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scDesign3 generates realistic in silico data for 
multimodal single-cell and spatial omics

Dongyuan Song    1, Qingyang Wang2, Guanao Yan2, Tianyang Liu2, Tianyi Sun2 & 
Jingyi Jessica Li    1,2,3,4,5,6 

We present a statistical simulator, scDesign3, to generate realistic single-cell 
and spatial omics data, including various cell states, experimental designs 
and feature modalities, by learning interpretable parameters from real 
data. Using a unified probabilistic model for single-cell and spatial omics 
data, scDesign3 infers biologically meaningful parameters; assesses the 
goodness-of-fit of inferred cell clusters, trajectories and spatial locations; 
and generates in silico negative and positive controls for benchmarking 
computational tools.

Single-cell and spatial omics technologies provided unprecedented 
multimodal views of individual cells. First, single-cell RNA sequencing 
(scRNA-seq) was developed to measure cells’ transcriptomes, enabling 
the discovery of discrete cell types and continuous cell trajectories1,2. 
Later, other single-cell omics technologies were developed to measure 
additional molecular feature modalities, including chromatin acces-
sibility3,4, DNA methylation5 and protein abundance6. More recently, 
single-cell multiomics technologies were invented to measure more 
than one feature modality simultaneously7,8. In parallel to single-cell 
omics, spatial transcriptomics technologies were advanced to profile 
transcriptomes with cells’ spatial locations recorded9–12.

Thousands of computational methods have been developed for 
various tasks13, making method benchmarking a pressing challenge. 
Fair benchmarking demands in silico data that contain ground truths 
and mimic real data, thus calling for realistic simulators. Two bench-
mark studies of simulators14,15 found that reference-based scRNA-seq 
simulators, which require training on real data, were more realis-
tic than de novo simulators, which use preset theoretical models15.  
The two studies also found that, although some reference-based  
simulators16–18 generated realistic scRNA-seq data from discrete cell 
types14,15, few reference-based simulators could generate data from 
continuous cell trajectories15,19–22. Moreover, realistic simulators were 
lacking for single-cell omics other than scRNA-seq23, not to mention 
single-cell multiomics and spatial transcriptomics (see Supplemen-
tary Methods for discussion on recent advances). Hence, a large gap  
existed between the diverse benchmarking needs and the limited 
functionalities of existing simulators.

To fill in the gap, here, we introduce scDesign3, a simulator that 
generates realistic synthetic data from diverse settings, including  
cell latent structures, feature modalities, spatial locations and  
experimental designs (Fig. 1a). Supplementary Table 1 lists a detailed 
comparison of scDesign3 with the previous two versions, scDesign24 
and scDesign216. scDesign3 offers a probabilistic model that unifies 
the generation and inference for single-cell and spatial omics data. 
The model’s interpretable parameters and likelihood enable scDesign3 
to generate customized in silico data and unsupervisedly assess the 
goodness-of-fit of inferred cell latent structures (for example, clusters, 
trajectories and spatial locations) (Fig. 2a).

As an overview, we verified scDesign3’s two functionalities—simula-
tion and interpretation—sequentially. First, we show that the scDesign3  
model is reasonable in that its synthetic data well mimic real data given 
high-quality cell-type labels and cell trajectories. Second, assuming 
the scDesign3 model is reasonable, we show that scDesign3 allows 
model-based interpretation of real data, including assessment of  
the goodness-of-fit of inferred cell latent structures.

scDesign3 functionality 1 (simulation)
We verified scDesign3 as a realistic and versatile simulator in four exem-
plar settings: (1) scRNA-seq of continuous cell trajectories, (2) spatial 
transcriptomics, (3) single-cell epigenomics and (4) single-cell multi-
omics (Fig. 1). We show that the synthetic data of scDesign3 resembled 
the left-out test data consistently.

In the first setting, scDesign3 mimicked three scRNA-seq datasets 
containing single or bifurcating cell trajectories (EMBRYO, MARROW 
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Supplementary Fig. 5). Moreover, coupled with our newly developed 
read simulator scReadSim30, scDesign3 enabled the generation of 
realistic synthetic reads, unblocking the capacity for benchmarking 
read-level bioinformatics tools (Fig. 1h, right).

In the fourth setting, scDesign3 mimicked a cellular indexing of 
transcriptomes and epitopes by sequencing (CITE-seq) dataset (CITE 
in Supplementary Table 2) and simulated a multiomics dataset from 
‘separately’ measured RNA expression and DNA methylation modalities  
(SCGEM in Supplementary Table 2). First, scDesign3 resembled the 
CITE-seq dataset by simultaneously simulating the expression levels  
of genes and surface proteins (Extended Data Fig. 9a,c,d). Figure 1i 
shows that the RNA and protein expression levels of three exemplary 
surface proteins are highly consistent between the synthetic data 
and the test data. Moreover, scDesign3 recapitulated the correlations 
between RNA and protein expression levels (Extended Data Fig. 9b). 
Second, scDesign3 simulated a single-cell multiomics dataset with 
joint RNA expression and DNA methylation modalities by learning  
from two single-omics datasets (Fig. 1j, left) with joint low-dimensional 
cell embeddings found by Pamona31. This synthetic multiomics dataset 
preserved the cell trajectory in the two single-omics datasets (Fig. 1j, 
right). The functionality to generate multiomics data from single-omics 
data allows scDesign3 to benchmark the computational methods that 
integrate modalities from unmatched cells32.

scDesign3 functionality 2 (interpretation)
Providing a universal probabilistic model for single-cell and spatial 
omics data, scDesign3 has broad applications beyond generating 
synthetic data. We investigated three prominent applications of the 
scDesign3 model: model parameters, model selection and model 
alteration (Fig. 2a).

First, the scDesign3 model has an interpretable parametric struc-
ture consisting of genes’ marginal distributional parameters and pair-
wise gene correlations. Moreover, the scDesign3 model is flexible to 
incorporate diverse cell covariates via the use of generalized additive 
models (GAMs) and Gaussian process (Methods), which allow the esti-
mation of nonlinear gene expression changes along cell trajectories 
(Fig. 2b) and across spatial locations (Fig. 2c). Besides inferring indi-
vidual genes’ expression characteristics, scDesign3 also estimates pair-
wise gene correlations conditional on cell covariates, thus providing  
insights into potential gene regulatory relationships. Specifically, 
scDesign3 estimates gene correlations by two statistical techniques, 
Gaussian copula and vine copula, which have complementary advan-
tages (Methods): Gaussian copula is fast but outputs only a gene cor-
relation matrix; vine copula is slow but interpretable by outputting 
a gene ‘vine’ with the top layer indicating the most highly correlated 
genes (that is, ‘hub genes’). Applied to an scRNA-seq dataset of human 
peripheral blood mononuclear cells with four cell types (ZHENGMIX4 

and PANCREAS in Supplementary Table 2). Figure 1b–c, Extended Data 
Figs. 1 and 2c,d and Supplementary Fig. 1c,d show that scDesign3 gener-
ated realistic synthetic cells that resembled left-out real cells, reflected 
by high mean local inverse Simpson’s index (mLISI) values25. More-
over, scDesign3 preserved eight gene- and cell-specific characteristics 
described in Methods (Extended Data Figs. 1 and 2a,b and Supplemen-
tary Fig. 1a,b). Due to the lack of reference-based simulators for contin-
uous cell trajectories, we benchmarked scDesign3 against ZINB-WaVE, 
muscat and SPARSIM—three top-performing simulators for discrete 
cell types14,15—and a deep-learning-based simulator, scGAN26. scDesign3 
outperformed these simulators in generating more realistic synthetic 
cells and in better preserving the gene- and cell-specific characteristics, 
especially cell–cell distances and gene–gene correlations (Fig. 1b,c, 
Extended Data Figs. 1 and 2 and Supplementary Fig. 1).

In the second setting, scDesign3 emulated four spatial transcrip-
tomics datasets generated by the 10x Visium and Slide-seq technolo-
gies (VISIUM, SLIDE, OVARIAN and ACINAR in Supplementary Table 2).  
First, Fig. 1d,e and Extended Data Fig. 3 show that scDesign3 reca-
pitulated the expression patterns of spatially variable genes. Second, 
Extended Data Fig. 4a,b and Supplementary Figs. 2, 3 and 4a,b show that  
scDesign3 preserved the eight gene- and cell-specific characteristics. 
Third, Extended Data Fig. 4c,d and Supplementary Figs. 2, 3 and 4c,d 
use two-dimensional cell embeddings to confirm that the synthetic 
data of scDesign3 resembled the test data. Fourth, scDesign3 mimicked 
spatial transcriptomics data so that three prediction algorithms had 
highly consistent performance when trained on real data or scDe-
sign3 synthetic data (Extended Data Fig. 5). Fifth, the scDesign3 model 
adapted to complex spatial patterns in less-structured cancer tissues  
(Extended Data Fig. 6). Sixth, given a pair of scRNA-seq data and 
spot-resolution spatial transcriptomics data (where each spot con-
tains multiple cells), scDesign3 can generate realistic spot-resolution  
spatial transcriptomics data with cell-type proportions specified at each  
spot (Fig. 1f and Extended Data Fig. 7a). Using this functionality to 
benchmark cell-type deconvolution algorithms for spatial transcrip-
tomics data, we had consistent results with a benchmark study27  
that CARD27 and RCTD28 outperformed SPOTlight29 in estimating cell- 
type proportions, though we also found that the three algorithms  
performed similarly well in estimating each cell type’s relative abun-
dance distribution across the spots (Extended Data Fig. 7b).

In the third setting, scDesign3 resembled two single-cell chro-
matin accessibility datasets profiled by the 10x single-cell assay for 
transposase-accessible chromatin using sequencing (scATAC-seq) and 
single-cell combinatorial indexing assay for transposase-accessible 
chromatin using sequencing (sci-ATAC-seq) protocols (ATAC and 
SCIATAC in Supplementary Table 2). For both protocols, scDesign3 
generated synthetic cells whose read counts in peak regions resem-
bled those of real cells (Figs. 1g and 1h, left, Extended Data Fig. 8 and 

Fig. 1 | scDesign3 generates realistic synthetic data of diverse single-cell 
and spatial omics technologies. a, An overview of scDesign3’s simulation 
functionalities: cell states (for example, discrete cell types, continuous 
trajectories and spatial locations); multiomics modalities (for example, RNA 
sequencing (RNA-seq), ATAC-seq, CITE-seq and methylation); and experimental 
designs (for example, batches, conditions, sex and age). ADT, antibody derived 
tag. b,c, scDesign3 outperformed existing simulators scGAN, muscat, SPARSim 
and ZINB-WaVE in simulating scRNA-seq datasets with a single trajectory (b) and 
bifurcating trajectories (c). Larger mLISI values represent better resemblance 
between synthetic data and test data. d,e, scDesign3 simulated realistic gene 
expression patterns in spatial transcriptomics datasets measured by 10x Visium 
(d) and Slide-seq (e). Large Pearson correlation coefficients (r) represent similar 
spatial patterns in synthetic data and test data. f, Using paired scRNA-seq data 
and spatial transcriptomics data (MOB-SC and MOB-SP in Supplementary 
Table 2) as input, we defined the ‘ground truth’ cell-type proportions at each 
spot (left), with the cell types including granule cells (GC), periglomerular 
cells (PGC), mitral/tufted cells (M/TC) and olfactory sensory neurons (OSNs). 
Each color represents a cell type. With the cell-type proportions, scDesign3 

generated synthetic spatial transcriptomics data in which every spot is a 
mixture of synthetic single cells, given the spot’s cell-type proportions. The four 
cell-type marker genes exhibit similar spatial expression patterns in real data 
(right top) and synthetic data (right bottom). Large r values represent similar 
expression patterns in synthetic data and test data. g, scDesign3 simulated a 
realistic scATAC-seq dataset at the count level. DC, dendritic cells; DN T, double-
negative T cells; mono, monocytes; NK, natural killer cells; pDC, plasmacytoid 
dendritic cells. h, scDesign3 simulated a realistic sci-ATAC-seq dataset at both 
the count level (left, Uniform Manifold Approximation and Projection (UMAP) 
visualizations of real and synthetic cells based on peak counts) and the read 
level when coupled with scReadSim30 (right, pseudobulk read coverages). 
HPCs, hematopoietic progenitor cells. i, scDesign3 simulated realistic CITE-seq 
data. Three genes’ protein and RNA abundances are shown on the cell UMAP 
embeddings in test data (top) and synthetic data (bottom). Large r values 
represent similar expression patterns in synthetic data and test data. j, scDesign3 
generated a multiomics (RNA expression + DNA methylation) dataset (right) 
by learning from two real single-omics datasets with RNA expression or DNA 
methylation only (left). The synthetic data preserved the linear cell topology.
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in Supplementary Table 2), Gaussian copula revealed similar gene cor-
relation matrices for similar cell types (regulatory T cells versus naive 
cytotoxic T cells) and distinct gene correlation matrices for distinct 

cell types (CD14+ monocytes versus naive cytotoxic T cells) (Fig. 2d, 
top); vine copula discovered canonical cell-type marker genes as hub 
genes: LYZ for CD14+ monocytes and CD79A for B cells (Fig. 2d, bottom).
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Second, scDesign3 embraces likelihood-based model selection cri-
teria such as Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), allowing scDesign3 to evaluate the ‘goodness-of-fit’ 
of a model to data and to compare competing models. A noteworthy 
application is evaluating how inferred cell latent structures (clusters, 
trajectories and spatial locations) describe data, that is, assessing latent 
structures from the goodness-of-fit perspective without ground truths 
or external knowledge. Although the scDesign3 model does not repre-
sent ground truths, we demonstrated that scDesign3 AIC and BIC are 
useful ‘unsupervised’ criteria for assessing how well latent structures 
agree with data under the scDesign3 model.

For cell clustering, we benchmarked scDesign3 BIC against  
the ‘supervised’ adjusted Rand index (ARI) (Methods) and the  
newly proposed ‘unsupervised’ clustering deviation index33 on eight 
datasets with known cell types34. The results show that scDesign3 BIC 
agreed well with ARI (mean Spearman correlation < −0.7) and had  
better or similar performance compared with clustering deviation 
index (Extended Data Fig. 10b). For pseudotime inference, scDesign3  
BIC correlated well (mean Spearman correlation < −0.7) with  
the ‘supervised’ R2 (Methods) on multiple synthetic datasets with 
true pseudotimes (Fig. 2e, top, and Extended Data Fig. 10a). Applied 
to three pseudotime inference methods, scDesign3 BIC found the 

Pyy Rbp4 Spp1

Chga Chgb Iapp

Pseudotime

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

Nrgn S100a5 Ttr

Calb2 Doc2g Gng4

X

Y

0

0.25

0.50

0.75

1.00

Normalized
expression

CD14+ monocyte B cell Regulatory T cell Naive cytotoxic T cell

G
aussian copula

Vine copula

−1.0

−0.5

0

0.5

1.0

Pearson
correlation

S100A9

LYZ

TY ROBP

HLA−DRB1

CYBA
S100A4

ATP6V0B
CD74

CD79A

H3F3B
HLA−DRB1

YBX1

IL32
CYBAS100A4

SH3BGRL3
TPT1

MT−CO2
JUNB TPT1

SH3BGRL3

a b c

d

UMAP1

Real data scDesign3 batch+ scDesign3 batch−

U
M

AP
2 Batch

10x V2

10x V3

Real data scDesign3 H1 scDesign3 H0

UMAP1

U
M

AP
2

Cell type
Naive cytotoxic T
Regulatory T
Null

P = 0.103 P = 0.083

P = 7.9 × 10–79 P = 6.5 × 10–71

P = 1.8 × 10–81 P = 0.21

scDesign3 cond–– scDesign3 cond+–

Real data scDesign3 cond++

CD16+ mono B CD16+ mono B

0

1

2

3

0

1

2

3

Cell type

IF
I6

 e
xp

re
ss

io
n Condition

Control

Case

f g

h

Gen
e

G
en

e

Gen
e

BIC = 100

BIC = 50

scDesign3 
interpretation

A

B
X

Y

A B

BIC = 100

Cell
 ty

pe

R
ef

er
en

ce

Clusters

Pseudotim
e

Us
er

-
de

fin
ed

DE
Us

er
-

Good

Bad

G
ood

B
ad

de
fin

ed
No

nD
E

BI
C 

= 5
0

0

30,000

60,000

90,000

120,000

0 0.25 0.50 0.75 1.00

e

rBIC = +35,518 rBIC = +20,338 rBIC = +13,575
TSCAN Monocle3 Slingshot

UMAP1

U
M

AP
2

0

0.25

0.50

0.75

1.00
Pseudotime

R2 (true versus inferred pseudotime)

sc
D

es
ig

n3
 rB

IC

ρ = −0.95 , P = 0.00 

Pseudotime

Model a
lte

ra
tio

n

M
odel selection

Reference gene

Sy
nt

he
tic

 n
ul

l

Model parameters

Fig. 2 | scDesign3 enables comprehensive interpretation of real data.  
a, Summary of scDesign3’s interpretation functionalities. DE, differentially 
expressed; NonDE, non-DE. b, scDesign3 estimated six genes’ expression trends 
along cell pseudotime (PANCREAS in Supplementary Table 2). c, scDesign3 
estimated six genes’ spatial expression trends (VISIUM in Supplementary Table 2).  
d, scDesign3 estimated cell-type-specific gene correlations (ZHENGMIX4 in 
Supplementary Table 2): correlation matrices by Gaussian copula (top); vine 
representations by vine copula (bottom), with genes in the first layer (roughly 
the genes strongly correlated) labeled. e, scDesign3’s unsupervised assessment 
of goodness-of-fit. On synthetic scRNA-seq data with true pseudotimes (based 
on EMBYRO in Supplementary Table 2), the scDesign3 BIC and the supervised 
R2 were evaluated on inferred pseudotimes of TSCAN (blue), Monocle3 (green) 
and Slingshot (orange), with perturbed true pseudotimes (black) as reference. 
Top, relative BIC (rBIC = BIC minus the smallest BIC) versus R2; the P value (P) 
is from the one-sided test of Spearman’s rank correlation ρ (H0: ρ = 0; H1: ρ < 0). 
Bottom, UMAP visualization of the three methods’ inferred pseudotimes. f, In 

the CONDITION dataset (Supplementary Table 2), gene IFI6 was up-regulated 
in both CD16+ monocytes and B cells from control (green) to stimulation (red). 
scDesign3 simulated data where IFI6 was up-regulated in both cell types (cond++), 
unchanged in both cell types (cond−−) or up-regulated in CD16+ monocytes only 
(cond+−). The box center lines, bounds and whiskers denote the medians, first and 
third quartiles, and minimum and maximum values within 1.5 × the interquartile 
range of the box limits, respectively (the control and stimulation conditions have 
ncontrol = 1,772 and nstimulation = 2,188 cells, respectively). The P values (P) are from the 
two-sided Wilcoxon rank-sum test. g, The BATCH dataset (Supplementary Table 2) 
contains two batches (left), which were measured by 10x Chromium Version 2 and 
Version 3 (10x V2 and 10x V3), respectively. scDesign3 preserved the batch effects 
in synthetic data generation (batch+) or generated synthetic data without batch 
effects (batch−). h, The ZHENGMIX4 dataset (Supplementary Table 2) contains 
two cell types (left). scDesign3 resembled the real data under the alternative 
hypothesis (H1: two cell types existed) (middle) or generated synthetic data under 
the null hypothesis (H0: one cell type existed) (right).
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pseudotimes inferred by Slingshot35 agreed better with data (smaller 
BIC) than those inferred by TSCAN36 and Monocle32 (Fig. 2e, bottom). 
For spatial location inference, we found scDesign3 AIC correlated 
well (mean Spearman correlation < −0.7) with the ‘supervised’ mean 
cosine similarity (Methods) on two spatial transcriptomics datasets 
(MOUSE-CORTEX and MOUSE-VISUAL in Supplementary Table 2), 
suggesting that scDesign3 AIC is effective in assessing spatial loca-
tions’ goodness-of-fit (Extended Data Fig. 10c). Note that scDesign3 
AIC outperformed BIC in this case, possibly because AIC prefers more 
complex models, which can better fit complex spatial data.

Third, scDesign3 has a model alteration functionality: given the 
scDesign3 model parameters estimated on real data, users can alter 
these parameters to reflect a hypothesis and generate the correspond-
ing in silico data with real data characteristics. This functionality makes 
scDesign3 advantageous over deep-learning-based simulators26, which 
cannot be easily altered to reflect a hypothesis. We demonstrated 
how to use this functionality in three examples. First, scDesign3  
can generate synthetic data with different cell-type-specific condi-
tion effects (Fig. 2f). In a real dataset (CONDITION in Supplementary  
Table 2), gene IFI6’s expression was up-regulated after stimulation in 
both CD16+ monocytes and B cells (Fig. 2f, top-left). With scDesign3’s 
fitted model, we altered IFI6’s mean parameters to make IFI6’s expres-
sion up-regulated (Fig. 2f, top-right) or unchanged (Fig. 2f, bottom-left) 
in both cell types, or up-regulated in CD16+ monocytes only (Fig. 2f,  
bottom-right). Second, scDesign3 can generate synthetic data  
with or without batch effects (Fig. 2g). Trained on a real dataset  
(BATCH in Supplementary Table 2) containing two batches (Fig. 2g, 
left), scDesign3 generated synthetic data retaining the batch effects 
(Fig. 2g, middle); then we altered the batch parameter in the fitted 
scDesign3 model to generate synthetic data without batch effects 
(Fig. 2g right). Third, scDesign3 can generate synthetic data under  
the null hypothesis (H0) that only one cell type exists and the alter-
native hypothesis (H1) that two cell types exist (Fig. 2h). Given a real  
dataset (ZHENGMIX4 in Supplementary Table 2 and Fig. 2h, left), under 
H1, we fitted the model using cell-type labels (Fig. 2h, middle); under 
H0, we fitted the model by assuming all cells are of one type (Fig. 2h, 
right). Using the two fitted models, scDesign3 generated synthetic  
data under H1 and H0. Particularly, the synthetic data under H0 can  
serve as the in silico negative control for benchmarking cell-type iden-
tification methods.

In summary, scDesign3 accommodates various cell statuses, 
diverse omics modalities and complex experimental designs. Although 
the scDesign3 model should not be treated as the true model, its inter-
pretable parameters precede functionalities besides data simulation. 
First, scDesign3 model parameters offer a comprehensive interpreta-
tion of real data. Second, scDesign3 allows likelihood-based model 
selection to assess the goodness-of-fit of inferred cell clusters, trajec-
tories and spatial locations. Of course, this unsupervised model-based 
assessment cannot replace supervised metrics or compare models 
with different types of cell latent structures (for example, cell clusters  
versus trajectories). Third, scDesign3 can generate synthetic data 
under specific hypotheses by having its model parameters altered.
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Methods
The generative model of scDesign3
Mathematical notations of scDesign3’s training data. The train-
ing data of scDesign3 contain three matrices: a cell-by-feature 
matrix (for example, features are genes or chromatin regions), 
a cell-by-state-covariate matrix (for example, cell-state covariates 
include the cell type, pseudotime or spatial coordinate) and an optional 
cell-by-design-covariate matrix (for example, design covariates include 
the batch or condition).

Mathematically, first, we denote by Y = [Yij] ∈ ℝn×m  the 
cell-by-feature matrix with n cells as rows, m features as columns  
and Yij as the measurement of feature j in cell i. For single-cell  
sequencing data, Y is often a count matrix (that is, Y ∈ ℕn×m, with Yij 
indicating the read or unique molecular identifier (UMI) count  
of feature j in cell i); then the sequencing depth (that is, the total  
number of reads or UMIs) is N = ∑n

i=1∑
m
j=1 Yij.

Second, we denote by X = [x1,⋯ ,xn]
⊤ ∈ ℝn×p  the cell-by-state- 

covariate matrix with n cells as rows and p cell-state covariates as  
columns. In X, the ith row xi ∈ ℝp  is cell i’s state covariate vector.  
Typical cell-state covariates include the cell type (p = 1 categorical 
variable), the cell pseudotime in p lineage trajectories (p continuous 
variables) and the two- or three-dimensional cell spatial locations  
(p = 2 or 3 continuous variables).

Third, we denote by Z = [z1,⋯ , zn]
⊤ ∈ ℝn×q  the cell-by-design- 

covariate matrix with n cells as rows and q design covariates as columns. 
In Z, the ith row zi ∈ ℝq is cell i’s design covariate vector. Example design 
covariates are categorical variables such as the batch and condition. 
Note that Z is optional: it is not required if cells are from a single  
condition and measured in a single batch. To simplify the discussion, 
in the following text, we write Z = [b, c], where b = (b1,… ,bn)

⊤  has 
bi ∈ {1, …, B} representing cell i’s batch, and c = (c1,… , cn)

⊤  has 
ci ∈ {1, …, C} representing cell i’s condition.

Modeling features’ marginal distributions. For each feature j = 1, …, m 
in every cell i = 1, …, n, the measurement Yij—conditional on cell i’s  
state covariates xi and design covariates zi = (bi, ci)

⊤—is assumed  
to follow a distribution Fj( ⋅ ∣xi, zi; μij, σij, pij), which is specified as the 
generalized additive model for location, scale and shape (GAMLSS)37 
(that is, the distribution family Fj depends on feature j only, but the 
parameters μij, σij and pij depend on both feature j and cell i):

⎧
⎪⎪
⎨
⎪⎪
⎩

Yij|xi, zi ind
∼

Fj(⋅|xi, zi;μij,σij,pij)

θj(μij) = αj0 + αjbi + αjci + fjci (xi)

log(σij) = βj0 + βjbi + βjci + gjci (xi)

logit(pij) = γj0 + γjbi + γjci + hjci (xi)

, (1)

where θj( ⋅ ) denotes feature j’s specific link function of the mean  
para meter μij, depending on Fj (Supplementary Table 3); σij denotes  
the scale parameter (for example, standard deviation or dispersion); 
and pij denotes the zero-inflation proportion parameter. Note  
that μij, σij and pij do not always coexist, depending on the form  
of Fj (Supplementary Table 3). To ensure model identifiability, for 
j = 1, …, m, we set αjbi = βjbi = γjbi = 0 when bi = 1 and αjci = βjci = γjci = 0 
when ci = 1.

θj(μij) is assumed to have feature j’s specific intercept αj0, batch bi’s 
effect αjbi  (specific to feature j), condition ci’s effect αjci  (specific to 
feature j) and cell-state covariates xi’s effect fjci (xi) (specific to feature 
j and condition ci).

log(σij) is assumed to have feature j’s specific intercept βj0, batch 
bi’s effect βjbi (specific to feature j), condition ci’s effect βjci (specific to 
feature j) and cell-state covariates xi’s effect gjci (xi) (specific to feature 
j and condition ci).

logit(pij) is assumed to have feature j’s specific intercept γj0, batch 
bi’s effect γjbi (specific to feature j), condition ci’s effect γjci (specific to 

feature j) and cell-state covariates xi’s effect hjci (xi) (specific to feature 
j and condition ci).

For θj(μij), log(σij) and logit(pij), the interaction effects are consid-
ered between the condition and cell-state covariates, but not between 
the batch and cell-state covariates. This modeling choice is made based 
on empirical observations and the simplicity preference38.

Note that if only the mean parameter μij is assumed to depend 
on the state covariates xi, batch bi and condition ci, then the GAMLSS 
degenerates to a GAM39.

Depending on the modality of feature j (for example, a gene’s UMI 
count), scDesign3 specifies Fj to be one of the six distributions: Gauss-
ian (Normal), Bernoulli, Poisson, Negative Binomial (NB), Zero-inflated 
Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB); see Sup-
plementary Table 3 for the specifications. Different specifications 
of Fj correspond to different link functions θj( ⋅ ) and parameters; see 
Supplementary Table 3 for the details.

Depending on cell i’s cell-state covariates xi, scDesign3 specifies 
the functions fjci (⋅), gjci (⋅)  and hjci (⋅) in the corresponding forms. See 
Supplementary Table 4 for the details. Below are the three typical forms 
of fjci (⋅).

 (1) When the cell-state covariate is the cell type (out of a total  
of KC cell types) and X = (x1,… , xn)

⊤ is a 1-column matrix with 
xi ∈ {1, …, KC}

fjci (xi) = αjcixi ,

which corresponds to cell-type xi’s effect on feature j in condition ci. 
Note that for identifiability, αjcixi = 0 if ci = 1 or xi = 1.
 (2) When the cell-state covariates are the cell pseudotimes in p 

lineage trajectories, that is, xi = (xi1,… , xip)
⊤ with xil indicating 

cell i’s pseudotime in the lth lineage trajectory

fjci (xi) =
p
∑
l=1

K
∑
k=1

bjcilk(xil)βjcilk,

where ∑K
k=1 bjcilk(⋅)βjcilk  is a cubic spline function for pseudotime in  

the lth lineage. This formulation means that feature j under condition 
ci has a specific smooth pattern in lineage l. The exact choice K, the 
dimension of the basis governing the flexibility of fjci, is not critical as 
long as K is not too small (because automatic penalization would  
be used in the estimation of fjci by the R package mgcv, which is used  
in the R package gamlss39); we set K = 10 as default; K cannot be  
larger than the number of data points.
 (3) When the cell-state covariates are two-dimensional spatial 

locations, that is, xi = (xi1, xi2)
⊤ indicating cell i’s two-dimensional 

spatial coordinates

fjci (xi) = fGPjci (xi1, xi2,K),

a low-rank Gaussian process smoother described in refs. 39,40, where 
K is the dimension of the basis governing the flexibility of fjci. This 
formulation means that feature j under condition ci has a smooth 
two-dimensional function (that is, a surface). The exact choice K is not 
critical as long as K is large (because automatic penalization would  
be used in the estimation of fjci by the R package mgcv, which is used in 
the R package gamlss39); we set K = 400 as default; K cannot be larger 
than the number of data points.

The distribution of (Yij∣xi, zi) in equation (1) is fitted by the function 
gamlss() in the R package gamlss (v.5.4-3) or the function gam()  
in the R package mgcv (v.1.8-40). The fitted distribution is denoted  
as ̂Fj(⋅|xi, zi), i = 1,… ,n; j = 1,… ,m.

Modeling features’ joint distribution. For cell i = 1, …, n, we denote 
its measurements of the m features as a random vector Yi = (Yi1,… ,Yim)

⊤, 
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whose joint distribution—conditional on cell i’s state covariates xi and 
design covariates zi—is denoted as F(⋅|xi, zi) ∶ ℝm → [0, 1]. The section 
‘Modeling features’ marginal distributions’ specifies Fj( ⋅ ∣xi, zi),  
the distribution of (Yij∣xi, zi), j = 1, …, m. In scDesign3, the joint  
cumulative distribution function (CDF) F( ⋅ ∣xi, zi) is modeled from the 
marginal CDFs F1( ⋅ ∣xi, zi), …, Fm( ⋅ ∣xi, zi) using the copula C( ⋅ ∣xi, zi):  
[0, 1]m → [0, 1]:

F(yi|xi, zi) = C (F1(yi1|xi, zi),⋯ , Fm(yim|xi, zi)|xi, zi) ,

where yi = (yi1,… , yim)
⊤ is a realization of Yi = (Yi1,… ,Yim)

⊤.
The copula C( ⋅ ∣xi, zi) can be (1) the Gaussian copula or (2) the vine 

copula, specified below.
The Gaussian copula is defined as:

C (F1(yi1|xi, zi),⋯ , Fm(yim|xi, zi)|xi, zi)

= Φm (Φ−1(F1(yi1|xi, zi)),⋯ ,Φ−1(Fm(yi1|xi, zi));R(xi, zi)) ,

where Φ−1 denotes the inverse of the CDF of the standard Gaussian 
distribution, and Φm( ⋅ ; R(xi, zi)) denotes the CDF of an m-dimensional 
Gaussian distribution with a zero mean vector and a covariance matrix 
equal to the correlation matrix R(xi, zi).

An issue with the Gaussian copula is that the likelihood calculation 
is not straightforward in the high-dimensional case when m is large and 
the sample correlation matrix R̂(xi, zi), as an estimator of R(xi, zi), is not 
invertible. Then, the likelihood cannot be computed based on R̂(xi, zi). 
To address this issue, we consider the vine copula.

The vine copula is a way to ‘decompose’ a high-dimensional  
copula into a sequence of bivariate copulas, in which every pair of  
features is modeled as a bivariate Gaussian distribution. In short, the 
vine copula provides a regular vine (R-vine) structure that uses con-
ditioning to sequentially decompose an m-dimensional copula into a 
sequence of bivariate copulas; then the m-dimensional copula density 
function is approximated by the product of the bivariate copula density 
functions41. The vine copula is advantageous to the Gaussian copula 
because it enables the likelihood calculation in the high-dimensional 
case. A detailed definition of the vine copula is in Supplementary 
Methods.

To estimate C( ⋅ ∣xi, zi) as either the Gaussian or vine copula, we use 
the plug-in approach that takes the estimated ̂F1(⋅|xi, zi),… , ̂Fm(⋅|xi, zi) 
from the section ‘Modeling features’ marginal distributions’. Specifi-
cally, when ̂Fj(⋅|xi, zi) is a continuous distribution, each observed yij is 
transformed as uij = ̂Fj(yij|xi, zi). When ̂Fj(⋅|xi, zi) is a discrete distribution 
with the support on non-negative integers (for example, the Poisson 
distribution), u1j, …, unj follow a discrete distribution. Since the  
Gaussian and vine copulas assume that features follow continuous 
distributions, we use the distributional transformation as in ref. 16:

uij = (1 − vij) ̂Fj( yij − 1|xi, zi) + vij ̂Fj( yij|xi, zi), yij = 1, 2,… ,

where vij’s are sampled independently from Uniform[0, 1], i = 1, …, n;  
j = 1, …, m. To unify and simplify our notations, we write uij = ̃Fj(yij|xi, zi), 
where ̃Fj(⋅|xi, zi) is the CDF of a continuous distribution.

Then, C( ⋅ ∣xi, zi) is estimated from u1, …, un, where ui = (ui1,… ,uim)
⊤. 

For the Gaussian copula, we use the function cora() in the R package 
Rfast (v.2.0.6); specifically, R̂(xi, zi) is the sample correlation matrix 
of {Φ−1(uj): (xj, zj) is in a predefined-sized neighborhood of (xi, zi)}, 
where Φ−1(ui) = (Φ−1(ui1),… ,Φ−1(uim))

⊤
. For the vine copula, we use the 

function vinecop() in R package rvinecoplib (v.0.6.2.1.1).
Then, the estimated joint distribution ̂F(⋅|xi, zi) is

̂F(yi|xi, zi) = ̂C ( ̃F1(yi1|xi, zi),⋯ , ̃Fm(yim|xi, zi)|xi, zi) . (2)

Model likelihood, AIC and BIC. Given equation (2), the estimated 
probability density function of cell i’s m-dimensional feature  

vector yi, conditional on the cell-state covariates xi and the design 
covariates zi, is

̂f(yi|xi, zi) = ̂c ( ̃F1( yi1|xi, zi),⋯ , ̃Fm( yim|xi, zi)|xi, zi)
m
∏
j=1

̃fj( yij|xi, zi),

where ̂c(⋅|xi, zi)  is the probability density function of ̂C(⋅|xi, zi), and 
̃fj(⋅|xi, zi)  is the probability density function of ̃Fj(⋅|xi, zi). Hence, the 

log-likelihood is

ℓ =
n
∑
i=1

log ̂f(yi|xi, zi)

=
n
∑
i=1

log ̂c ( ̃F1(yi1|xi, zi),⋯ , ̃Fm( yim|xi, zi)|xi, zi) +
n
∑
i=1

m
∑
j=1

log ̃fj( yij|xi, zi)

= ℓCopula + ℓMarginal,

so the log-likelihood ℓ can be written as the sum of a copula log- 
likelihood

ℓCopula =
n
∑
i=1

log ̂c ( ̃F1( yi1|xi, zi),⋯ , ̃Fm( yim|xi, zi)|xi, zi)

and a marginal log-likelihood

ℓMarginal =
n
∑
i=1

m
∑
j=1

log ̃fj( yij|xi, zi).

Given k model parameters and n cells (that is, the sample size n  
is the number of cells), the AIC and BIC are

AIC = 2k − 2ℓ;

BIC = 2k log(n) − 2ℓ,

so smaller AIC and BIC values indicate better goodness-of-fit of a model 
to data.

Because of the likelihood decomposition, the AIC and BIC are also 
decomposable

AIC = AICCopula + AICMarginal;

BIC = BICCopula + BICMarginal,

where AICCopula and BICCopula only include the number of parameters in 
̂c(⋅|xi, zi), and AICMarginal and BICMarginal only include the total number of 

parameters in ̃f1(⋅|xi, zi),… , ̃fm(⋅|xi, zi).

Synthetic data generation by scDesign3
To generate a synthetic cell-by-feature matrix Y′ ∈ ℝn′×m , which  
contains n′ synthetic cells and the same m features as in the training 
data, scDesign3 allows the specification of a cell-by-state-covariate 
matrix X′ ∈ ℝn′×p  and an optional cell-by-design-covariate matrix 
Z′ ∈ ℕn′×q (depending on whether the training data have Z) for the n′ 
synthetic cells. Note that X′ and Z′ can be specified by users, generated 
by resampling the rows of X and Z, or sampled from some generative 
models of the rows of X and Z.

Given X, Z and the fitted distributions in sections ‘Modeling  
features’ marginal distributions’ and ‘Modeling features’ joint distribu-
tion’, scDesign3 samples n′ synthetic cells in the following steps.

First, for each synthetic cell i′, given its cell-state covariates xi′  
and design covariates zi′, we independently sample an m-dimensional 
vector (with values in [0, 1]) from the m-dimensional copula estimated 
in the section ‘Modeling features’ joint distribution’:

(Ui′1,… ,Ui′m)
⊤ ∼ ̂C(⋅|xi′ , zi′ ), i′ = 1,… ,n′.
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Second, based on the m features’ fitted marginal distributions in 
the section ‘Modeling features’ marginal distributions’, we calculate 
the conditional distribution of Yi′ j, the measurement of feature j in 
synthetic cell i′, given the synthetic cell’s cell-state covariates xi′ and 
design covariates zi′ = (bi′ , ci′ )

⊤, where bi′ ∈ {1,… ,B}  and ci′ ∈ {1,… ,C}; 
that is, the distribution of Yi′ j|xi′ , zi′:

̂Fj(⋅|xi′ , zi′ ) = Fj(⋅|xi′ , zi′ ; μ̂i′ j, σ̂i′ j, ̂pi′ j),

where

⎧⎪
⎨⎪
⎩

θ(μ̂i′ j) = α̂j0 + α̂jbi′
+ α̂jci′ + ̂fjci′ (xi′ ),

log(σ̂i′ j) = β̂j0 + β̂jbi′
+ β̂jci′ + ̂gjci′ (xi′ ),

logit ( ̂pi′ j) = γ̂j0 + γ̂jbi′
+ γ̂jci′ + ̂hjci′ (xi′ ).

Note that μ̂i′ j, σ̂i′ j  and ̂pi′ j  may not all be required, depending on the  
form of Fj (Supplementary Table 3).

Then, the m-dimensional feature vector of synthetic cell i′  
is (Yi′1,… ,Yi′m)

⊤, where

Yi′ j = ̂F
−1
j (Ui′ j|xi′ , zi′ ), j = 1,… ,m.

Thanks to the parametric form of ̂Fj(⋅|xi′ , zi′ ), users can generate 
the synthetic data in their demand by modifying the parameters. For 
instance, if users want the expected sequencing depth of Y′ to  
change from N (the sequencing depth of Y) to N′, they can scale the 
mean parameter; that is, the distribution of Yi′ j|xi′ , zi′ becomes:

̂Fj(⋅|xi′ , zi′ ) = Fj (⋅
|||xi′ , zi′ ;

N′

N μ̂i′ j, σ̂i′ j, ̂pi′ j ) .

If users want to remove the batch effects, they can set

α̂jbi′
= β̂jbi′

= γ̂jbi′
= 0,

for all i′ = 1,… ,n′; j = 1,… ,m.
If users want to remove the condition effects, they can set

α̂jci′ = β̂jci′ = γ̂jci′ = 0;
̂fjci′ (⋅) =

̂fj1(⋅);

̂gjci′ (⋅) = ̂gj1(⋅);

̂hjci′ (⋅) = ̂hj1(⋅),

for all i′ = 1,… ,n′; j = 1,… ,m.

The comparison of scDesign, scDesign2 and scDesign3. Supplemen-
tary Table 1 lists a detailed comparison of scDesign3 with the previous 
two versions scDesign24 and scDesign216. Note that scDesign2 is a special 
case of scDesign3 for generating scRNA-seq data from discrete cell types.

Data analysis
Data preprocessing. Supplementary Table 2 lists the real datasets from 
17 published studies, which were used in this study. Since scDesign3 
can directly model count data, we did not perform data transforma-
tion (for example, logarithmic transformation) on the cell-by-feature 
count matrices.

For each cell-by-feature count matrix Y (except for the 
SCGEM-METH and SCGEM-RNA datasets), feature screening was used 
to select informative features and save computation time.
•	 For every scRNA-seq dataset (BATCH, EMBRYO, IFNB, MARROW, 

PANCREAS and the RNA data in CITE), we used the R package 
scran (v.1.20.1)42 to select the top 1,000 highly variable genes.

•	 For the 10x scATAC-seq dataset (ATAC), we used the R package 
Signac (v.1.7.0)43 to first obtain a cell-by-peak matrix and then 
select 1,133 differentially accessible peaks.

•	 For the sci-ATAC-seq (SCIATAC) dataset, the preprocessing and 
feature selection steps were described30.

•	 For the 10x Visium datasets (ACINAR, OVARIAN and VISIUM), 
we used the R package Seurat (v.4.1.1)44 to select the top 1,000 
spatially variable genes.

•	 For the Slide-seq dataset (SLIDE), we selected the top 1,000 
genes with the smallest P values outputted by SPARK-X45.

•	 For the pair of single-cell and spatial datasets (MOB-SC and 
MOB-SP), we used the R package scran (v.1.20.1) to select the 
top 50 marker genes for each cell type in MOB-SC.

•	 For datasets MOUSE-CORTEX, MOUSE-VISUAL and ZHENGMIX4, 
we used the genes selected in the original studies34,46.

For each dataset, the cell-by-state-covariate matrix X was from 
the original study (if the cell-state covariates are cell types or spatial 
locations) or inferred by the R package Slingshot (v.2.2.1)35 (if the 
cell-state covariates are pseudotime values in trajectory lineages).

For each dataset, the optional cell-by-design-covariate matrix Z 
was from the original study if available.

Dimensionality reduction and visualization. To compare scDesign3’s 
synthetic data with real test data, we used the R package irlba (v.2.3.5) 
for principal component analysis (PCA), that is, to calculate the top 
50 principal components of the test cell-by-feature matrix (after 
log-transformation); next, we used the R package UMAP (v.0.2.8.0) 
to project the test cells from the 50-dimensional principal compo-
nent space to the two-dimensional UMAP space. Then, we applied the  
same PCA-UMAP projection to scDesign3’s synthetic cells using the  
R function predict(). Using the same projection ensures that the test 
cells and synthetic cells are embedded in the same two-dimensional 
space and thus comparable.

Unless otherwise noted, the figures were made by the R package 
ggplot2 (v.3.3.6). The coverage plot in Fig. 1g was generated by IGV 
(v.2.12.3).

Evaluation metrics. 
•	 mLISI: To measure the similarity between test cells and synthetic  

cells in the two-dimensional space, we used mLISI25 as the metric.  
Specifically, if a cell’s neighboring cells are from one group (for 
example, test cells or synthetic cells), the cell’s local inverse 
Simpson’s index (LISI) is 1; otherwise, if a cell’s neighboring cells 
comprise two groups equally, the cell’s LISI is 2. The mLISI is the 
average of all cells’ LISIs. Hence, an mLISI close to 2 means that 
the test cells and synthetic cells are well mixed. The mLISI is 
calcu lated by the function evalIntegration() in the  
R package CellMixS (v.1.8.0)47.

•	 Pearson correlation between spatial patterns: To measure the 
per-feature similarity between real data and synthetic data when 
the cell-state covariates are spatial locations, we compared 
supervised learners trained on real data and synthetic data sepa-
rately. In detail, for every feature (for example, gene), we con-
ducted the following analysis. First, treating the feature as the 
outcome, we trained a flexible learner, the generalized boosted 
regression model (GBM), separately on real data and synthetic 
data to predict the feature’s values from the cell-state covariates, 
using the R package caret (v.6.0-93). Second, we measured the 
Pearson correlation r between the two GBMs’ predicted feature 
values from the synthetic data’s spatial locations (note that the 
cell-state covariates could be replaced by a random sample from 
the location space). An r close to 1 means that the two GBMs are 
similar; that is, the feature’s ‘relationship’ with spatial locations 
is similar in the real data and the synthetic data. If all features 
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have r values close to 1, we concluded that the synthetic data 
resemble the real data.

•	 Summary statistics: In Extended Data Figs. 1, 2, 4, 8 and 9 and 
Supplementary Figs. 1–5, we compared the distributions of eight 
feature-level, cell-level, feature-pair-level and cell-pair-level 
summary statistics between real data and synthetic data. Note 
that in scRNA-seq and spatial transcriptomics data, every gene 
is a feature; in scATAC-seq and sci-ATAC-seq data, every peak is a 
feature. The eight summary statistics are: 

 (1) Mean of log expression (feature-level statistic): a feature’s 
mean of log( count + 1) values across all cells.

 (2) Variance of log expression (feature-level statistic): a feature’s 
variance of log( count + 1) values across all cells.

 (3) Feature detection frequency (feature-level statistic): a feature’s 
proportion of nonzero counts across all cells.

 (4) Feature–feature correlation (feature-pair-level statistic): the 
correlation between two features’ log( count + 1) values 
across all cells.

 (5) Cell library size on the log scale (cell-level statistic): a cell’s 
log-transformed total read or UMI count (that is, log per-cell 
sequencing depth).

 (6) Cell–cell distance (cell-pair-level statistic): the Euclidean dis-
tance between two cells in the 50-dimensional principal compo-
nent space (constructed from the cell-by-gene log( count + 1) 
matrix).

 (7) Cell detection frequency (cell-level statistic): a cell’s propor-
tion of nonzero counts across all features.

 (8) Cell–cell correlation (cell-pair-level statistic): the correlation 
between two cells’ log( count + 1) values across all features.

 Feature–feature correlations were calculated for the top 100  
highly expressed features in each real dataset and the corresponding 
synthetic datasets. To measure the similarity between the real and 
synthetic correlation matrices, we calculated the Pearson correlation 
r across all 1002 entries of the correlation matrices.

Boxplots and scatter plots. The boxplots (Fig. 2f) were plotted using 
the function geom_boxplot() in the R package ggplot2 (v.3.6.6).  
In each boxplot, the center horizontal line represents the median, the 
box limits represent the upper and lower quartiles, the whiskers cover 
the 1.5 × interquartile range and points are outliers. The P value was 
calculated by the two-sided Wilcoxon rank-sum test.

The scatter plots (Fig. 2e and Extended Data Fig. 10) were plot-
ted using the function geom_scatter() in the R package ggplot2 
(v.3.6.6). In each scatter plot, the P value associated with the Spearman’s 
correlation coefficient ρ was calculated by the one-sided test in the 
function cor.test() in the R package stats (v.4.4.2).

scDesign3’s simulation of spot-resolution transcriptomics data with 
true cell-type proportions. To generate the synthetic spot-resolution 
spatial transcriptomics data with true cell-type proportions at each 
spot, we used a pair of an scRNA-seq dataset (MOB-SC) and a spatial 
transcriptomics dataset (MOB-SP) that measured the same biological 
sample (mouse olfactory bulb). The simulation procedure consists of 
three steps: the first two steps for parameter estimation from real data 
and the last step for data simulation.

First, we used scDesign3 to estimate each gene’s mean expression 
level of each cell type (from scRNA-seq data) and the same gene’s mean 
expression level at each spatial spot (from spatial transcriptomics data; 
Extended Data Fig. 7a, Step 1).

Second, using the four cell types’ gene mean expression vectors 
(one vector per cell type; the cell types are the columns in Extended 
Data Fig. 7b; each vector’s elements correspond to genes’ mean expres-
sion levels in the cell type) as the reference data and the spatial spots’ 
gene mean expression vectors (one vector per spot) as the query data, 

we used the cell-type decomposition method CIBERSORT48,49 to esti-
mate each spot’s cell-type proportions (Fig. 1f, left, and Extended Data 
Fig. 7b, top row), which we then considered as the spot’s true cell-type 
proportions in scDesign3’s simulation. As a sanity check, we show 
CIBERSORT’s fitted gene expression levels at each spot in Extended 
Data Fig. 7a, Step 2. Note that CIBERSORT could be replaced by other 
decomposition methods.

Third, we used scDesign3 to generate synthetic scRNA-seq data 
of the four cell types after training scDesign3 on the real scRNA-seq 
data. Then, we simulated spot-resolution transcriptomics data as fol-
lows. For each real spot, we sampled 100 cells from the four cell types 
based on the spot’s true cell-type proportions. Specifically, if the true 
cell-type proportions are p1, …, p4, then the numbers of cells sampled 
from the four cell types would be drawn from a multinomial distribu-
tion, Multinomial(100, (p1, …, p4)). Then, we added the sampled cells’ 
gene expression vectors and divided the summed vector by 10 to form 
the spot’s gene expression vector (so every spot corresponds to 10 cells 
on average, consistent with real data) (Extended Data Fig. 7a, Step 3).

Using the synthetic spot-resolution spatial transcriptomics data, 
we benchmarked three spatial transcriptomics cell-type deconvolution 
algorithms: CARD27, RCTD28 and SPOTlight29, using the R packages 
CARD (v.1.0), spacexr (v.2.1.6) and SPOTlight (v.1.0.1), respectively. 
We chose these three algorithms to demonstrate scDesign3’s bench-
marking functionality because of a published benchmark study27, 
which found CARD and RCTD to have similarly good performance and 
to have outperformed SPOTlight. Hence, we considered CARD, RCTD 
and SPOTlight as representative algorithms to check if our benchmark 
results based on scDesign3 could be consistent with the published 
study that used an independent approach27.

scDesign3’s simulation of a multiomics dataset from single-omics 
datasets measuring different modalities. To simulate a multiomics 
dataset from real single-omics datasets with unmatched cells, scDesign3  
relies on an integration method that projects single-omics data 
to a joint low-dimensional space. Then, scDesign3 considers each 
cell’s low-dimensional embedding as the cell-state covariates in  
the modeling.

In Fig. 1j, we used an scRNA-seq dataset and a single-cell methyl-
ation dataset with unmatched cells. The two datasets’ cells’ joint 
low-dimensional embeddings were inferred by the integration method 
Pamona31, which could be replaced by other integration methods. Then, 
we trained scDesign3 for each modality (RNA or methylation) using the 
low-dimensional embeddings of the modality’s real cells. Finally, using 
the fitted models (one per modality), we generated a synthetic cell with 
both modalities from each real cell’s low-dimensional embedding.

scDesign3’s assessment of cell clusters’ goodness-of-fit. To show 
that scDesign3 can assess the goodness-of-fit of cell clusters, we used 
the eight datasets from the R package DuoClustering2018 (v.1.10.0), 
in which each dataset contains cell-type labels (‘truth’) and various 
clustering methods’ results with varying numbers of clusters. The 
ARI, a ‘supervised’ measure calculated between each clustering result 
and cell-type labels, was used as the benchmark standard. Assuming 
the NB distribution in the scDesign3 model, we calculated scDesign3’s  
marginal BIC (in the section ‘Model likelihood, AIC and BIC’), an  
‘unsupervised’ measure that uses only the clustering result but not 
the cell-type labels, for each clustering result in each dataset. We used 
scDesign3’s marginal BIC because we observed that it better captured 
the goodness-of-fit of cell clusters than the scDesign3 BIC. A possible 
reason is that the scDesign3 BIC is dominated by the copula BIC, which 
largely reflects the number of parameters instead of the clustering 
goodness-of-fit.

In Extended Data Fig. 10b, we benchmarked scDesign3’s marginal 
BIC against the ARI and found them to have negative correlations on 
the eight datasets consistently, suggesting that scDesign3’s marginal 

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-023-01772-1

BIC is an effective assessment measure of clustering goodness-of-fit: 
a lower BIC indicates better goodness-of-fit.

scDesign3’s assessment of cell pseudotimes’ goodness-of-fit. To 
show that scDesign3 can assess the goodness-of-fit of cell pseudotimes, 
we used five synthetic datasets generated by the R package dyngen 
(v.1.0.3)19 and three synthetic datasets generated by scDesign3; each 
dataset contains cells’ true pseudotime values (‘truth’) ranging from 
0 to 1. To generate perturbed pseudotimes with varying quality, we 
randomly replaced 0%, 10%, 20%, …, 100% of truth pseudotime values 
with randomly sampled values from the Uniform[0, 1] distribution.  
We also considered the inferred pseudotimes by the R packages  
Slingshot (v.2.4.0), Monocle3 (v.1.0.0) and TSCAN (v.1.34.0). The  
benchmark standard was the ‘supervised’ R2 between the true pseudo-
time values and the perturbed or inferred pseudotime values. Using the  
NB distribution in the scDesign3 model, we calculated scDesign3’s  
marginal BIC (in the section ‘Model likelihood, AIC and BIC’), an ‘unsuper-
vised’ measure that only uses the perturbed or inferred pseudotime 
values but not the true pseudotime values, for each set of perturbed or  
inferred pseudotime values in each dataset. We used scDesign3’s 
marginal BIC because we observed that it better captured the 
goodness-of-fit of cell pseudotimes than the scDesign3 BIC. A possible 
reason is that the scDesign3 BIC is dominated by the copula BIC, which 
largely reflects the number of parameters instead of the pseudotime 
goodness-of-fit.

In Extended Data Fig. 10a, we benchmarked scDesign3’s marginal 
BICs against the R2 and found them to have negative correlations on 
the eight datasets consistently, suggesting that scDesign3’s marginal 
BIC is an effective assessment measure of pseudotime goodness-of-fit:  
a lower BIC indicates better pseudotime goodness-of-fit.

scDesign3’s assessment of inferred spatial locations’ goodness- 
of-fit. To show that scDesign3 can assess the goodness-of-fit of inferred 
spatial locations, we used two single-cell resolution spatial transcrip-
tomics datasets from Li et al.46. The two datasets contain all cells’  
measured spatial locations. Then, for each spatial transcriptomics  
dataset, we treated its cells’ gene expression counts as a ‘pseudo’ 
scRNA-seq dataset, and we inputted this pseudo scRNA-seq data along 
with the original spatial transcriptomics dataset into Seurat (v.4.1.1), 
Tangram (v.1.0.0)50 and novoSpaRc (v.0.4.3)51—as an integration task—to 
infer the spatial locations of the cells in the pseudo scRNA-seq dataset. 
This approach allowed us to evaluate the inferred spatial locations 
based on the true spatial locations in the original spatial transcripto-
mics dataset.

The inferred spatial locations by novoSpaRc contained a large 
proportion of overlapping locations and thus were not used in our 
assessment. For Seurat and Tangram, we used each method’s inferred 
spatial locations along with the original gene expression counts to 
train scDesign3 (with the NB distribution; Supplementary Table 3) and 
calculate the likelihood, marginal AIC and marginal BIC (in the section 
‘Model likelihood, AIC and BIC’). Note that we only used the top 100 
spatially variable genes defined by Moran’s I statistic to train scDesign3 
to save computational time. To evaluate the performance of scDesign3’s 
unsupervised marginal AIC and BIC, we used the mean cosine similarity,  
a ‘supervised’ measure that averages all cells’ absolute values of the 
cosine similarity (for each cell, the cosine similarity is calculated 
between the cell’s true spatial location and inferred spatial location).

Additionally, for each dataset, we randomly shuffled 0%, 10%,  
20%, …, 100% of true spatial locations to obtain perturbed spatial  
locations with varying quality. Then, we calculated scDesign3’s  
marginal AIC and BIC for the perturbed spatial locations.

In Extended Data Fig. 10c, we found that scDesign3’s marginal 
AIC and the mean cosine similarity had negative correlations on the 
two datasets, suggesting that scDesign3’s marginal AIC is an effective 
assessment measure of spatial locations’ goodness-of-fit: a lower AIC 

indicates better goodness-of-fit. Note that AIC outperformed BIC in 
this case, possibly due to the reason that genes’ spatial patterns are 
complex and thus need complex models.

Implementation of other simulators. We compared scDesign3  
with multiple representative scRNA-seq simulators including scGAN, 
muscat, SPARSim and ZINB-WaVE.

•	 For scGAN, we used the docker and the tutorial available at 
https://github.com/imsb-uke/scGAN (access date: 7 February 
2022) to simulate synthetic data.

•	 For muscat, we first used the R function prepSim() to process 
the training dataset. Then, we ran the R function simData() to 
simulate a synthetic dataset based on the processed training 
dataset and the cell-level information (such as cell types and 
experimental conditions) in the training dataset. Both functions 
are from the R package muscat (v.1.6.0).

•	 For SPARSim, we first used the SPARSim_create_simulation_ 
parameter() function to obtain the parameters for each group 
of cells in the training dataset, whose cells were grouped by cell 
types, experimental conditions or batches. The three required 
input parameters for the function—intensity, variability  
and library_size—were obtained from the functions  
SPARSim_estimate_intensity(), SPARSim_estimate_
variability() and SPARSim_estimate_library_size(), 
respectively, for each cell group. Then, we ran the SPARSim_
simulation() function with the input parameters from the 
previous step to generate synthetic data. All functions are  
from the R package SPARSim (v.0.9.5).

•	 For ZINB-WaVE, we used the zinbFit() function from the  
R package zinbwave (v.1.15.3), with the count matrix and 
cell-type labels as inputs.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets used in the study are publicly available. Supplementary 
Table 2 lists the datasets from 17 published studies (sources included). 
The preprocessed datasets are available in the Zenodo repository at 
https://doi.org/10.5281/zenodo.711076152.

Code availability
The scDesign3 package is available at https://github.com/SONG-
DONGYUAN1994/scDesign3. The comprehensive tutorials are avail-
able at https://songdongyuan1994.github.io/scDesign3/docs/index.
html. In the tutorials, we described the input and output formats, 
model parameters and exemplary datasets for each functionality of 
scDesign3. The source code for reproducing the results is available in 
the Zenodo repository at https://doi.org/10.5281/zenodo.711076152.
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Extended Data Fig. 1 | Benchmarking scDesign3 against four existing 
scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for 
generating scRNA-seq data from a single trajectory (mouse pancreatic 
endocrinogenesis; dataset PANCREAS in Supplementary Table 2).  
a, Distributions of eight summary statistics in the test data and the synthetic 
data generated by scDesign3 and the four simulators. Each number on top of a 
violin plot (the distribution of a summary statistic in a synthetic dataset) is the 
Kolmogorov-Smirnov (KS) distance between the synthetic data distribution 
(indicated by that violin plot) and the test data distribution. A smaller number 
indicates better agreement between the synthetic data and the test data in 
terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene 

correlation matrices (showing top 100 highly expressed genes) in the test data 
and the synthetic data generated by scDesign3 and the four simulators. Pearson’s 
correlation coefficient r measures the similarity between two correlation 
matrices, one from the test data and the other from the synthetic data. c, PCA 
visualization (top two PCs) of the test data and the synthetic data generated by 
scDesign3 and the four simulators. Colors label cells’ pseudotime values; note 
that only the synthetic data generated by scDesign3 contain the pseudotime 
truths. An mLISI value close to 2 means that the synthetic data resemble the real 
data well in the low-dimensional space. d, UMAP visualization of the real data and 
the synthetic data generated by scDesign3 and the four simulators.
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Extended Data Fig. 2 | Benchmarking scDesign3 against four existing  
scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-WaVE) for 
generating scRNA-seq data from bifurcating trajectories (myeloid 
progenitors in mouse bone marrow; dataset MARROW in Supplementary 
Table 2). a, Distributions of eight summary statistics in the test data and the 
synthetic data generated by scDesign3 and the four simulators. Each number on 
top of a violin plot (the distribution of a summary statistic in a synthetic dataset) 
is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution 
(indicated by that violin plot) and the test data distribution. A smaller number 
indicates better agreement between the synthetic data and the test data in 
terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene 

correlation matrices (showing top 100 highly expressed genes) in the test data 
and the synthetic data generated by scDesign3 and the four simulators. Pearson’s 
correlation coefficient r measures the similarity between two correlation 
matrices, one from the test data and the other from the synthetic data. c, PCA 
visualization (top two PCs) of the test data and the synthetic data generated by 
scDesign3 and the four simulators. Colors label cells’ pseudotime values in two 
trajectories; note that only the synthetic data generated by scDesign3 contain 
the pseudotime truths. An mLISI value close to 2 means that the synthetic data 
resemble the real data well in the low-dimensional space. d, UMAP visualization 
of the real data and the synthetic data generated by scDesign3 and the four 
simulators.
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Extended Data Fig. 3 | scDesign3 simulated realistic gene expression patterns 
in cancer spatial transcriptomics data (datasets OVARIAN and ACINAR in 
Supplementary Table 2. Human ovarian cancer (a) and human prostate cancer, 
acinar cell carcinoma (b). The tissue samples were measured with both H&E 

(hematoxylin and eosin stain, left) and spatial transcriptomics (right, three 
cancer-related genes). Large Pearson correlation coefficients (r) represent 
similar spatial patterns in synthetic data and real (test) data.
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Extended Data Fig. 4 | scDesign3 simulated 10x Visium spatial transcriptomics 
data (sagital mouse brain slices; dataset VISIUM in Supplementary Table 2).  
a, Distributions of eight summary statistics in the test data and the synthetic 
data generated by scDesign3 using cell type labels (scDesign3-ideal) and spatial 
locations (scDesign3-spatial), respectively. Each number on top of a violin plot 
(the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by 
that violin plot) and the test data distribution. A smaller number indicates better 
agreement between the synthetic data and the test data in terms of that summary 
statistic’s distribution. b, Heatmaps of the gene-gene correlation matrices 
(showing top 100 highly expressed genes) in the test data and the synthetic 

data generated by scDesign3-ideal and scDesign3-spatial. Pearson’s correlation 
coefficient r measures the similarity between two correlation matrices, one from 
the test data and the other from the synthetic data. c, PCA visualization (top two 
PCs) of the real data and the synthetic data generated by scDesign3-ideal and 
scDesign3-spatial. Cell types (clusters) are labeled by colors. Since the scDesgin3-
spatial dataset was based on spatial locations only, it did not contain cell types. 
An mLISI value close to 2 means that the synthetic data resemble the real data 
well in the low-dimensional space. d, UMAP visualization of the real data and the 
synthetic data generated by scDesign3-ideal and scDesign3-spatial. In summary, 
scDesign3 realistically simulated 10x Visium data based on spatial locations 
without needing cell type annotations.
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Extended Data Fig. 5 | scDesign3 mimicked spatial transcriptomics data 
so that prediction algorithms had similar prediction performance when 
trained on real data or scDesign3 synthetic data. In detail, we first split each 
of four spatial transcriptomics datasets (VISIUM, SLIDE, OVARIAN, and ACINAR 
in Supplementary Table 2) into two datasets (training and testing) by randomly 
splitting the spatial locations into two halves. Second, we used each of the four 
training datasets to fit scDesign3 and generate the corresponding synthetic 
dataset. Third, on each pair of training dataset and synthetic dataset (among a 
total of four pairs), we trained each of three prediction algorithms (gbm: gradient 
boosting machine; randomForest: random forest; svmRadial: support vector 

machine with the radial kernel) to predict each gene’s expression at a spatial 
location (input: spatial location; output: the gene’s log(count+1) expression level 
at the location), obtaining a pair of prediction models for each gene. Fourth, 
we applied each pair of prediction models to the corresponding testing dataset 
and calculated each model’s root-mean-squared error (RMSE) for predicting 
the corresponding gene, obtaining a pair of RMSEs. As a result, in each panel, we 
plotted the RMSEs for each prediction algorithm (row) and dataset (column), 
with each dot in the panel representing a gene. We found all genes’ RMSEs highly 
similar, indicating that scDesign3’s synthetic data well mimicked real data.
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Extended Data Fig. 6 | The effect of K on scDesign3’s simulation of spatial 
transcriptomics data (dataset ACINAR in Supplementary Table 2). The rows 
represent three cancer-related genes; column 1 represents real test data; columns 
2–8 represent scDesign3’s synthetic data generated using varying K, the input 
basis number. A large Pearson correlation coefficient (r) represents similar 

spatial patterns in synthetic and test data. The effective degrees of freedom (edf) 
represents the wiggliness of the fitted surface. With a larger K, scDesign3 can fit 
more complex patterns. The overfitting issue is accounted for by the automatic 
smoothness estimation39: when K is sufficiently large, edf (model complexity) 
and r (model goodness-of-fit) both become stable.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scDesign3 simulated spot-resolution spatial 
transcriptomics data for benchmarking cell-type deconvolution algorithms 
(datasets MOB-SP and MOB-SC in Supplementary Table 2). a, scDesign3’s 
synthetic spot-resolution data well mimicked real data (top row), showing similar 
expression patterns for four cell-type marker genes (columns). scDesign3 used 
three steps to generate the spot-resolution data. Step 1: every gene’s estimated 
mean expression level at each spot (as a smooth function of spot location) by 
scDesign3. Step 2: every gene’s predicted expression level at each spot from 
CIBERSORT’s estimated cell-type proportions at the spot (considered as the 
‘true proportions’) and the gene’s cell-type-specific expression levels (from 
the reference scRNA-seq data). Step 3: every gene’s simulated expression level 
at each spot by scDesign3 (from the true cell-type proportions at the spot and 

scDesign3’s synthetic scRNA-seq data). b, Using scDesign3 synthetic data, 
we benchmarked three spatial cell-type deconvolution algorithms (CARD6, 
RCTD7, and SPOTlight8). For each of the four cell types (columns), we used two 
metrics-Pearson correlation (r) and root-mean-square error (RMSE)-to compare 
the proportions estimated by each deconvolution algorithm (rows 2-4) to the 
true proportions (top row). Large r values represent similar spatial patterns of 
proportions, while small RMSE values represent similar values of proportions. 
Although all three algorithms well captured the spatial patterns of each cell 
type’s proportions (evidenced by large r values), CARD and RCTD outperformed 
SPOTlight by estimating cell-type proportions more accurately (evidenced by 
smaller RMSE values).
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Extended Data Fig. 8 | scDesign3 simulated scATAC-seq data (human PBMCs; 
dataset ATAC in Supplementary Table 2). a, Distributions of eight summary 
statistics in the test data and the synthetic data generated by scDesign3 using cell 
type labels. Each number on top of a violin plot (the distribution of a summary 
statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance between 
the synthetic data distribution (indicated by that violin plot) and the test  
data distribution. A smaller number indicates better agreement between the 
synthetic data and the test data in terms of that summary statistic’s distribution. 

b, Heatmaps of the peak-peak correlation matrices in the test data and the 
synthetic data generated by scDesign3. Pearson’s correlation coefficient r 
measures the similarity between two correlation matrices, one from the test data 
and the other from the synthetic data. c, PCA visualization (top two PCs) of the 
test data and the synthetic data generated by scDesign3. Cell types are labeled  
by colors. An mLISI value close to 2 means that the synthetic data resemble the 
test data well in the low-dimensional space. d, UMAP visualization of the test data 
and the synthetic data generated by scDesign3.
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Extended Data Fig. 9 | scDesign3 simulated CITE-seq data (human PBMCs; 
dataset CITE in Supplementary Table 2). a, Distributions of eight summary 
statistics in the test data and the synthetic data generated by scDesign3. The 
CITE-seq dataset contains simultaneous measurements of each cell’s gene 
expression and surface protein abundance captured by Antibody-Derived 
Tags (ADTs). Each number on top of a violin plot (the distribution of a summary 
statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance 
between the synthetic data distribution (indicated by that violin plot) and the 
test data distribution. A smaller number indicates better agreement between the 
synthetic data and the test data in terms of that summary statistic’s distribution. 
b, Heatmaps of the gene and protein correlation matrices (10 proteins with 

names starting with ‘ADT’ and their corresponding genes) in the test data and 
the synthetic data generated by scDesign3. Pearson’s correlation coefficient 
r measures the similarity between two correlation matrices, one from the test 
data and the other from the synthetic data. scDesign3 preserved the correlations 
between the RNA and protein expression levels of the 10 surface proteins. c, PCA 
visualization (top two PCs) of the test data and the synthetic data generated 
by scDesign3. Cell types are labeled by colors. An mLISI value close to 2 means 
that the synthetic data resemble the real data well in the low-dimensional space. 
d, UMAP visualization of the test data and the synthetic data generated by 
scDesign3.
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Extended Data Fig. 10 | scDesign3 provides unsupervised measures of the 
goodness-of-fit of pseudotime, clusters, and inferred spatial locations. 
For visual clarity, we plot the relative BIC or AIC (rBIC or rAIC) by re-scaling 
scDesign3’s marginal BIC or AIC to [0, 1]. a, The scDesign3 rBIC (unsupervised) is 
negatively correlated with the R2 (supervised). Each R2 was calculated between 
the set of perturbed or inferred pseudotimes and the set of true pseudotimes in 
each of the eight datasets (the column names). The P value is from the one-sided 
test of Spearman’s rank correlation ρ. The true pseudotime is the ground truth 
used for generating the synthetic data. b, Comparison of the scDesign3 rBIC and 
the Clustering Deviation Index (CDI) rBIC (rescaled to [0, 1])33. The color scale 
shows the number of clusters, and the shapes represent clustering algorithms. 
We found the scDesign3 rBIC (unsupervised) negatively correlated with the 

ARI (supervised). The P value is from the one-sided test of Spearman’s rank 
correlation ρ. We also found the scDesign3 rBIC to perform better or similarly 
to the CDI on six out of the eight datasets (the column names). c, The scDesign3 
rAIC (unsupervised) is negatively correlated with the mean cosine similarity 
(supervised). The mean cosine similarity was calculated between the set of 
perturbed or inferred locations and the set of true locations in each of the two 
spatial datasets (the column names). The P value is from the one-sided test of 
Spearman’s rank correlation ρ. The true locations are the ground truth used 
for generating the semi-synthetic data. Due to the high complexity of spatial 
patterns, the scDesign3 rAIC (left) outperformed the scDesign3 rBIC (right) for 
penalizing the model complexity less.
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