs against the R? and found them to have negative correlations on
the eight datasets consistently, suggesting that scDesign3’s marginal
BICis an effective assessment measure of pseudotime goodness-of-fit:
alower BIC indicates better pseudotime goodness-of-fit.

scDesign3’s assessment of inferred spatial locations’ goodness-
of-fit. To show that scDesign3 can assess the goodness-of-fit of inferred
spatial locations, we used two single-cell resolution spatial transcrip-
tomics datasets from Li et al.**. The two datasets contain all cells’
measured spatial locations. Then, for each spatial transcriptomics
dataset, we treated its cells’ gene expression counts as a ‘pseudo’
scRNA-seq dataset, and we inputted this pseudo scRNA-seq dataalong
with the original spatial transcriptomics dataset into Seurat (v.4.1.1),
Tangram (v.1.0.0)°° and novoSpaRc (v.0.4.3)*'—as anintegration task—to
infer the spatiallocations of the cellsin the pseudo scRNA-seq dataset.
This approach allowed us to evaluate the inferred spatial locations
based on the true spatial locations in the original spatial transcripto-
mics dataset.

The inferred spatial locations by novoSpaRc contained a large
proportion of overlapping locations and thus were not used in our
assessment. For Seurat and Tangram, we used each method’sinferred
spatial locations along with the original gene expression counts to
train scDesign3 (with the NB distribution; Supplementary Table 3) and
calculate thelikelihood, marginal AIC and marginal BIC (in the section
‘Model likelihood, AIC and BIC’). Note that we only used the top 100
spatially variable genes defined by Moran’s / statistic to train scDesign3
tosave computational time. To evaluate the performance of scDesign3’s
unsupervised marginal AICand BIC, we used the mean cosine similarity,
a ‘supervised’ measure that averages all cells’ absolute values of the
cosine similarity (for each cell, the cosine similarity is calculated
between the cell’s true spatial location and inferred spatial location).

Additionally, for each dataset, we randomly shuffled 0%, 10%,
20%, ...,100% of true spatial locations to obtain perturbed spatial
locations with varying quality. Then, we calculated scDesign3’s
marginal AIC and BIC for the perturbed spatial locations.

In Extended Data Fig. 10c, we found that scDesign3’s marginal
AIC and the mean cosine similarity had negative correlations on the
two datasets, suggesting that scDesign3’s marginal AIC is an effective
assessment measure of spatial locations’ goodness-of-fit: a lower AIC

indicates better goodness-of-fit. Note that AIC outperformed BIC in
this case, possibly due to the reason that genes’ spatial patterns are
complex and thus need complex models.

Implementation of other simulators. We compared scDesign3
with multiple representative scRNA-seq simulators including scGAN,
muscat, SPARSim and ZINB-WaVE.

* ForscGAN, we used the docker and the tutorial available at
https://github.com/imsb-uke/scGAN (access date: 7 February
2022) to simulate synthetic data.

«  Formuscat, we first used the R function prepSim () to process
the training dataset. Then, we ran the R function simbata () to
simulate a synthetic dataset based on the processed training
dataset and the cell-level information (such as cell types and
experimental conditions) in the training dataset. Both functions
are from the R package muscat (v.1.6.0).

»  For SPARSim, we first used the SPARSim create simulation
parameter () function to obtain the parameters for each group
of cells in the training dataset, whose cells were grouped by cell
types, experimental conditions or batches. The three required
input parameters for the function—intensity, variability
and library size—were obtained from the functions
SPARSim estimate intensity(),SPARSim estimate
variability () and SPARSim estimate library size(),
respectively, for each cell group. Then, we ran the SPARSim
simulation () function with the input parameters from the
previous step to generate synthetic data. All functions are
from the R package SPARSim (v.0.9.5).

» For ZINB-WaVE, we used the zinbFit () function from the
R package zinbwave (v.1.15.3), with the count matrix and
cell-type labels as inputs.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All datasets used in the study are publicly available. Supplementary
Table2liststhe datasets from 17 published studies (sourcesincluded).
The preprocessed datasets are available in the Zenodo repository at
https://doi.org/10.5281/zenodo0.7110761%.

Code availability

The scDesign3 package is available at https://github.com/SONG-
DONGYUAN1994/scDesign3. The comprehensive tutorials are avail-
able at https://songdongyuan1994.github.io/scDesign3/docs/index.
html. In the tutorials, we described the input and output formats,
model parameters and exemplary datasets for each functionality of
scDesign3. The source code for reproducing the results is available in
the Zenodo repository at https://doi.org/10.5281/zenodo0.7110761%,
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Extended Data Fig. 1| Benchmarking scDesign3 against four existing
scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for
generating scRNA-seq data from a single trajectory (mouse pancreatic
endocrinogenesis; dataset PANCREAS in Supplementary Table 2).

a, Distributions of eight summary statistics in the test data and the synthetic
data generated by scDesign3 and the four simulators. Each number on top of a
violin plot (the distribution of asummary statistic in a synthetic dataset) is the
Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number
indicates better agreement between the synthetic dataand the test datain
terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene

0.00 0.25 0.50 0.75 1.00
correlation matrices (showing top 100 highly expressed genes) in the test data
and the synthetic data generated by scDesign3 and the four simulators. Pearson’s
correlation coefficient rmeasures the similarity between two correlation
matrices, one from the test data and the other from the synthetic data. c, PCA
visualization (top two PCs) of the test data and the synthetic data generated by
scDesign3 and the four simulators. Colors label cells’ pseudotime values; note
that only the synthetic data generated by scDesign3 contain the pseudotime
truths. An mLISI value close to 2 means that the synthetic data resemble the real
datawellin the low-dimensional space. d, UMAP visualization of the real data and
the synthetic data generated by scDesign3 and the four simulators.
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Extended Data Fig. 2| Benchmarking scDesign3 against four existing
scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for
generating scRNA-seq data from bifurcating trajectories (myeloid
progenitorsin mouse bone marrow; dataset MARROW in Supplementary
Table 2). a, Distributions of eight summary statistics in the test data and the
synthetic data generated by scDesign3 and the four simulators. Each number on
top of aviolin plot (the distribution of a summary statistic in a synthetic dataset)
is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number
indicates better agreement between the synthetic dataand the test datain
terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene

Pseudotime1 _

0.00 0.25 0.50 0.75 1.00

Pseudotime2 “

0.00 0.25 0.50 0.75 1.00
correlation matrices (showing top 100 highly expressed genes) in the test data
and the synthetic data generated by scDesign3 and the four simulators. Pearson’s
correlation coefficient rmeasures the similarity between two correlation
matrices, one from the test data and the other from the synthetic data. c, PCA
visualization (top two PCs) of the test data and the synthetic data generated by
scDesign3 and the four simulators. Colors label cells’ pseudotime values in two
trajectories; note that only the synthetic data generated by scDesign3 contain
the pseudotime truths. An mLISI value close to 2 means that the synthetic data
resemble the real data well in the low-dimensional space. d, UMAP visualization
ofthe real data and the synthetic data generated by scDesign3 and the four
simulators.
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Extended Data Fig. 3| scDesign3 simulated realistic gene expression patterns  (hematoxylin and eosin stain, left) and spatial transcriptomics (right, three
in cancer spatial transcriptomics data (datasets OVARIAN and ACINAR in cancer-related genes). Large Pearson correlation coefficients (r) represent
Supplementary Table 2. Human ovarian cancer (a) and human prostate cancer, similar spatial patternsin synthetic data and real (test) data.

acinar cell carcinoma (b). The tissue samples were measured with both H&E

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01772-1

a s Mean log exp! Var log expl ion Gene detection freq Gene correlation b
S & Q.@ Q| 1004 e &
64 0.9
21 0.75
44 0.6 Test data scDesign3-ideal scDesign3-spatial
0.504
14
24 0.3
0.254
04 04 0.0
Log library size . Cell distance Cell detection freq Cell correlation
$ © N 9 | 1.004 > H H QA
104 NS RSN & & 0] SRS
601
%1 0.754
8 01 051 | r=0.99 | r=0.98
74 0.504
N 204 0.0 )
05 Pearson . .
54 o] 054 Correlation g _g5 00 05 10
; > N N N > > > > > >
&@ _\,2;0 Q@\\'b & _@Q;o Q@@ & \&'b &\(z» & \&;b Q@\@»
& & 4 & & 5 & & Lo & & P
A & i <@ S Kt A S & A S &
2 ) > O 2 & 2 )
S & S & & S &
o %9 & %9 2y 653 & %&
c d
Test data scDesign3-ideal scDesign3-spatial Test data scDesign3-ideal scDesign3-spatial
« -
wn ~ .
= e
&
o < ;
a % 31
4 oA
- v 3
G
i
¥ mLISI=1.91
UMAP1
e 1 ¢ 5 @ 9 ® 13 e 1 e 5 @ 9 ® 13
® 2 ® 6 ®© 10 o 14 ® 2 © 6 o 10 o 14
Cell type Cell type
® 3 ¢ 7 o 11 o 15 ®© 3 ¢ 7 o 11 o 15
® 4 ® 8 o 12 ® NA ® 4 o 8 o 12 ® NA

Extended DataFig. 4 |scDesign3 simulated 10x Visium spatial transcriptomics
data (sagital mouse brain slices; dataset VISIUM in Supplementary Table 2).
a, Distributions of eight summary statistics in the test data and the synthetic

data generated by scDesign3 using cell type labels (scDesign3-ideal) and spatial
locations (scDesign3-spatial), respectively. Each number on top of a violin plot
(the distribution of asummary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by
thatviolin plot) and the test data distribution. A smaller number indicates better
agreement between the synthetic data and the test datain terms of that summary
statistic’s distribution. b, Heatmaps of the gene-gene correlation matrices
(showing top 100 highly expressed genes) in the test data and the synthetic

datagenerated by scDesign3-ideal and scDesign3-spatial. Pearson’s correlation
coefficient rmeasures the similarity between two correlation matrices, one from
the test dataand the other from the synthetic data. ¢, PCA visualization (top two
PCs) of the real data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. Cell types (clusters) are labeled by colors. Since the scDesgin3-
spatial dataset was based on spatial locations only, it did not contain cell types.
AnmLISIvalue close to 2 means that the synthetic data resemble the real data
wellinthe low-dimensional space. d, UMAP visualization of the real dataand the
synthetic data generated by scDesign3-ideal and scDesign3-spatial. Insummary,
scDesign3 realistically simulated 10x Visium data based on spatial locations
without needing cell type annotations.
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Extended Data Fig. 5| scDesign3 mimicked spatial transcriptomics data machine with the radial kernel) to predict each gene’s expression at a spatial

so that prediction algorithms had similar prediction performance when location (input: spatial location; output: the gene’s log(count+1) expression level
trained onreal data or scDesign3 synthetic data. In detail, we first split each atthelocation), obtaining a pair of prediction models for each gene. Fourth,

of four spatial transcriptomics datasets (VISIUM, SLIDE, OVARIAN, and ACINAR we applied each pair of prediction models to the corresponding testing dataset
inSupplementary Table 2) into two datasets (training and testing) by randomly and calculated each model’s root-mean-squared error (RMSE) for predicting
splitting the spatial locations into two halves. Second, we used each of the four the corresponding gene, obtaining a pair of RMSEs. As aresult, in each panel, we
training datasets to fit scDesign3 and generate the corresponding synthetic plotted the RMSEs for each prediction algorithm (row) and dataset (column),
dataset. Third, on each pair of training dataset and synthetic dataset (amonga with each dot in the panel representing a gene. We found all genes’ RMSEs highly

total of four pairs), we trained each of three prediction algorithms (gbm: gradient  similar, indicating that scDesign3’s synthetic data well mimicked real data.
boosting machine; randomForest: random forest; svmRadial: support vector
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and r (model goodness-of-fit) both become stable.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scDesign3 simulated spot-resolution spatial
transcriptomics data for benchmarking cell-type deconvolution algorithms
(datasets MOB-SP and MOB-SCin Supplementary Table 2). a, scDesign3’s
synthetic spot-resolution data well mimicked real data (top row), showing similar
expression patterns for four cell-type marker genes (columns). scDesign3 used
three steps to generate the spot-resolution data. Step 1: every gene’s estimated
mean expression level at each spot (as asmooth function of spot location) by
scDesign3. Step 2: every gene’s predicted expression level at each spot from
CIBERSORT's estimated cell-type proportions at the spot (considered as the
‘true proportions’) and the gene’s cell-type-specific expression levels (from

the reference scRNA-seq data). Step 3: every gene’s simulated expression level
ateach spot by scDesign3 (from the true cell-type proportions at the spot and

scDesign3’s synthetic sScRNA-seq data). b, Using scDesign3 synthetic data,

we benchmarked three spatial cell-type deconvolution algorithms (CARD®,
RCTD’, and SPOTlight®). For each of the four cell types (columns), we used two
metrics-Pearson correlation (r) and root-mean-square error (RMSE)-to compare
the proportions estimated by each deconvolution algorithm (rows 2-4) to the
true proportions (top row). Large rvalues represent similar spatial patterns of
proportions, while small RMSE values represent similar values of proportions.
Although all three algorithms well captured the spatial patterns of each cell
type’s proportions (evidenced by large r values), CARD and RCTD outperformed
SPOTlight by estimating cell-type proportions more accurately (evidenced by
smaller RMSE values).
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Extended Data Fig. 8 | scDesign3 simulated scATAC-seq data (human PBMCs;
dataset ATACin Supplementary Table 2). a, Distributions of eight summary
statistics in the test data and the synthetic data generated by scDesign3 using cell
type labels. Each number on top of a violin plot (the distribution of a summary
statistic in asynthetic dataset) is the Kolmogorov-Smirnov (KS) distance between
the synthetic data distribution (indicated by that violin plot) and the test
datadistribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution.

b, Heatmaps of the peak-peak correlation matrices in the test dataand the
synthetic data generated by scDesign3. Pearson’s correlation coefficient r
measures the similarity between two correlation matrices, one from the test data
and the other from the synthetic data. ¢, PCA visualization (top two PCs) of the
test dataand the synthetic data generated by scDesign3. Cell types are labeled

by colors. An mLISI value close to 2 means that the synthetic data resemble the
test datawell in the low-dimensional space. d, UMAP visualization of the test data
and the synthetic data generated by scDesign3.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01772-1

a IMean log expression| Var log expression ) Gene detection freq Gene correlation
12
oY N N >
Q. >
104 754 Y
0.8
5.04 0.64
5+ 0.4
254 0.34
0.0
04 0.0+ 0.04
Log library size Cell distance Cell detection freq Cell correlation
1.0
© g L
124 © S S 1.04 ©
Q 754 Q,
0.84
4 0.5+
10 50
0.64
0.0
84 254
0.4+ ~054
64 04
Q -l @ .l Q O @ >
&S &S S S
P ) o & 5 & PY )
<& S <& § <@ & <& S
& & & 4
Cc
Test data scDesign3

PC2

mLISI=1.78

PC1

® MemoryCD4T @ NK ® CD8T ® CD34+ ® Mk
® Mouse ® CD16+Mono

e B

Celltype ® CD14+Mono
©® Naive CD4 T

© Multiplets ® DC
® T/Mono doublets @® Eryth ® pDCs
Extended Data Fig. 9 | scDesign3 simulated CITE-seq data (human PBMCs;
dataset CITE in Supplementary Table 2). a, Distributions of eight summary
statistics in the test data and the synthetic data generated by scDesign3. The
CITE-seq dataset contains simultaneous measurements of each cell’s gene
expression and surface protein abundance captured by Antibody-Derived

Tags (ADTs). Each number on top of a violin plot (the distribution of a summary
statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance
between the synthetic data distribution (indicated by that violin plot) and the
test datadistribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution.

b, Heatmaps of the gene and protein correlation matrices (10 proteins with
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names starting with‘ADT’ and their corresponding genes) in the test dataand
the synthetic data generated by scDesign3. Pearson’s correlation coefficient
rmeasures the similarity between two correlation matrices, one from the test
data and the other from the synthetic data. scDesign3 preserved the correlations
between the RNA and protein expression levels of the 10 surface proteins. ¢, PCA
visualization (top two PCs) of the test data and the synthetic data generated

by scDesign3. Cell types are labeled by colors. An mLISI value close to 2 means
that the synthetic data resemble the real data well in the low-dimensional space.
d, UMAP visualization of the test data and the synthetic data generated by
scDesign3.
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Extended Data Fig.10 | scDesign3 provides unsupervised measures of the ARI (supervised). The Pvalueis from the one-sided test of Spearman’s rank
goodness-of-fit of pseudotime, clusters, and inferred spatial locations. correlation p. We also found the scDesign3 rBIC to perform better or similarly
For visual clarity, we plot the relative BIC or AIC (rBIC or rAIC) by re-scaling to the CDI onsix out of the eight datasets (the column names). ¢, The scDesign3
scDesign3’s marginal BIC or AIC to [0, 1]. a, The scDesign3 rBIC (unsupervised) is rAIC (unsupervised) is negatively correlated with the mean cosine similarity
negatively correlated with the R? (supervised). Each R* was calculated between (supervised). The mean cosine similarity was calculated between the set of
the set of perturbed or inferred pseudotimes and the set of true pseudotimes in perturbed or inferred locations and the set of true locations in each of the two
each of the eight datasets (the column names). The Pvalue is from the one-sided spatial datasets (the column names). The Pvalue is from the one-sided test of
test of Spearman’s rank correlation p. The true pseudotime is the ground truth Spearman’s rank correlation p. The true locations are the ground truth used
used for generating the synthetic data. b, Comparison of the scDesign3 rBIC and for generating the semi-synthetic data. Due to the high complexity of spatial
the Clustering Deviation Index (CDI) rBIC (rescaled to [0, 1]1)*. The color scale patterns, the scDesign3 rAIC (left) outperformed the scDesign3 rBIC (right) for
shows the number of clusters, and the shapes represent clustering algorithms. penalizing the model complexity less.

We found the scDesign3 rBIC (unsupervised) negatively correlated with the
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Data collection  All datasets are downloaded within by using R (version 4.1.0 - 4.2.1) scripts. The codes for downloading data can be found in Zenodo: https://
doi.org/10.5281/zenodo.7110762 with files named with "_exploration". The cell-type data for clustering goodness-of-fit is from R package
DuoClustering2018 (version 1.10.0).

Data analysis Analysis is performed in R (version 4.1.0 - 4.2.1). The R packages for bioinformatics analysis include: scran (version 1.20.1), Signac (version
1.7.0), Seurat (version 4.1.1), Slingshot (version 2.2.1), CellMixS (version 1.8.0), dyngen (version 1.0.3), muscat (version 1.6.0), SPARSIim
(version 0.9.5), zinbwave (version 1.15.3). The R packages for pseudotime inference are slingshot (version 2.4.0), monocle3 (version
1.0.0) and TSCAN (version 1.34.0). The softwares for spatial location inference are Seurat (R version 4.1.1),

Tangram (Python version 1.0.0), and novoSpaRc (Python version 0.4.3). The R packages for spatial data deconvolution include CARD (version
1.0), spacexr (version 2.1.6), and SPOTlight (version 1.0.1). The R package for prediction is caret (version 6.0-93). The Python module for multi-
omics integration is Pamona (version 0.1.0). The R packages for general analysis and visualization include: irlba (version 2.3.5), umap (version
0.2.8.0), ggplot2 (version 3.3.6), ggpubr (version 0.4.0). The scDesign3 is available at: https://github.com/SONGDONGYUAN1994/scDesign3.
The scDesign3 version in the study is 0.99.0. The R packages for statistical modeling in scDesign3 are mgcv (version 1.8-40), gamlss (version
5.4-3), rvinecoplib (version 0.6.2.1.1), Rfast (version 2.0.6), and stats (version 4.4.2).

The read coverage plot is generated by IGV (version 2.12.3).

The scGAN is downloaded from https://github.com/imsb-uke/scGAN.

The code for analysis can be found in: https://doi.org/10.5281/zenodo.7110761 .
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All datasets used in the study are publicly available. Supplementary Table S2 lists the datasets from 19 published studies and their original sources. The
preprocessed datasets are available at: https://doi.org/10.5281/zenodo.7110761 .
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Population characteristics Not applicable.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We apply scDesign3 on real datasets from 19 published studies. The cell numbers of each dataset are reported in Supplementary Table S2. We
decide the number of datasets used based on the following rationale: for data simulation part, we use at least two datasets for one major
simulation direction (e.g., trajectory, spatial, chromatin accessibility) to make sure that our simulator works for different experimental
protocols and biological cases. For interpretation of parameters and alteration of parameters, we use one dataset for one application since
the main purpose is to illustrate the usage of scDesign3. For assessing the goodness-of-fit, we use >= 2 datasets for each latent variable type
(e.g., cell type, pseudotime, spatial) to make sure this metric works for diverse datasets.

Data exclusions  Some cell-level filtering are performed by pipelines as their default settings (Seurat, Signac, scran).

Replication Replication is not relevant to this study because we do not design/perform repeat experiments on technical/biological replicates by ourselves;
all datasets are public datasets with the labels (e.g., replicates if any) from the original studies.

Randomization | For each real dataset used as reference, we randomly split it into half training data and half test data to avoid overfitting. The code and
reproducible seed can be found in Zenodo: https://doi.org/10.5281/zenodo.7110761.

Blinding Blinding is not relevant to this study because we do not design/perform experiments by ourselves; all datasets are public datasets with the
labels (e.g., conditions) from their original studies.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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	scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics

	scDesign3 functionality 1 (simulation)

	scDesign3 functionality 2 (interpretation)

	Online content

	Fig. 1 scDesign3 generates realistic synthetic data of diverse single-cell and spatial omics technologies.
	Fig. 2 scDesign3 enables comprehensive interpretation of real data.
	Extended Data Fig. 1 Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for generating scRNA-seq data from a single trajectory (mouse pancreatic endocrinogenesis dataset PANCREAS in Supplementary Tabl
	Extended Data Fig. 2 Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for generating scRNA-seq data from bifurcating trajectories (myeloid progenitors in mouse bone marrow dataset MARROW in Suppleme
	Extended Data Fig. 3 scDesign3 simulated realistic gene expression patterns in cancer spatial transcriptomics data (datasets OVARIAN and ACINAR in Supplementary Table 2.
	Extended Data Fig. 4 scDesign3 simulated 10x Visium spatial transcriptomics data (sagital mouse brain slices dataset VISIUM in Supplementary Table 2).
	Extended Data Fig. 5 scDesign3 mimicked spatial transcriptomics data so that prediction algorithms had similar prediction performance when trained on real data or scDesign3 synthetic data.
	Extended Data Fig. 6 The effect of K on scDesign3’s simulation of spatial transcriptomics data (dataset ACINAR in Supplementary Table 2).
	Extended Data Fig. 7 scDesign3 simulated spot-resolution spatial transcriptomics data for benchmarking cell-type deconvolution algorithms (datasets MOB-SP and MOB-SC in Supplementary Table 2).
	Extended Data Fig. 8 scDesign3 simulated scATAC-seq data (human PBMCs dataset ATAC in Supplementary Table 2).
	Extended Data Fig. 9 scDesign3 simulated CITE-seq data (human PBMCs dataset CITE in Supplementary Table 2).
	Extended Data Fig. 10 scDesign3 provides unsupervised measures of the goodness-of-fit of pseudotime, clusters, and inferred spatial locations.




