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SUMMARY

Gene regulatory network (GRN) inference is an integral part of understanding
physiology and disease. Single cell/nuclei RNA-seq (scRNA-seq/snRNA-seq)
data has been used to elucidate cell-type GRNs; however, the accuracy and speed
of current scRNAseq-based GRN approaches are suboptimal. Here, we present
Single Cell INtegrative Gene regulatory network inference (SCING), a gradient
boosting and mutual information-based approach for identifying robust GRNs
from scRNA-seq, snRNA-seq, and spatial transcriptomics data. Performance
evaluation using Perturb-seq datasets, held-out data, and the mouse cell atlas
combined with the DisGeNET database demonstrates the improved accuracy
and biological interpretability of SCING compared to existing methods. We
applied SCING to the entire mouse single cell atlas, human Alzheimer’s disease
(AD), and mouse AD spatial transcriptomics. SCING GRNs reveal unique disease
subnetwork modeling capabilities, have intrinsic capacity to correct for batch
effects, retrieve disease relevant genes and pathways, and are informative on
spatial specificity of disease pathogenesis.

INTRODUCTION

Understanding pathophysiology is necessary for the diagnosis and treatment of complex diseases, which

involve the perturbation of hundreds or thousands of genes.1–4 Identifying perturbed gene pathways and

key drivers of complex diseases requires the elucidation of gene regulatory networks (GRN) from high

dimensional omics data.5,6 Previous approaches have been developed and applied to identify these

GRNs through bulk transcriptomic data and to determine causal mechanisms of disease.7–9 More recently,

with the advent of single cell RNA sequencing (scRNA-seq) and spatial transcriptomics, the contributions

of numerous genes in individual cell types have been implicated in diseases across many disciplines of

biology and medicine.10–12

GRN construction from scRNA-seq data has been tackled with limited success.13–15 Existing GRN tools uti-

lize scRNA-seq data with thousands of pre-select genes and cells, because GRNs from full transcriptomes

in large scRNA-seq datasets are often computationally intensive and intractable.13,15 In addition, bench-

marking studies have shown limited accuracy of existing methods on both synthetic and real data.13 The

basis of poor performance lies in the technical variability in scRNA-seq data, namely high gene sparsity

and cell-to-cell heterogeneity, which bulk GRN methods are not optimized to mitigate and single cell

GRN methods are designed to overcome. Top-performing single cell GRN methods based on a recent

benchmark study like ppcor,16 PIDC,17 and GRNBOOST2,18 present diverse approaches to GRN construc-

tion and unique advantages and limitations that collectively describe the current state of single cell GRN

methods. Although tools such as ppcor16 and PIDC17 use partial correlation and partial information decom-

position, respectively, to identify gene co-expression modules, few methods are able to identify directed

networks.14 Methods that use ensemble machine learning approaches to train GRNs enable the modeling

of directed networks. GENIE3 which uses random forest and GRNBOOST218 which uses a gradient boost-

ing approach, top performing methods in recent benchmarking studies, with GRNBOOST2 showing supe-

rior computing efficiency than GENIE3 and better handling of scRNA-seq dropouts.13,15 However, both

methods generate highly dense networks and require immense computational resources. In addition,

most of the regulatory edges point in both directions, and the resulting GRNs contain too many edges

in the range of 34,000 to 47,000 edges for networks with only 3,000 input genes for GRNBOOST2, making
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Figure 1. SCING overview, benchmarking, and application

(A) SCING overview. First, we select a specific cell type, or use spatial transcriptomics data. We then cluster the cells/spatial spots using the Leiden graph

partitioning algorithm and merge subclusters into supercells. We utilize bagging through subsamples of supercells to keep robust edges in the final GRN.

For each subsample, the genes are clustered based on their PC embeddings to limit likely regulatory edges. We then identify edges through gradient

boosting regressors (GBR). We find the consensus as edges that show up in 20% of the subsample networks as the default setting, but this threshold can be

tuned. We then prune edges and cycles using conditional mutual information metrics.

(B) In silico performance testing using perturb-seq. We identify downstream perturbed genes of each guide RNA targeting a specific gene. We then predict

perturbed genes at each depth in the network from the perturbed gene. True positive rate (TPR) and false positive rate (FPR) are determined at each depth in

the network. We then utilize AUROC and TPR at FPR 0.05 as metrics for evaluation.
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this approach impractical for datasets with thousands of cells and full transcriptomes.18 SCENIC,19 an

extension of GRNBOOST2, prunes edges based on known transcription factor binding sites (TFBS).

However, it only focuses on regulatory behavior between transcription factors (TF) and its downstream

target genes,19 thereby missing other non-TF gene regulatory mechanisms,20,21 as well as regulatory

patterns because of low TF expression.22 Although there exist other GRN inference approaches based

on pseudotime analysis,23–25 their performance is generally inferior to those that rely solely on the

scRNA-seq data.13

Here, we present Single Cell INtegrative gene regulatory network inference (SCING), a gradient boosting

based approach to efficiently identify GRNs in full single cell transcriptomes. The robustness of SCING is

achieved via (1) merging and taking consensus of GRNs through bagging and (2) further directing and prun-

ing edges through the use of edge importance and conditional mutual information. SCING GRNs are then

partitioned into modules, to computemodule specific expression for each cell. These modules can be used

for clustering, phenotypic association, and biological annotation through pathway enrichment. We show

our approach is both efficient and robust on large scRNA-seq datasets, able to predict perturbed

downstream genes of high throughput perturbation experiments, and produces gene subnetworks with

biologically meaningful pathway annotations. We evaluate our approach against GRNBOOST2, ppcor,

and PIDC through perturbation target prediction in perturb-seq data, goodness of fit, network character-

istic metrics, and disease modeling accuracy. Furthermore, we apply SCING to the mouse single cell

atlas,26 snRNA-seq,27 and spatial transcriptomics28 datasets to demonstrate its versatility in datatype ac-

commodation and its biological interpretability of high-throughput transcriptomics datasets. Our code

and tutorials for running SCING are publicly available at https://github.com/XiaYangLabOrg/SCING.

RESULTS

SCING method and evaluation overview

SCING leverages the power of abundant cell-level transcriptome data from scRNA-seq/snRNA-seq to

identify potential directional regulatory patterns between genes. However, single cell transcriptomics

data has technical issues, such as high sparsity and low sequencing depth,29,30 which make the use of

traditional linear or correlative approaches challenging. In addition, these datasets often contain tens of

thousands of cells each with hundreds to thousands of genes, making identifying GRNs using complex

non-linear approaches on full transcriptomes difficult.13 To address these limitations, we employ a combi-

nation of supercell, gene neighborhood based connection pruning, bagging, gradient boosting regres-

sion, and conditional mutual information approaches to identify robust regulatory relationships between

genes based on single cell transcriptomics data (Figure 1A; STAR Methods). SCING contains four tunable

hyperparameters: the number of supercells to reduce sparsity, the number of subsampled networks for

bagging, the number of nearest neighbors for feature selection in gradient boosting regression, and the

consensus edge overlap threshold when merging subsampled networks. We benchmarked and optimized

these hyperparameters to balance computational efficiency, network properties, and robustness of the

GRN based on target gene expression prediction (STAR Methods) and provide a description of the bench-

mark framework and justification for our selection in the Methods.

We evaluated our approach against PIDC, a partial information decomposition approach; ppcor, a partial

correlation approach; and GRNBOOST2, a gradient boosting approach. We selected these particular

methods for comparison because of their overall better performance in recent benchmarking studies13,15

and diverse approaches. We compared these methods on the ability to predict downstream gene targets

Figure 1. Continued

(C) Gene prediction validation and network overfitting assessment. We split data into training and test sets and build a network on the training set. A

gradient boosting regressor is trained for each gene based on its parents in the training data. We then predict the expression of each gene in the test set and

determine the distance from the true expression through cosine similarity.

(D) Biological validation through disease subnetwork modeling. We utilize a random walk framework from Huang et al. to determine the increase in

performance of a GRN to model disease subnetworks versus random GRNs with similar node attributes.

(E) Partition of GRNs into modules and functional annotation of modules. We apply the Leiden graph partitioning algorithm to identify GRN subnetworks

and then calculate module specific expression for each cell using AUCell and further combine the gene modules with pathway knowledge bases to annotate

modules with biological pathways.

(F) Biological applications of SCING to Alzheimer’s disease (AD) datasets and the Mouse Cell Atlas datasets. We apply SCING to human prefrontal cortex

snRNA-seq data with AD and Control patients, whole brain Visium spatial transcriptomics data for AD vs. WT mice at different ages, and to the Mouse Cell

Atlas for 33 tissues and 106 cell types.
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Figure 2. Performance evaluation

(A) Predicted downstream affected genes of perturb-seq based perturbation in 5 datasets with GRNs built on cells with non-zero expression of the

perturbation of interest. Area under receiver operator characteristic (AUROC) curve for prediction of downstream perturbations using undirected GRNs.

(B) AUROC for prediction of downstream perturbation on directed GRNs for SCING.

(C) True positive rate (TPR) at a false positive rate (FPR) of 0.05 for the prediction of downstream perturbations on undirected GRNs.

(D) TPR at FPR of 0.05 for the prediction of downstream perturbations on directed GRNs for SCING.

(E) Measure of network overfitting by ratio of cosine similarity between predicted gene expression and actual for testing and training data in held out data for

astrocytes, microglia, and oligodendrocytes.
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of large scale Perturb-seq studies (Figure 1B), robustness of the network on training and test data (Fig-

ure 1C), metrics including the consistency of edge overlap on GRNs built on independent cells, and the

ability to model disease subnetworks (Figure 1D). Furthermore, we demonstrated the utility of using

SCING on the full mouse cell atlas and a human prefrontal-cortex snRNA-seq dataset27 with AD and control

patients to perform snRNA-seq batch harmonization, gene module identification with biological annota-

tion (Figure 1E), and module-trait association analysis (Figure 1F). Data from Morabito et al. has snRNA-

seq from 11 AD and 7 control human prefrontal cortex samples, with 61,472 nuclei across 7 cell types, which

provides a high-quality dataset for benchmarking. Furthermore, we applied SCING to a visium mouse

dataset with AD vs. control samples.28 We show that the SCING subnetworks are versatile in data type

accommodation (scRNA-seq, snRNA-seq, spatial transcriptomics), can resolve spatial biology, and are

powerful in retrieving biologically meaningful pathways, gene connections, and disease associations.

SCING extends network node inclusion capacity and improves computing speed

SCING builds many GRNs for each dataset and the speed of such computation is paramount to reasonable

computation for a whole dataset. The use of supercells and gene covariance based potential edge pruning

enables faster performance of SCING. We show that SCING improves computational speed over

GRNBOOST2 and PIDC, when increasing the number of genes (Figure S1A), and number of cells (Fig-

ure S1B). GRNBOOST2 scales exponentially on the number of genes, whereas PIDC scales exponentially

on the number of cells, making whole transcriptome and large dataset GRN inference difficult. Supercells

in SCING ensure the network building run time does not increase as a function of cells and potential edge

pruning enables linear increase in computation with respect to genes. We note that ppcor’s fast general

matrix formulation improves GRN inference time compared to all other approaches, including SCING.

Although SCING is slower than ppcor, it performs inference on 4,000 genes in�21 s for all cell types, which

is reasonable to compute hundreds of GRNs for any given sample.

SCING GRNs better predict downstream genes of perturbed genes in perturb-seq

We tested whether GRNs from each approach can predict gene expression changes in downstream genes

from gene knockdown treatments. Here, we used Perturb-seq datasets, which enabled us to identify the

effects of many perturbed genes in parallel. We utilize previously published datasets with THP-1, dendritic

(DC), and K562 cells with 25, 24, and 21 genes perturbed, respectively.31,32 The DC cells were split into lipo-

polysaccharide (LPS) stimulated and non-stimulated cells with perturbations targeting transcription factors

(TFs) as two datasets, and the K562 cells were split into two datasets based on the genes initially perturbed

(TFs or cell cycle related genes) in the Perturb-seq experiments. THP-1 cells contain perturbations target-

ing PD-L1 regulators.

We identified genes downstream of each perturbation through an elastic net regression framework to

determine the effect of RNA guides on each gene while regressing out cell state32 (STAR Methods)

(Table S1). We compared GRNs generated from SCING to GRNs generated from GRNBOOST2, PIDC,

and ppcor in predicting genes downstream of each target gene in each perturb-seq experiment. For

any given network, we iterated through the downstream genes of an initially perturbed gene by the

RNA guide and determined if the predicted downstream genes were significantly altered. We determined

the true positive rate (TPR) and false positive rate (FPR) at each network depth to compute the area under

the receiver operating characteristic (AUROC) curve, as well as the TPR at an FPR of 0.05. We examine TPR

at FPR 0.05 to show perturbation prediction accuracy in a setting more relevant to biological analysis (con-

trolling for FPR 0.05). We first examine the prediction performance of each GRN approach when building

GRNs on datasets with cells removed that have zero expression of the target gene. Removing these cells

mitigates performance effects from sparsity (Figure S2A). Since ppcor and PIDC produce undirected

graphs, and GRNBOOST2 generally has bidirectional edges, we first evaluated SCING against the other

methods without considering edge direction, showing a higher AUROC for SCING (Figure 2A). Edge direc-

tion does not affect this metric (Figure 2B). In addition, we show SCING improves TPR at FPR of 0.05 (Fig-

ure 2C). Edge direction only affects prediction accuracy in TPR at FPR 0.05 for dc 3h cells (Figure 2D).

Figure 2. Continued

(F) Cosine similarity of predicted gene expression and actual expression in testing data show few differences between SCING and others.

(G) Cosine similarity of predicted gene expression and actual expression in training data shows other methods overfit to the training data.

(H) Gene numbers captured in the cell type networks from each method. p-values between SCING and each of the other methods was computed with an

unpaired t-test. (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 unpaired t-test).
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Across all Perturb-seq datasets tested and when no cells were removed, SCING either outperformed, or

met the performance of the other tools in both AUROC (Figure S2B) and TPR at FPR 0.05 (Figure S2D)

and performance was minimally affected by edge direction (Figures S2C and S2E). For AUROC, SCING out-

performs ppcor across all datasets, PIDC across 4 datasets, and GRNBOOST2 across 2 datasets. For TPR at

FPR 0.05, SCING outperforms ppcor and PIDC across 4 datasets and GRNBOOST2 across all datasets (Fig-

ure S2D). SCING performed best in the Papalexi et al. THP-1 dataset, although there is a large variance in

both AUROC (Figure S2B) and TPR at FPR 0.05 (Figure S2D) for both ppcor and SCING.

Overall, SCING outperforms all other approaches at predicting perturbation effects in Perturb-seq data

when sparsity is adjusted (Figure 2) and outperforms select methods when all cells are used (Figure S2).

Thus, we recommend removing cells with sparse gene expression when using SCING.

SCING mitigates overfitting and builds more robust GRNs

Models often overfit to their data and fail to properly perform on new datasets. In the GRN context, we

aimed to identify connections and networks that are able to capture biological variation rather than sample

or batch specific effects. To test the performance of GRN inference approaches and their ability to capture

robust biological signals, we tested the ability of amodel trained on parents of each gene in training data to

predict the gene expression of the downstream target gene in testing data. We split the scRNA-seq data

from control human prefrontal cortex27 into training and testing sets (STAR Methods). First, we built GRNs

on the training data from oligodendrocytes, astrocytes, and microglia using SCING, ppcor, PIDC, and

GRNBOOST2. Subsequently, we trained gradient boosting regressors for each gene based on the parents

in a given network using the training data. The trained regressors were then used to predict the gene

expression of cells in testing data based on the expression of the parent genes in those cells. We evaluated

the performance of eachGRN approach by averaging the cosine similarity score over all downstreamgenes

that have parents in the network. This process was repeated for 10 replicates on random subsamples of

1,000, 3,000, and 5,000 genes based on runtime feasibility (Figure S3).

To measure overfitting, we used the cosine similarity score ratio between the test and training sets, with a

higher ratio indicating lower overfitting. We found that SCINGGRNs had less overfitting than the other ap-

proaches (Figures 2E and S3A–S3C). In terms of performance in the test sets, SCING performed similarly to

ppcor and PIDC and outperformed GRNBOOST2 (Figure 2F). On training data, GRNs from ppcor, PIDC,

and GRNBOOST2 had higher cosine similarity scores compared to SCING, reflecting overfitting on the

training data by the other methods (Figure 2G).We noted that the number of genes in the resulting network

to be very low in the ppcor oligodendrocyte network (Figure 2H), which likely affected the results of ppcor

as evaluated by the cosine similarity measure here. In addition, we note that ppcor could not build networks

for microglia with 1,000 genes (Figure S3B). These results support the robustness of SCING GRNs with less

overfitting.

SCING fits scale free model and shows edge consistency

As another measure of GRN quality and performance, we compared GRNs generated by each method by

various standard network metrics (scale-free network fit, number of edges, number of genes, and between-

ness centrality), as well as robustness of network edges between networks on 50/50 split datasets. We

tested this on 10 replicates for each of the 3 cell types (oligodendrocyte, astrocyte, and microglia) in the

scRNA-seq data from control human prefrontal context, with 3,000 different genes randomly selected

for each subsample of cells.

GRNs are thought to follow a scale-free network structure, in which there are few nodes with many connec-

tions, and many nodes with few connections.33 We computed scale-free network structure through the

R-squared coefficient of a linear regression model regressing on the log of each node’s degree and the

log of the proportion of nodes with that given degree. We show that the R-squared value for SCING is

significantly higher than PIDC and GRNBOOST2 methods and is trending higher than ppcor, indicating

SCING networks more closely follow a scale free network structure (Figure 3A). In a typical scale-free

network plot of log10 node count versus log10�, we expect a power law distribution. However, we found

that networks built on scRNA-seq data have a parabolic distribution, with only the right half following a po-

wer law distribution whereas the left portion of the plot is driven by genes that were very sparse and likely

do not fit typical distributions (Figure 3B). Therefore, we excluded the sparse genes from the scale free

regression calculation based on a sparsity threshold of 0.7.
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Among all four methods tested, PIDC produced the largest networks (Figure 3C), followed by ppcor,

GRNBOOST2, and SCING. SCING networks have much fewer edges than the other approaches while

keeping similar numbers of genes (Figure 2H) and better performance. Although network size is not a proxy

of network accuracy, a smaller network with robust and consistent edges helps reduce overfitting

(Figures 2E, 2F, and 3C). One exception is that the ppcor oligodendrocytes network contains only 214.8

edges on average compared to 14,545.8, 46,891.9, and 449,850 in SCING, GRNBOOST2, and PIDC, respec-

tively. Many genes without regulatory edges were not included in the final ppcor network. The smaller

ppcor oligodendrocyte network has implications for the betweenness centrality and edge overlap metrics,

as follows.

Betweenness centrality is often used as another metric to determine the overall connectedness of a

graph.34 For a given node, betweenness centrality is the number of shortest paths that pass through

Figure 3. Network features and consistency

(A) Descriptive features of networks across SCING and other approaches for 10 networks on astrocytes, microglia, and oligodendrocytes. Linear regression

R-squared for log degree vs. log count for goodness of fit metric of scale-free network.

(B) Example scatterplot of log degree vs. log count with the average sparsity of genes in each dot. Brighter red indicates higher sparsity. This shows highly

sparse genes tend to have lower degrees. We excluded points based on a sparsity threshold of 0.7 before computing the scale free regression coefficient.

(C) Average number of edges for each method across all cell types.

(D) The variance of the betweenness centrality across nodes in each graph.

(E) The overlap score (number of overlapping edges/expected number of edges) in independent sets of cells. p-values between methods computed with an

unpaired t-test between SCING and each of the other methods. (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001). Error bars represent standard error.
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that node, indicating how much information that node presents to the graph. High betweenness centrality

indicates that a node conveys a lot of information to a given graph. We found that SCING networks gener-

ally have higher variance of betweenness for the nodes in the networks (Figure 3D). This indicates that some

nodes are more centralized than others when compared to other approaches, again consistent with the

scale-free network model.

To determine network consistency, we split each cell type into two groups of non-overlapping cells. We

built networks for each dataset using all methods and calculated the fraction of total edges that overlap

between the two networks. Although larger networks tend to have more edge overlap, this also holds

for larger random networks. We designed a normalized overlap score: the fraction of edges overlapped

divided by the expected number of overlapping edges of a random network of the same size (STAR

Methods). When controlling for network size, SCING has significantly more overlap, or higher reproduc-

ibility, between networks of 50/50 split data than the other approaches (Figure 3E).

SCING more accurately model disease subnetworks

To evaluate the performance of GRNs on disease modeling, we applied an approach developed by Huang

et al.35 Briefly, given a known disease gene set and a GRN, we evaluate the ability of the GRN to reach held

out disease genes by starting from select disease genes in the network through random walks. We then

compared the performance for each network to that of a random network in which the nodes follow similar

degree characteristics to derive a performance gain measurement. Here, we selected known gene sets for

3 classes of diseases fromDisGeNET36 (Immune, Metabolic, andNeuronal) (Table S2) and obtained scRNA-

seq data for cell types from 3 tissues relevant to each disease class from the mouse cell atlas26 (bone

marrow for immune diseases, brain for neuronal diseases, and liver for metabolic diseases) (Table S3). First,

to reduce the number of genes, we filtered the scRNA-seq data by removing genes expressed in fewer than

5% of cells and added expressed disease genes from all DisGeNET disease gene sets. We built GRNs using

each method and evaluated the performance gain over random networks on the disease gene sets. We

found that across all tissues and all disease types, SCING outperformed all other approaches (Figure 4A).

Application case 1: Constructing SCING GRNs using mouse cell atlas (MCA) scRNA-seq

datasets to interpret diseases

After establishing the performance of SCING GRNs using the various approaches described above, we es-

tablished an SCINGGRN resource for diverse cell types and tested the broader utility of SCING to produce

biologically meaningful GRNs. To this end, we applied SCING to generate GRNs for all cell types with

at least 100 cells in all tissues of the MCA. We constructed a total of 273 cell-type specific networks,

across 33 tissues and 106 cell types. To identify which GRN informs on which disease, we applied the above

random walk approach from Huang et al. and summarized the results in (Figures S4A–S4C, Table S4). We

found clusters of cell type GRNs defined by DisGeNET diseases that had similar patterns (Figures S4A and

4B). Some disease genes can be modeled well using GRNs from numerous cell types (Figure S4A) whereas

others are more cell type or tissue specific (Figure S4B). In addition, some cell type GRNs are able to model

a broad range of diseases (Figures S4A and S4C). We found that immune cell type (light blue squares in

Figure 4B) GRNs can model a wide range of diseases, whereas non-immune cell type GRNs (light purple

squares in Figure 4B) are more specific to vasculature related diseases.

We further explored the dynamics of GRNs of immune cell types across all diseases in DisGeNET. We

clustered the cell types in the performance gain matrix with only immune cell types included, and sorted

the GRNs by the number of diseases they can accurately model (Figures 4C, 4D, S5A, and S5B). We noticed

that cell types of the innate immune system can model a broader range of diseases than those of the

adaptive immune system37 (Figure 4E).

Our SCING cell type GRNs resource and the above patterns of relationships between cell type GRNs and dis-

eases support the utility of the SCINGcell typeGRN in disease interpretation. The networks canbe accessed at

https://github.com/XiaYangLabOrg/SCING to facilitate further biological mining of complex diseases.

Application case 2: Using SCING GRNs to interpret Alzheimer’s disease (AD)

We next applied SCING to a single nuclei RNA-seq (snRNA-seq) dataset from Morabito et al. that

examined human prefrontal cortex samples from AD and control patients to evaluate the applicability of

SCING GRNs in understanding AD pathogenesis.27 We focused on microglia because of their strong
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Figure 4. Application case 1: constructing and using SCING GRNs based on Mouse Cell Atlas scRNA-seq datasets to interpret diseases

(A) Performance of modeling disease subnetworks for DisGeNET gene sets related to the immune, metabolic, and neuronal diseases with GRNs built on

bone marrow, brain, and liver cells, reveals SCING models disease subnetworks more accurately than other methods.

(B) Clustermap depicting GRNs built with SCING from immune cell types (light blue), model disease subnetworks from many different disease gene sets,

whereas vascular cell types (purple) are more specific to vascular diseases. Cell types (rows) from the adaptive (blue) and innate (orange) immune systems,

show variability in the number of diseases (columns) they model (>0.1).

(C and D) Clustermap shows diseases clustered with hierarchical clustering and sorted by the number of cell types that can accurately model that disease

subnetwork. Diseases are colored by disease category (immune related: red; cardiothoracic: green; cancer: blue; immune related cancer: purple), and cell

types are colored by innate (orange), and adaptive immune system (dark blue).

(E) Innate immune system cell types better model disease subnetworks from more diseases. p-values between methods computed with an unpaired t-test.

(*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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implication in AD38,39 and a better current understanding of the genes and biological pathways in microglia

in AD, to demonstrate that SCING GRNs can retrieve known biology.

The SCING microglia GRN contained 10,159 genes and 63,056 edges. Using the Leiden clustering algo-

rithm,40 we partitioned the SCING microglia GRN into 21 network modules. Next, we summarized mod-

ule-level expression for each cell using theAUCellmethod fromSCENICon the partitionedGRNmodules.19

When cells were clustered based on the raw gene expression values, as is typical with human samples, cells

from individual samples clustered together (Figure 5A), making it difficult to isolate sample heterogeneity

from biological variability. However, when using SCING module expression to cluster cells, the sample,

batch, and RNA quality effects were mitigated (Figures 5A and 5B). In contrast, biologically relevant varia-

tion, such as sex, AD diagnosis, and mitochondrial fraction were better retained (Figures 5C and 5D). In the

UMAP control cells tend to localize to the right side, whereas cells from females tend to localize to the top

part. These results suggest that SCING GRNs have intrinsic ability to correct for non-biological variations.

To quantitatively evaluate how well SCING GRNs can be used for batch effect correction and biological

preservation, we compared SCING GRNs with commonly used batch correction methods, such as

FastMNN,41 Harmony,42 and Seurat,43 chosen based on their better performance in previous benchmarking

studies.44Wefirst performeddimension reduction and clusteringof cells basedon correcteddata fromeach

batch correction method. For SCING, the values used were SCING GRN module AUCell scores. We took

each cell, determined how many neighbors in the PC space had the same annotation of interest (sample,

batch, diagnosis, etc.), and then scored each batch correction approach by the fraction of cells that had

the same annotation. We removed batch and sample specific effects using the F1 score (STAR Methods).44

We found that the SCING GRN module based dimensionality reduction carried the ability to correct for

batch effect and retain biological information (Figure S6) in a similar manner to dedicated batch correction

methods such as FastMNN,41 Harmony,42 and Seurat.43 Although SCING GRN based batch correction was

not as optimized as the dedicated batch correctionmethods,many typical batch correctionmethods do not

provide a batch corrected gene expression matrix for downstream analysis.44 SCING GRN modules have

direct biological interpretability without prior batch correction, since each SCING module can be associ-

ated with phenotypic traits but not batch and annotated with pathways, as described below. We further

note that SCENIC19 has shown similar robustness to batch effect and that this is likely a general characteristic

of GRN-based dimensionality reduction approaches that is not specific to SCING. This general character-

istic offers network methods an important advantage over individual gene-based analysis.

We identified SCING GRNmodules associated with AD diagnosis, plaque stage, and tangle stage through

linear regression of the phenotypic traits and each module’s expression across cells, while regressing out

sex specific differences. We found that �43% of modules were significantly (FDR <0.05) associated with at

least one trait and �24% of modules were significantly associated with all three traits. To examine the bio-

logical interpretation of these modules, we performed pathway enrichment on the genes in each module

utilizing the GO biological process, DisGeNET, Reactome, BioCarta, and KEGG knowledge bases. We

found that 78% of the significantly trait-associated modules were significantly enriched for biological

pathways (Figure 5E, Table S5). These modules recapitulated pathways related to AD (module 9), immune

processes (modules 0, 2, 9, 13, and 19), cytokine triggered gene expression (modules 12, 18, 19), and endo-

cytosis (modules 2, 9, and 13). These are expected perturbed pathways for microglia in AD.38

We dug into the vesicle mediated transport pathway from module 2 and visualized the network with

the differential gene expression of each gene (Figure S7). This microglia pathway is important in AD.45

In addition, we found the APOE and APP subnetwork within the vesicle mediated transport pathway which

are among the most significant genetic risk factors for AD (Figure 5F).46–48

Therefore, our results demonstrate that SCING GRNs can correct for batch effects intrinsic to scRNA-seq

studies and can recapitulate known cell type specific genes, pathways, and network connections.

Application case 3: Using SCING to model GRNs based on 10x Genomics Visium spatial

transcriptomics data to interpret AD

To evaluate the applicability of SCING beyond scRNA-seq and snRNA-seq, we next applied SCING to

spatial transcriptomics data from Chen et al.28 as a new approach for spatial transcriptomics analysis.

We built an SCING GRN on all spots in the visium data to obtain a global GRN with 128,720 edges across

ll
OPEN ACCESS

10 iScience 26, 107124, July 21, 2023

iScience
Article



Figure 5. Application case 2: Using SCING GRNs to interpret Alzheimer’s disease (AD)

(A) UMAP representation of scRNA-seq data shows sample specific differences when operating on gene expression space (left panel). Dimensionality

reduction on SCING module embeddings removes sample specific effects (right panel).

(B) SCING removes RNA quality effects on gene expression clustering.

(C and D) Clustering on SCING modules, keeps biologically relevant features such as AD status (left panel) and sex (right panel), as well as mitochondrial

fraction.

(E) Heatmap showing coefficients of linear regression of diagnosis, plaque, and tangle status, on module expression, while regressing out sex. Pathway

annotations for significant (*: FDR <0.05) modules are provided.

(F) Subnetwork reveals collocalization of canonical Alzheimer’s genes and subnetworks such as APOE and APP.
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15,432 genes. In addition, Chen et al. profiled beta amyloid plaque with immunohistochemistry, and we

included this protein expression value in the SCING GRN, highlighting the possibility of constructing

multi-omics networks using SCING.

We partitioned the genes in the resulting SCING GRN with the Leiden graph partition algorithm into 33

modules and performed the AUCell score from SCENIC19 to obtain module specific expression for each

spot and annotated the enriched pathways for each module (Table S6). We found module specific expres-

sion in the mouse brain subregions (Figures 6A, 6B, and S8), based on clustering of the average module

expression across spots in each brain subregion (Figure S9). We found cortical subregions to cluster

together, aswell as the thalamus and hypothalamus (Figure S9), based onGRNmodule expression patterns.

We also identified modules more specifically expressed in the cortex and hippocampus (CS, HP) (module

12), or the fiber tract, thalamus, and hypothalamus (BS) (module 14) (Figures 6A and 6B).Module 12was high-

ly enriched for genes involved in neuronal system, axonogenesis, and chemical synapse, whichmight reflect

the dynamic status of hippocampus and cortex neurons for memory formation and cognitive function. In

contrast, module 14 was enriched in genes involved in myelination49 and blood-brain barrier,50 consistent

with the high enrichment of oligodendrocyte populations in the fiber tracts, and indicated blood-brain bar-

rier changes in the thalamus. We also found modules that separate more similar subregions from one

another such as module 27 (enriched for axonogenesis) and 21 (enriched for calcium ion transport) ex-

pressed much higher in the thalamus than in the hypothalamus (Figure S9). By contrast, modules, such as

module 5 (enriched for chromatin organization and peroxisomal lipidmetabolism) andmodule 19 (enriched

for ribosomal biogenesis and protein processing), are much less specific to subregions (Figures S8 and S9).

These are general cellular functions that are expected to have broad expression across the brain.

We leveraged the Allen Brain Atlas to determine themarker gene proportion of each SCINGmodule based

on the genes in themodule. We determinedmarker genes for each of neurons, microglia/perivascular mac-

rophages, astrocytes, and oligodendrocytes from the Allen Brain Atlas scRNA-seq data. We then deter-

mined the proportion and enrichment of genes in each module that are marker genes for each cell type

and plotted the data as heat maps (Figure S10). We see that manymodules are mostly made up of neuronal

genes, however some modules have higher contributions from oligodendrocytes (modules 14, 26), and mi-

croglia (modules 25, 16, 19, 20). This indicates that utilizing high quality reference data can help to decon-

volve cell type membership of SCING modules.

We found many modules to be AD associated (Figure 6C), in particular, module 9 (enriched for neurode-

generation) (Figure 6D) and module 25 (enriched for microglial activation, lysosome, and cell migration)

(Figure 6E). We further explored these subnetworks and found most of the genes in module 9 to be

neuronal marker genes, whereasmost of the genes inmodule 25 to bemicroglial marker genes (Figure S11).

The module 25 subnetwork to contain the Trem2 and C1q subnetworks, highly profiled in AD microglial

cells (Figure 6F). Of interest, we found a cross-module edge and several cross-cell-type edges, likely

revealing intercellular communications.

We identified 6 modules that were significantly associated with amyloid beta plaque (Figure 6G) through

Pearson correlation and null distribution from a permutation approach (STAR Methods). Modules 25

Figure 6. Application case 3: Using SCING to model GRNs based on 10x Genomics Visium spatial transcriptomics data to interpret AD

(A) Boxplots show regional specificity of specific modules, namely module 12 and 14 (red boxes).

(B) Regional specificity of module 12 (hippocampus and cortex, enriched for neuronal system pathways), and module 14 (hypothalamus, thalamus, and fiber

tract, enriched for microglial activation and cell migration pathways), visualized on brain samples of 3-month-old WT mice. Enriched pathways were labeled

at the bottom of each module.

(C) Module association in AD versus WT mice. Red boxes indicate modules 9 and 25, which are further visualized.

(D) Visualization of AD-associated module 9 (enriched for neurodegeneration) in 18-month-old WT and AD mice.

(E) Visualization of AD-associated module 25 (enriched for microglia activation and cell migration) in 18-month-old WT and AD mice.

(F) Module 25 subnetwork of Trem2 and complement proteins shows microglial association of module 25. Full subnetwork in Figure S11. Nodes are colored

by marker gene status of neuronal (blue), microglial (red), or both (purple), as determined from the Allen Brain Atlas. Cross cell type communication edges

seen between red and blue.

(G and H) Pearson correlation betweenmodule expression of eachmodule and plaque (G) or age (H). Significance values for each module are determined by

a null distribution generated from 1,000 random subsamples of genes with the same gene number of a given module. The AUCell was computed for each

random module and Pearson correlation coefficients were calculated. The p value for the true module was computed based on the null distribution of the

correlation coefficients, and p values were further corrected for multiple testing using Bonferroni correction. Significance is shown (*: adjusted p value <0.05).

Subpanel a,c: (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 by unpaired t-test).
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(enriched for immune function) and 19 (enriched for nonsense mediated decay, and infectious disease)

were among the most highly correlated with plaque and were also associated with AD (Figure 6C).

We found that amyloid plaque staining could be partitioned based on the expression of module 10 in the

SCING GRN (Figure S12), which had significantly higher expression in AD mice than in WT (Figure 6C), and

is also quantitatively correlated with plaque (Figure 6G). Module 10 contains genes highly related to

metabolism, neurodegenerative diseases, and immune function (Table S6). We show the subnetwork for the

amyloid beta plaque inmodule 10 (Figure S12). In addition, module 25 (enriched formicroglial activation, lyso-

some, and cell migration) was also highly associatedwith plaque (Figure 6G), as expected in ADpathogenesis.

In addition to plaque association, we explored the age-related modules through Pearson correlation be-

tween age (6, 12, and 18 months) and module expression in WT samples. We found 10 modules to be age

related (Figure 6H). Two highly positively associated modules with age, module 10 (subnetwork containing

amyloid protein) and 13, have age-related pathways. Module 10 is involved in protein degradation,

neurodegeneration, and cell cycle, and module 13 is involved in metabolism, cellular response to stress,

and immune system (Figure 6H, Table S6).

We found certain modules such as module 30 (enriched for neuropeptide signaling) to be spatially variable

(Figure S13) and associated with AD (Figure 6B). Based on the locations from the Allen Brain Atlas51

(Figure S13A), we findmodule 30 to bemore specific to the hypothalamus than other regions of the BS (Fig-

ure S13B). We also find that within the hypothalamus, module 30 expression is higher in 18-month-old AD

mice compared to the WT mice (Figure S13C). Hypothalamic alterations have been observed in the hypo-

thalamus in AD development.52 The module 30 subnetwork (Figure S13D) shows key hypothalamic neuro-

peptides, such as Pomc53 and Pnoc54 which are consistent with their enrichment in the hypothalamus.

Our applications of SCING to spatial transcriptomics data demonstrate its broader utility beyond scRNA-

seq/snRNA-seq and revealed spatial network patterns of AD.

DISCUSSION

Single cell multiomics has become a powerful tool for identifying regulatory interactions between genes,

but the performance of existing tools is limited in both accuracy and scalability.13 Here, we present SCING,

a gradient boosting, bagging, and conditional mutual information based approach for efficiently

extracting robust GRNs on full transcriptomes for individual cell types. We validate our networks using a

novel perturb-seq based approach, held-out data prediction, and established network characteristic

metrics (network size, network overlap, scale-free network, and betweenness centrality) to determine per-

formance and network features against other existing tools. SCING not only offers robust and accurate

GRN inference and improved gene coverage and speed compared to previous approaches,9,18 but also

versatile GRN inference with scRNA-seq, snRNA-seq, and spatial transcriptomics data. Using various

application examples, we show that SCING infers robust GRNs that inform on cell type specific genes

and pathways underlying pathophysiology while simultaneously removing non-biological signals from

data quality, sample, and batch effects through gene regulatory module detection and functional annota-

tion. We also provide a comprehensive SCING GRN resource for 106 cell types across 33 tissues using data

from MCA to facilitate future applications of single cell GRNs in our understanding of pathophysiology.

SCING efficiently identifies robust networks using supercells, a bagging approach, and mutual information-

based edge pruning, to remove redundant edges in the network. The supercell and reduction in potential

edges make the bagging approach possible by removing computational time for each GRN. GRNBOOST2

uses a similar framework as SCING (gradient boosting regression) but overfits the data by generating too

many edges to be interpretable, which are also undirected, making them less useful for biological interpreta-

tion. Meanwhile, ppcor and PIDC use partial correlation and partial information decomposition approaches,

which are more accurately described as measures of coexpression, rather than gene regulation. In contrast,

the directed graphs built with SCING show better perturbation prediction and consistency across replicates.

Validation of GRN inference tools has remained challenging.13 Since ground truth networks are unknown for

many conditions across cell types and tissues, current GRN accuracy evaluations rely on inferring synthetic

ground truth networks that may not capture biological or curated interactions that forsake tissue and cell-

type specificity.13 Our novel Perturb-seq based approach provides a unique way to determine GRN accuracy,
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since it leverages cells with specific gene perturbations to infer downstream genes. Prediction of perturbed

genes is a very powerful aspect of GRN construction, and SCING stands out above all other methods in this

regard.55 This is the key difference between our benchmarking framework and that used in BEELINE by Pra-

tapa et al., whereas the other aspects of the benchmarking framework are conceptually similar.

We demonstrate that SCING networks are applicable to scRNA-seq, snRNA-seq, and spatial transcriptomics

data. Our network-based module expression is robust to batch effects and provides biologically annotated

expression values for each cell that can be directly used for disease modeling (Figure 4), phenotypic correla-

tion (Figure 5), and further spatial analysis (Figure 6) to boost our ability to interpret single cell data. We note

that SCING for spatial transcriptomics network analysis does not currently utilize the spatial information during

network construction, although the resulting network modules intrinsically carry a certain level of spatial infor-

mation (Figure 6). Explicitly leveraging the spatial information will likely enhance network performance and is

an important future direction to improve SCING for network modeling of spatial transcriptomics data.

At the intersection of single cell omics and complex diseases, SCING provides sparse but robust, direc-

tional, and interpretable GRN models for understanding biological systems and how they change through

pathogenesis. GRNs can be analyzed to identify and predict perturbed subnetworks, and as a result, be

used to investigate key drivers of disease.56 Identifying key drivers of disease by teasing apart biology

and technical variation from high throughput, high dimensional datasets will lead to more successful

drug and perturbation target identification, as well as robust drug development.57–59

We note that SCING is currently tested to infer GRNs based on individual scRNA-seq, snRNA-seq, and spatial

transcriptomics data. Other types of omic information such as scATAC-seq, scHi-C, or cell type specific trans-

eQTL information can be included in SCING to further inform on regulatory structure to refine and improve on

GRNs.9,60–63 Information from multiple data types will become an integral part of the systems biology, and

future efforts to properly model multiomics data simultaneously to inform on complex disease are warranted.

Limitations of the study

Althoughweshowhighutility of SCINGthroughanumberofevaluationmethods, the following limitations should

be considered when applying the method. First, SCING infers GRNs based on observational scRNA-seq and

spatial transcriptomics data and the links between genes are not necessarily causal or directional. Second, there

are many hyperparameters that require selection, and while we show robustness across a range of hyperpara-

meters, selection can be dataset dependent and optimization of hyperparameters is encouraged. Thirdly,

currently the spatial information of spatial transcriptomics is not explicitly utilized in SCING GRN construction

despite the fact that the resulting GRNs show spatial patterns. We finally note that additional omics information

(i.e., scATAC-seq, scHi-C, ChIP-seq, or cis/trans eQTL, etc.) can provide additional regulatory information that

would improve GRN accuracy and will be considered in future development of SCING.
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Materials availability

This study did not generate new reagents.

Data and code availability

d All data and code generated in this study can be found at: https://github.com/XiaYangLabOrg/SCING,

or through contact of the lead author, Xia Yang (xyang123@g.ucla.edu).

d Other publicly available data used can be found through downloading from their respective repositories.

METHOD DETAILS

SCING method overview

To reduce the challenges from data sparsity from single cell omics, as well as reduce computational time,

we first used supercells which combine gene expression data from subsets of cells sharing similar transcrip-

tome patterns. To improve the robustness of GRNs, we built GRNs on subsamples before merging the net-

works, keeping edges that appear in at least 20% of networks. Lastly, we removed cycles and bidirectional

edges where one direction was >25% stronger than the other direction and pruned the network using con-

ditional mutual information to reduce redundancy. These steps are described in more detail below. To

benchmark the performance of SCING, we selected three existing methods, namely GRNBOOST2, ppcor,

and PIDCm with default parameters. These methods were selected based on previous benchmarking

studies where superior performance of these methods were supported.13

Preprocessing

For supercell preprocessing, we first normalized the data for a total count number of 10,000 per cell using

the pp.normalize_total function from Scanpy.68 We then took the log1p of the gene expression values, us-

ing Scanpy’s pp.log1p function. We then identified and subset to the top 2000 highly variable genes using

Scanpy’s pp.highly_variable_genes function.68 Data were then centered and scaled using Scanpy’s

pp.scale function and further used to compute the nearest neighbor embedding with the default 10 neigh-

bors using Scanpy’s pp.neighbors function on the top 20 principal components of the gene expression,

calculated using Scanpy’s tl.pca function.68

For network building preprocessing, we normalized the total number of counts in each cell to 10,000 using

Scanpy’s pp.normalize_total function and took the natural log of the gene expression using Scanpy’s

pp.log1p function.68 We removed genes not expressed in any cells and any duplicate genes. We trans-

posed, centered, and scaled the data using Scanpy’s pp.scale function before running principal compo-

nent analysis (PCA) using Scanpy’s tl.pca function.68 This provides us with low dimensional embeddings

for each gene. A nearest neighbor algorithm from scikit-learn80 was used to find the nearest neighbors

of each gene. The potential regulatory relationship between genes was limited to the 100 nearest neigh-

bors for each downstream gene.

Supercell construction

We define a supercell as a pseudobulk generated from a cluster of cells, determined through Leiden

clustering on the nearest neighbors connectivities graph of cells in the principal component space of

the gene expression data. For each dataset, we perform preprocessing as described above. We then

used the Leiden graph partitioning algorithm to separate cells into groups using Scanpy’s tl.leiden

function.68 The Leiden resolution is determined by the user input specifying the desired final number of

supercells using binary search on the resolution parameter, with higher resolution leading to more super-

cells and lower resolution leading to fewer supercells. Here, we used 500 supercells, which balances run-

time, with dataset summarization (Figure S14). Benchmarks for run time, supercell mean and variance in

sparsity, and network robustness suggested 500 supercells to be optimal for balancing the tradeoff be-

tween sparsity mitigation and network performance (Figure S14). We then merged each group of cells

into a supercell by averaging the gene expression within each group.

GRN inference in SCING

For each downstream gene, we trained a gradient boosting regressor18 to predict the expression using

nearest neighbors as potential upstream regulators. For each upstream gene, we form a directed edge

to the downstream gene with a corresponding edge weight based on the feature importance of that
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upstream gene in predicting the downstream gene in the gradient boosting regressor. We keep the top

10 percent of edges based on edge weight to remove edges with very low weights. For each gradient

boosting regressor, we used 500 estimators, max depth of 3, learning rate of 0.01, 90 percent subsample,

the square root of the total number of features as max features, and an early stop window of 25 trees, if the

regressor was no longer showing improved performance.18

SCING parameter selection

Parameter selection was used to retain biological accuracy while limiting computational cost. We

determined that using 500 supercells and 100 GRNs per merged network balanced computational

resourcefulness with robustness. If computational cost is not an issue, supercells are not necessary and

more GRNs can be built as intermediates. Since GRNs are typically built within a single cell type, we use

10 principal components (PCs) for determining gene covariance. Typically in scRNAseq analysis more

PCs are used, but there is less variation overall within one cell type. We determined 100 neighbors to be

chosen for each gene, again balancing computational cost.

SCING parameter benchmark framework and selection

SCING contains four tunable hyperparameters: the number of supercells, the number of subsampled net-

works for bootstrapping, the number of nearest neighbors for feature selection in gradient boosting

regression, and the consensus edge overlap threshold when merging subsampled networks. We designed

a pipeline to compare computational efficiency, network properties, and GRN robustness in gene expres-

sion prediction accuracy across different parameter settings (Figure 1C). Optimal parameters were defined

based on the balance of these metrics, ideally resulting in fast run time, more genes in the network, and

high prediction accuracy. We tested one parameter at a time while fixing others at their default values.

We tested the number of supercells at 100, 300, 500, 700, and 900 (Figure S14); number of nearest neigh-

bors at 30, 50, 100, 200, and 400 (Figure S15); number of subsampled networks at 30, 50, 100, 200, 300, and

400 (Figure S16); and edge consensus threshold proportions at 0.05, 0.1, 0.2, 0.5, and 0.8 (Figure S17). Net-

works were generated under these settings on all genes in the oligodendrocytes from Morabito et al.27,

since this cell type contained the most cells in the dataset, for building networks that are representative

of SCING performance. We performed network robustness on prediction accuracy with the same protocol

used to compare the cosine similarities of predicted and actual gene expression between SCING and other

GRN methods, which is detailed in ‘‘Network robustness evaluation based on training and held out testing

data’’ in the methods section. The network characteristics and run times were calculated under the same

framework as the cross-method comparisons, which is detailed in ‘‘Computation of time requirements’’

in the methods section.

As the supercells were used to mitigate gene sparsity, we used low mean supercell gene sparsity and low

variance in supercell gene sparsity as an initial guide for our selection of 500 supercells. The benchmark

results coincided with this general heuristic, since 500 supercells exhibited a balance of high relative

cosine similarity for target gene expression prediction and reasonable GRN construction run time (Fig-

ure S14). Given our robust supercell selection, the number of subsampled networks had little effect on

SCING performance, with any subsample size above 30 networks yielding consistent accuracy. Run times

generally increased with subsampled networks, but the networks were largest at 100 subsampled

networks. While any size above 30 is an acceptable choice, we decided on 100 subsampled networks

to balance run time and network size (Figure S16). For the nearest neighbor selection, we observed com-

parable cosine similarity across all parameter values, faster run time for GRNs with lower numbers of

neighbors, and denser networks with higher numbers of neighbors (Figure S15). To balance efficiency

and network size, we decided the default setting to be 100 neighbors. Lastly, our consensus parameter

benchmark revealed that GRNs with higher edge consensus thresholds yield smaller and sparser net-

works with lower gene counts, quicker run times, and slightly improved gene prediction accuracy and

overfitting. While stringent thresholds remove edges that would reduce overfitting and increase predic-

tion accuracy for downstream genes in the networks, they run the risk of losing regulatory information,

since these smaller networks omit many genes and cannot predict their expression. In order to compre-

hensively explain a cell type’s regulatory landscape, we decided to include more genes in our networks

without greatly sacrificing performance (Figure S17). For these reasons, we set the consensus threshold

to 20% for our study.
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Merging GRNs from data subsamples

We subsampled supercells from the supercell data without replacement and built one network for each

subsample. For each subsampled network, we kept the top 10 percent of edges based on the edge

weights, which are the feature importance measures of upstream genes in predicting downstream genes

in the trained gradient boosting regressor, to reduce the number of edges with very low edge weights. We

also kept the top 3 edges for each downstream gene to reduce any gene specific bias caused by feature

importance.81 Of these edges, we kept the edges that appeared in at least 20% of all networks from the

subsamples into a merged network. The threshold of 20% was based on the testing results of multiple

thresholds (Figure S17), which showed this threshold balances accuracy, network size, and run time. For

the edges that were kept in the merged network, the edge weights were the sum of the weights for that

edge across the subsampled networks. We also removed reversed edges if the edge with a higher weight

was at least 25% stronger than that of the weaker reverse direction. Otherwise, we kept the edge bidirec-

tional. We removed cycles with more than two edges in the graph by removing the edge with the lowest

edge weight. Additionally, we removed triads in the network based on the significance of the conditional

mutual information to remove redundant edges between genes that may result primarily from sharing an

upstream regulator in the network. The p value of the conditional mutual information was based on the chi-

squared distribution.82 If an edge between two genes was not statistically significant given a parent of both

of the genes, then the edge was removed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Other GRN methods

We benchmarked SCING against GRNBOOST2, ppcor, and PIDC. Default parameters were used for all ex-

isting approaches unless otherwise specified.

For GRNBOOST2,18 we ran this approach by predicting the expression of all genes from all other genes. We

then took the top 10% of edges to reduce the number of edges with extremely low importance (e.g. 10�17).

For ppcor,16 due to the sparse non-linear nature of scRNAseq connections, we ran the approach using

spearman correlation. We only kept edges with a Benjamini-Hochberg FDR <0.05.

For PIDC,17 according to their tutorial, we used a threshold of 0.1, to keep the top 10% of highest scoring

edges.

Datasets

For the Perturb-seq validation, we used datasets from Dixit et al.32 and Papalexi et al.31 Dixit et al. has 24

transcription factors perturbed in dendritic cells and 25 cell cycle genes targeted in K562 cells, while Papal-

exi et al. has 25 PD-L1 regulators perturbed in THP-1 cells.

For the train-test split and network consistency assessment, we used the human AD snRNAseq data from

Morabito et al.27 This adds another slightly different data type from the scRNAseq in the perturb-seq and

MCA and is later used for biological application with microglial cells in AD.

We used the mouse cell atlas26 scRNAseq database, since it has a large number of cell types (106 cell types)

across numerous tissues (33 tissues), to test 446 disease associations with the random walk approach from

Huang et al.35 This additionally provides a resource of GRNs throughout cell types of the entire mouse.

Finally, to test the applicability of SCING on spatial transcriptomics data, we used the mouse AD dataset

from Chen et al.28 This dataset contains AD and WT mice from various age groups (3, 6, 12, 18 months), in

addition to amyloid beta plaque staining.

Computation of time requirements

We determined the run time to build a GRN from each approach on subsets of cells and genes with varying

cell numbers and gene numbers. All tests were performed on a ryzen 9 3900X 12-Core processor with

64Gb RAM. We determined the speed on 10 iterations of randomly selected genes (1000, 2000, 4000)

with 1000 cells each, and on randomly selected cells (250, 500, 1000) with 1000 genes each.
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Overview of network robustness evaluation based on perturb-seq datasets

Briefly, to determine the accuracy of the GRNs from each approach with Perturb-seq data, we first iden-

tified significantly altered genes downstream of each guide RNA perturbation through an elastic net

regression approach,32 as detailed below. We then determine the accuracy of a given network by iden-

tifying the true positive rate (TPR) and false positive rate (FPR) at each depth in the network. The

AUROC and TPR at FPR 0.05 were determined for each network on a given perturbation. More details

on each step are below.

Computation of guide RNA perturbation coefficients

First, we downloaded the Perturb-seq data from Papalexi et al.31 and Dixit et al.32 We then followed the

steps as described by Dixit et al.32 to compute guide RNA perturbation coefficients, which indicate the ef-

fects of a specific guide RNA (single perturbation) on other genes.

As cell state can affect gene perturbation efficiency, to determine cell states and remove state specific per-

turbations, we first separated out unperturbed cells which were not transfected with positive guide RNAs.

We then clustered these unperturbed cells with Leiden clustering to define subclusters that represent cell

states. The Leiden resolution was determined by identifying unique subclusters in the data (DC 0h: 1.2, DC

3h, 0.7, K562 cell cycle: 1.0, K562 TF: 1.0, Papalexi: 1.2). We then subset the data to highly variable genes

(min_mean=0.0125, max_mean=3, min_disp=0.5), centered and scaled the highly variable genes data, and

performed PCA to get the first 50 PCs. We then trained a linear support vector machine (SVM, C=1) on the

top 50 PCs of the data to predict the cell subcluster (state) membership of the non-perturbed cells. We then

applied the trained SVM to all cells that include both perturbed and non-perturbed cells to get a contin-

uous probability of cell state for each cell. We used these continuous state probabilities in our regression

equation to regress out state specific effects on gene expression. To identify the perturbation effect of a

given guide RNA on genes other than the target gene, we utilized elastic net regression (l1_ratio=0.5,

alpha=0.0005).32 We generated a binary matrix (cells x RNA guides) which depicts which guide RNAs are

in each cell based on the perturb-seq sequencing data. We then fit an elastic net model to predict the

gene expression of all genes from the binary matrix in each cell, combined with the continuous state values

determined for each cell. To remove the effect of synergistic perturbations, we removed cells with multiple

perturbations. We determined each guide’s perturbation effect on a given gene by the regression

coefficient.

Determination of significant perturbation effects

To determine the significance of a given perturbation coefficient, we employed a permutation test as in

Dixit et al.32 For each guide, we permuted the vector of perturbations to randomize which cells received

the given perturbation of interest. The elastic net regression model was trained with the same hyperpara-

meters to determine the coefficients of perturbation. This approach was repeated 100 times to generate a

null distribution of the perturbation effect of a given guide on each gene. The p-value was calculated as the

fraction of null coefficients that were greater than or less than the true coefficient, determined by the sign of

the coefficient. Significant perturbations were determined at a false discovery rate of 0.05 using the

Benjamini-Hochberg procedure. This permutation approach was repeated for each guide RNA. A gene

was determined as a downstream perturbation if at least one guide had a significant perturbation for

the given gene.

Selection of genes and cells for perturb-seq networks

To reduce computational cost and enable network building for all approaches, we first took the top 3,000

highly variable genes using the variance stabilizing transform method,83 including the differentially per-

turbed genes. We built two networks for each dataset, one using all cells and the other using only cells

with non-zero expression of the gene of interest.

Evaluation of perturbation predictions

We built networks for each perturbed gene separately using SCING, GRNBOOST2, ppcor, and PIDC.

Starting from the perturbed gene of interest, at each depth in the network, we determined the TPR and

FPR based on the perturbed genes computed above. This gives a TPR vs FPR graph, from which an

AUROC was computed. For each perturbed gene, we calculated the AUROC and the TPR at a FPR

of 0.05.
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Network robustness evaluation based on training and held out testing data

For each cell type in theMorabito et al dataset, we performed a train test split (50/50) of the cells and gener-

ated 10 sets of random subsamples of 3000 genes. We built a GRN on each gene subsample set in the

training data and trained a gradient boosting regressor to predict the expression of each gene based

on the gene expression of the predicted regulatory parents in the given GRN.We used the trained gradient

boosting regressor to predict the expression of the 3,000 genes in the test dataset and evaluated the per-

formance based on the cosine similarity metric between the actual gene expression and predicted gene

expression. We generated the cosine similarity values on the training and testing data separately and

computed the test to train ratio of the cosine similarity, with a smaller test to train ratio indicating potential

overfitting of the training data.

Computation of network characteristics

We built GRNs on oligodendrocytes, astrocytes, and microglia from snRNAseq data from Morabito et al27

For each cell type, we randomly selected 3000 genes (reduce computational time of methods) for each

sample and generated 10 GRNs, in which 3000 genes were randomly subsampled from the full transcrip-

tome. To compute scale-free network characteristics for each network, we fit a linear regression model

on the log of each node degree with the log of the proportion of nodes at each degree. We removed

low degree data points that are an artifact of scRNAseq sparsity. We also characterized each network by

the number of edges in the network, number of genes remaining in the resulting network, and the mean

betweenness centrality of nodes across the network.

Computation of network overlap

We used the Morabito et al. datasets described above and split each dataset in half and generated GRNs

on each subset of cells. We checked the overlapping edges between the two networks and normalized for

the expected number of overlapping edges based on the number of total edges in each network and the

hypergeometric distribution. The overlap score measured the fraction of overlap between the two net-

works, divided by the expected number of overlapping edges.

Assessment of disease subnetwork retrieval of GRNs

We utilized a random walk approach from Huang et al.35 to determine the ability for GRNs from

different methods to accurately model disease gene subnetworks. This approach provides a biologi-

cally relevant benchmarking approach to determine a GRNs ability to model disease subnetworks.

Briefly, the approach splits a known disease gene set into two groups, to attempt to reach the held

out gene set starting from the selected disease genes through random walks. An improvement score

is computed by calculating the z-score for a given network relative to 50 degree-preserved randomized

networks.

We built networks from the MCA on immune cells from bone marrow, neurons from the brain, and he-

patocytes from the liver. To accommodate less efficient tools, we subsetted the transcriptome to genes

that are expressed in more than 5% of the cells in the dataset. We used the method from Huang et al.

using relevant immune, neuronal, and metabolic disease gene sets from DisGeNET. We kept these

genes with >5% percent expression and included the genes from the disease gene sets. We determined

performance of each subnetwork based on the improved performance compared to the random network

distribution.

Application of SCING to construct GRNs for all MCA cell types and assessment of network

relevance to all DisGeNET disease gene sets

We applied SCING to all cell types for all tissues in the MCA and utilized the approach from Huang

et al. to determine the ability of each network to accurately model each disease gene set. We clustered

the disease gene sets and cell types using hierarchical clustering with complete linkage. We deter-

mined the number of disease sets accurately modeled by each cell type based on a performance

gain of at least 0.1. We subsequently computed the number of cell types that can accurately

model each disease set. To compare the number of diseases modeled by cell types from the

adaptive and innate immune system on tissue relevant subsets of the DisGeNET diseases, we per-

formed a t-test between the distributions of the number of disease gene sets each cell type can accu-

rately model.
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Biological application to microglia in Alzheimer’s disease patients

We built a SCING network for the microglia on the genes expressed in at least 2.5 percent of cells in the

Morabito et al. dataset.27 For the SCING pipeline, we used 500 supercells, 70 percent of cells in each sub-

sample, 100 neighbors, 10 PCs, and 100 subsamples. We utilized the Leiden graph partitioning algorithm

to divide genes in the resulting GRNs into modules. We performed Leiden clustering at different resolu-

tions and performed pathway enrichment analysis on the modules using the enrichr78 R package, using

the GO biological process, DisGeNET, Reactome, BioCarta, and KEGG knowledge bases. We selected

the resolution (0.0011) that had the highest fraction of modules annotated for between 20 and 50 modules

per network. This avoids clustering too many modules with few genes while maintaining enough separate

modules to have biological interpretation. We used the AUCell method from the SCENIC workflow,19 to

retrieve module specific expressions (AUCell scores) for each cell. We found trait (diagnosis, plaque stage,

tangle stage) associatedmodules by fitting a linear regressionmodel to predict the trait based on themod-

ule score, while regressing out the effects of sex. For each trait, multiple testing was controlled at FDR

<0.05 with the Benjamini-Hochberg procedure. The subnetwork for vesicle-mediated transport in module

2 was visualized using Cytoscape.84 We determined marker genes using the Allen Brain Atlas whole brain

Smartseq2 data.85

Batch correction comparison

We compared top batch correctionmethods from Seurat, Harmony, and fastMNNwith SCINGmodule em-

beddings. To evaluate each method, we determined the average proportion of cells with the same group

assignment (sample, batch, diagnosis, tangle stage, plaque stage, and sex), using 20 PCs and a variable

number of neighbors (0.25, 0.5, 1, 2, 4, 8, and 16 percent of the dataset) (Equation 1). We determined

the ability of each approach to remove batch and sample specific differences while retaining biologically

relevant differences (diagnosis, tangle stage, plaque stage, and sex) by removing the batch and sample

differences with an F1-score44 (Equation 2).

neigh score =
1

ncell

X
cells

similar neighbors

n neighborsÞ Equation 1

neigh_score: neighborhood score used to find the average fraction of neighbors of the same type (i.e.

batch).

similar_neighbors: number of neighbors of a given cell that have the same identity (i.e. batch)

n_neighbors: number of total neighbors checked

ncell: total number of single cells

F1phenotype =
2 �

�
1 � neigh scoresample

�
� ð1 � neigh scorebatchÞ �

�
neigh scorephenotype

�
�
1 � neigh scoresample

�
+ð1 � neigh scorebatchÞ+

�
neigh scorephenotype

�

Equation 2

neigh_score: neighborhood score computed in Equation 1 for a given identity.

APPLICATION OF SCING TO VISIUM SPATIAL TRANSCRIPTOMICS DATA FORMOUSE AD

AND WT BRAIN

To determine the applicability and interpretability of SCING to spatial transcriptomics data, we applied

SCING to mouse whole brain AD and WT data.28 Since the network was built on the whole brain rather

than a single cell type, we expect more variance amongst networks from subsamples, therefore we built

1,000 GRNs to be merged into the final network. We partitioned the genes with the Leiden graph

partitioning algorithm into 33 modules. Using AUCell from SCENIC,19 we obtained module specific

expression for each spot. We determined regional specificity between pairs of larger regions (cortex,

hippocampus, brainstem) through t-tests and overall variance for the smaller subregions through

ANOVA. We determine differential module expression between AD and WT through t-tests, and corre-

lation with age or plaque with Pearson correlation. The null distribution of Pearson correlation coeffi-

cients was generated by randomly sampling genes with the same number of genes in the module,
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computing the AUCell scores for the random gene sets, and computing Pearson correlation between the

AUCell scores and the plaque or age. The null distribution of correlation coefficients was used to deter-

mine the p value for each module’s correlation coefficient. Finally, the module 9, 10, 25, and 30 subnet-

works were visualized using Cytoscape84 and annotated cell type marker genes using the Allen Brain

Atlas whole brain Smartseq2 data.85
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