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Abstract 

Although long‑read RNA‑seq is increasingly applied to characterize full‑length tran‑
scripts it can also enable detection of nucleotide variants, such as genetic mutations 
or RNA editing sites, which is significantly under‑explored. Here, we present an in‑
depth study to detect and analyze RNA editing sites in long‑read RNA‑seq. Our new 
method, L‑GIREMI, effectively handles sequencing errors and read biases. Applied 
to PacBio RNA‑seq data, L‑GIREMI affords a high accuracy in RNA editing identification. 
Additionally, our analysis uncovered novel insights about RNA editing occurrences 
in single molecules and double‑stranded RNA structures. L‑GIREMI provides a valuable 
means to study nucleotide variants in long‑read RNA‑seq.

Keywords: A‑to‑I editing, Double‑stranded RNA, Mutual information

Background
Adenosine-to-inosine (A-to-I) RNA editing is one of the most common RNA modifica-
tion types in human cells, which greatly diversifies the transcriptome [1]. A-to-I RNA 
editing is catalyzed by enzymes encoded by the adenosine deaminase acting on RNA 
(ADAR) gene family in Metazoans [2–5]. ADAR proteins recognize and bind to double-
stranded RNAs (dsRNAs) to deaminate adenosines into inosines [6–9]. Most RNA edit-
ing sites in human cells occur in Alu repeats [10–13], the most abundant type of short 
interspersed elements (SINEs).

A-to-I RNA editing occurs in both coding and non-coding regions, with diverse func-
tional roles in human cells [1, 14, 15]. The impact of recoding sites (i.e., those that alter 
protein-coding sequences) has been relatively well studied, many of which alter pro-
tein function [16]. It is now known that RNA editing in non-coding regions can influ-
ence gene expression, such as by affecting alternative splicing [17–19] or RNA stability 
[20–22]. In addition, RNA editing affects microRNA maturation, leading to the cross-
talk between RNA editing and RNA interference [23, 24]. Recently, regulation of the 
immunogenicity of dsRNAs is emerging as an important aspect of RNA editing function 
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[25–27]. Given the diverse functions of RNA editing, abnormal editing patterns have 
been reported for numerous diseases, such as neurological diseases, autoimmune disor-
ders, and cancers [1, 14, 28–30].

Next-generation sequencing technologies, especially RNA-sequencing (RNA-seq), 
have greatly facilitated the discovery of RNA editing events [31–34]. To date, more than 
16 million RNA editing events have been cataloged in human transcriptomes [35]. In 
order to segregate RNA editing sites from single-nucleotide polymorphisms (SNPs) in 
the genome, many previous methods required sequencing of both DNA and RNA of a 
sample. In our previous work, we developed a method, namely GIREMI, to accurately 
identify RNA editing events using a single short-read RNA-seq dataset without genome 
sequencing data of the corresponding sample [36].

With the development of third-generation sequencing (TGS) technologies, long-read 
RNA-seq methods recently emerged as powerful tools to study RNA biology. Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are the two main rep-
resentatives of the TGS platforms. Different from short-read RNA-seq methods, long-
read RNA-seq interrogates full-length transcripts without breaking the RNAs into small 
fragments, thus preserving transcript structures [37]. As a result, long-read RNA-seq 
overcomes the transcript assembly ambiguities inherent to short-read RNA-seq, greatly 
improving the understanding of transcriptome diversity [38].

A number of methods have been developed to analyze long-read RNA-seq data, pri-
marily focusing on transcript isoform identification and their abundance analysis [38–
41]. Another application, which is significantly under-explored, is to identify and analyze 
single-nucleotide variants (SNVs) in the RNA. Identification of SNVs, such as genetic 
mutations or RNA editing sites, is fundamental to many biomedical questions. In long-
read RNA-seq, SNV analysis presents significant challenges, due to the well-known high 
error rates of the third-generation sequencers.

We present L-GIREMI (long-read GIREMI), a method to identify RNA editing sites 
in long-read RNA-seq (without the need of genome information). L-GIREMI effectively 
handles sequencing errors and biases in the reads and uses a model-based approach 
to score RNA editing sites. L-GIREMI allows investigation of RNA editing patterns of 
single RNA molecules, co-occurrence of multiple RNA editing events, and detection 
of allele-specific RNA editing. This method provides new opportunities to study RNA 
nucleotide variants in long-read RNA-seq.

Results
Overview of the L‑GIREMI method

Linkage patterns between alternative alleles of RNA variants in the mRNA differ for dif-
ferent types of RNA variants. For example, a pair of SNPs within the mRNA are generally 
expected to possess perfect allelic linkage. In contrast, non-genetic RNA variants, such 
as RNA editing sites, do not generally show significant allelic linkage with each other 
nor with SNPs (unless allele-specific editing exists). In our previous work, we showed 
that these properties can be employed to distinguish RNA editing sites from genetic 
variants using short-read RNA-seq data [36]. Long-read RNA-seq affords a major advan-
tage in capturing such allelic linkage since multiple variants in the same mRNA can be 
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covered by each read. Leveraging this feature of long-read RNA-seq, we developed the 
L-GIREMI method to identify RNA editing events using this data type.

After a typical read mapping procedure (e.g., via minimap2 [42]), the L-GIREMI algo-
rithm is mainly composed of four steps (Fig. 1). First, the strand of each read was exam-
ined and corrected if necessary (see Methods). Second, mismatch sites in the BAM file 
were obtained and pre-filtered according to common practices in detecting RNA edit-
ing sites using RNA-seq data [43, 44]. In the third step, the mutual information (MI) 
between pairs of mismatch sites in the same gene was calculated. Specifically, an average 
MI was calculated for each unknown mismatch relative to putative SNPs (from dbSNP) 

Fig. 1 The schematics of the L‑GIREMI algorithm (see text for details)
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covered by the same reads. Similarly, MI of pairs of putative heterozygous SNPs (from 
dbSNP) was also obtained. Since most RNA editing events are expected to occur inde-
pendently of the allelic origin of the mRNA, the above MI for an RNA editing site (rela-
tive to SNPs) should be smaller than that between two heterozygous SNPs. Thus, the 
two types of MI values were compared to predict RNA editing sites among the unknown 
mismatches. The predicted RNA editing sites then served as training data for the fourth 
step, where a generalized linear model (GLM) was derived. Sequence features and allelic 
ratios of candidate sites were included as predictive variables in the GLM and a score 
was calculated for each mismatch (Methods).

Performance evaluation of L‑GIREMI

We first tested the performance of L-GIREMI using a dataset derived from the brain 
sample of an Alzheimer’s disease (AD) patient (PacBio Sequel II, data available at PacBio, 
4,277,293 reads). As expected [37], the majority of reads harbored at least one mismatch 
or indel (Additional file  1: Fig. S1a). On average, 14 mismatches, 38 deletions, and 11 
insertions were found in each read (Additional file 1: Fig. S1b). Thus, the nature of long-
read RNA-seq presents substantial challenges in resolving bona fide nucleotide variants.

L-GIREMI overcame these challenges and effectively detected RNA editing sites from 
the dataset. As shown in Fig.  2a, upon the initial screen of nucleotide variants, all 12 
types of single nucleotide mismatches were detected in the mapped reads, with the A-to-
G type (likely due to A-to-I editing) constituting only a small fraction. The L-GIREMI 
built-in filters (Methods) were applied to remove sites possibly arising from sequencing 
errors (Step 2, Fig. 1), which improved the %A-to-G among all mismatches (Additional 
file 1: Fig. S2a, Additional file 2: Table S1). Subsequently, MI values were calculated for 
mismatch sites that shared at least 6 reads with putative heterozygous SNPs (defined as 
dbSNPs with allelic ratio between 0.35 and 0.65 in the data). As a comparison, the MI 

Fig. 2 Identification of RNA editing sites in long‑read RNA‑seq data of the brain sample of an Alzheimer’s 
disease (AD) patient. a Raw mismatches detected in the dataset. b Mutual information for pairs of putative 
heterozygous SNPs (based on dbSNP) or non‑dbSNP mismatches relative to putative SNPs. c RNA editing 
sites identified by L‑GIREMI. d %A‑to‑G among all predicted editing sites vs. GLM score. Dotted line denotes 
the score cutoff used for c (0.64). e Number of RNA editing sites identified given different read coverages 
(randomly chosen subsets of the AD dataset). f %A‑to‑G among the RNA editing sites identified in the 
subsets in e 
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values of pairs of putative heterozygous SNPs were also calculated. As shown in Fig. 2b, 
the MI distribution of unknown mismatches relative to SNPs was well separated from 
that of pairs of putative heterozygous SNPs. Thus, using the MI distribution of SNPs, we 
calculated an empirical p value for each mismatch site and identified those with p < 0.05 
as candidate RNA editing sites. This step detected a total of 13,442 editing sites, with 
83.3% of them being the A-to-G type (Additional file 2: Table S1). These sites were in 
turn used as training data for the GLM model (Methods). The contribution of different 
features used in the GLM is shown in Additional file 1: Fig. S2b. In total, 28,584 RNA 
editing sites were detected in the AD dataset, with 98.1% being A-to-G mismatches 
(Fig. 2c). The high fraction of A-to-G sites among all predicted editing sites attests to the 
high accuracy of our method. Interestingly, we observed that the %A-to-G sites among 
all predicted sites increased monotonically with the GLM score (Fig.  2d). By default, 
L-GIREMI chooses a score cutoff (vertical line in Fig. 2d) for each dataset to optimize 
the F1 value (Methods). As an alternative approach, a user-defined GLM score cutoff 
can be provided to achieve a desired %A-to-G, based on the GLM score vs. %A-to-G 
relationship.

In short-read RNA-seq analysis, a standard method to identify RNA editing sites is 
called the “genome-aware” method, where sample-specific genomic variations were used 
to segregate RNA editing sites from genomic SNPs. To further evaluate the performance 
of L-GIREMI, we analyzed the AD dataset using a “pseudo-genome-aware” approach. 
That is, after the same pre-filtering step as used in L-GIREMI, we predicted RNA editing 
sites by excluding all known human SNPs from dbSNP (since sample-specific genomic 
data is not available). We examined the %A-to-G among all predicted sites by both meth-
ods and separately for different types of regions (Additional file  2: Table  S1). In addi-
tion, we included the % of predicted sites that are cataloged in the REDIportal database 
(%REDIportal) [35]. L-GIREMI outperformed the pseudo-genome-aware method in all 
types of regions evaluated by both %A-to-G and %REDIportal.

To evaluate the impact of read coverage on the results, we randomly sub-sampled 
the AD data set to retain different numbers of total reads. As expected, the number of 
predicted RNA editing sites decreased given reduced read coverage (Fig.  2e). In con-
trast, the “sensitivity” of the method remained high at low read coverages as evaluated 
against identifiable REDIportal sites (Additional file  1: Fig. S2c). In addition, the frac-
tion of A-to-G sites among the predicted RNA editing sites (score cutoff determined by 
F1 score) remained relatively high except for the very low coverage (e.g., 0.4 M reads, 
Fig. 2f ). It should be noted that the fraction of A-to-G among the pre-filtered sites (step 
2, Fig. 1) was much lower than that of the final L-GIREMI predictions (Additional file 1: 
Fig. S2d), supporting that the MI and GLM steps enhanced the prediction accuracy. In 
summary, L-GIREMI affords high accuracy in capturing RNA editing sites in long reads 
for a wide range of total read coverages.

Identification of RNA editing sites with data of different PacBio platforms

We analyzed three datasets derived from GM12878 cells by the ENCODE project 
(ENCODE IDs: ENCFF417VHJ, ENCFF450VAU and ENCFF694DIE, 1,673,768 reads, 
2,137,168 reads and 2,538,701 reads respectively) via the PacBio Sequel II platform. The 
3 datasets had similar error profiles. However, ENCFF417VHJ, which was built using 
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the MaximaH- reverse transcriptase, showed relatively lower levels of indels and mis-
matches than the other two datasets (Additional file 1: Fig. S3a, b).

The GLM score vs. %A-to-G curves were largely monotonic, although excep-
tions existed (Additional file 1: Fig. S3c). The final predicted RNA editing sites for the 
ENCFF417VHJ dataset had a high level of A-to-G (99.9%), which was much higher than 
the 31.4% and 37.8% for ENCFF450VAU and ENCFF694DIE respectively (Additional 
file 1: Fig. S3d) (all of which being higher than the % using only pre-filters, Additional 
file 1: Fig. S3e). Therefore, the chemistry used in generating PacBio RNA-seq libraries 
can greatly influence RNA editing identification. Note that for the latter two datasets, 
a user-defined GLM score cutoff could be used to achieve a higher accuracy (%A-to-
G) in the predicted editing sites. Importantly, we noted that similar data derived from 
GM12878 cells but using the earlier Sequel platform yielded lower quality and subopti-
mal RNA editing identification (Additional file 1: Fig. S4). Thus, our data suggest Sequel 
II is a preferred platform for the purpose of RNA editing studies.

In the following sections, we only used the ENCFF417VHJ dataset given its improved 
quality. Compared to the genome-aware method (i.e., by filtering out GM12878 SNPs 
cataloged by the Genome-in-a-Bottle project [45]), L-GIREMI yielded higher %A-to-G 
and %REDIportal in different types of regions (Additional file 2: Table S2). Note that due 
to the relatively low total coverage of ENCFF417VHJ, the number of predicted editing 
sites was not high, especially in non-Alu regions. Although the genome-aware method 
identified many sites in non-Alu regions, a considerable fraction of them may be false 
positives as reflected by the low %A-to-G and %REDIportal.

Comparison of RNA editing sites identified in short and long reads

Since short-read RNA-seq has been frequently used in RNA editing analyses, we 
compared the results identified in short- and long-read RNA-seq of GM12878. 
PolyA-selected cytosolic RNA-seq data generated by the ENCODE project (ID: ENCS-
R000COR (ENCLB555ANM)) was used for this purpose. The data was randomly down-
sampled to retain a total of 30 million short reads, which is approximately equivalent 
to the base coverage afforded by the long-read data (ENCFF417VHJ), considering read 
length differences. We used the same “genome-aware” method for short reads as in our 
previous work [36]. As shown in Additional file 1: Fig. S5a, this method identified more 
than 4000 editing sites (86% being A-to-G) in the short reads. Compared to the long-
read results (Additional file 2: Table S2), short-read RNA-seq appeared to yield higher 
sensitivity. However, the %A-to-G based on short-read data was relatively low, especially 
in non-Alu regions (which is partly due to the relatively low total read coverage, known 
to affect %A-to-G as discussed in our previous work [43]).

We observed that a larger fraction of editing sites from short reads was located in 
introns, compared to that of long reads (Additional file 1: Fig. S5b). This may also explain 
the higher number of editing sites detected in short reads as it is known that introns are 
enriched with Alu elements where the majority of editing sites reside. To conduct fur-
ther comparisons, we obtained the union of mismatch sites that were testable (with ≥ 6 
total reads) in both datasets. A total of 190 editing sites were identified in both, with 
339 unique to the long reads and 148 unique to the short reads (Additional file 1: Fig. 
S5c). Sites unique to one dataset were absent in the other dataset mostly due to lack of 
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edited reads. The %A-to-G of the subsets of sites were high, reflecting high quality pre-
dictions. Thus, although less editing sites were identified in the long reads, the two types 
of modality performed similarly at common testable sites.

Co‑occurrence of RNA editing sites

Consistent with previous reports based on short-read RNA-seq data, the majority of 
RNA editing sites detected by L-GIREMI in the GM12878 (ENCFF417VHJ) and AD 
datasets were located in non-coding regions and Alu elements (Fig. 3a, b) [31, 33, 37, 46, 
47]. A prevailing question is whether multiple editing sites of a gene tend to co-occur in 
a subset of RNA molecules or if their occurrence is largely independent of each other. 
This question was challenging to address using short reads [48–50]. In contrast, the 
long-read RNA-seq data enable a direct examination of this question.

We first asked whether editing sites in the same Alu was approximately equally dis-
tributed among the reads corresponding to the Alu. To this end, we calculated the Gini 
index for the number of editing sites observed in each read of an Alu. Gini index is a 
measure of inequality among a given set of values (Methods). As background controls, 
we shuffled the occurrence of the observed editing sites among all reads of the Alu. As 
shown in Fig. 3c, the Gini index of the actual editing profiles was much larger than that 
of the controls, suggesting the existence of co-occurrence of editing sites in the same 
Alu.

As an alternative method, we examined the MI of pairs of editing sites in a gene and 
asked whether their values were larger than that of randomly shuffled editing sites. Con-
sistent with the above finding (Fig. 3c), the MI values of pairs of editing sites in the same 
gene were significantly higher than those of the shuffled controls (Fig. 3d). Nonetheless, 

Fig. 3 Co‑occurrence of A‑to‑I RNA editing sites in Alu elements detected by L‑GIREMI. a Genomic context 
of A‑to‑I RNA editing sites identified in the AD sample or GM12878 cells. b Number of RNA editing sites in Alu 
repeats or otherwise. c Cumulative distribution for the Gini index of Alu repeats calculated via read‑specific 
editing ratio. Shuffled data were generated for comparison (Methods), which led to significantly lower Gini 
index values than the original data (p < 0.001 for both data sets, KS test). d Cumulative distribution of mutual 
information of pairs of editing sites or pairs of SNPs in the same gene. Compared to the shuffled controls, 
both editing sites and SNPs show higher levels of linkage (p < 0.001 for all comparisons, KS test) although the 
latter were associated with much higher mutual information
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it should be noted that the MI of editing sites was substantially lower than those between 
pairs of SNPs (Fig. 3d), which has been established previously [31, 33, 37, 46, 47]. This 
observation still holds if only known editing sites (from REDIportal) were used (Addi-
tional file 1: Fig. S6). Thus, it is unlikely due to the fact that MI was used in the process 
of editing site identification. Overall, our results support the existence of co-occurrence 
of RNA editing sites in the same RNA molecules, to a level significantly higher than ran-
dom expectations, but significantly lower than genetic linkage.

Allele‑specific RNA editing events detected by L‑GIREMI

Long-read RNA-seq allows examination of linkage patterns between any type of RNA 
variants in the same read. One type of linkage event, allele-specific RNA editing, reflects 
the existence of genetic determinants of RNA editing, which has been shown in human 
and mouse tissues [51]. However, it is not clear whether allele-specific RNA editing 
affects a predominant number of editing sites. We examined this question using the 
long-read RNA-seq of GM12878 since its whole-genome sequencing data is available. 
Specifically, we calculated the MI values of all known RNA editing sites in the REDI-
portal database [35] relative to known SNPs in GM12878 that were detectable in the 
long-read RNA-seq data. Note that the REDIportal sites were used here instead of edit-
ing sites identified in this study so that the source of the editing sites was independent 
of any linkage calculation. As shown in Fig. 4a, the majority of these REDIportal-defined 

Fig. 4 Allele‑specific editing reflected in the GM12878 long‑read RNA‑seq data. a Mutual information 
of known editing sites (REDIportal). Six sites with high mutual information were randomly chosen for 
experimental testing (arrows). b Summary of experimental validation results. Four out of 6 sites were 
confirmed as RNA editing sites. c–f Sanger sequencing traces for 4 confirmed editing sites. d IGV plot for an 
example allele‑specific editing event: between the RNA editing site chr1:9102175 (red rectangle) and three 
heterozygous SNPs (blue rectangle). Note that the gene is on the − strand
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known editing sites had relatively low MI values, with only a small fraction (~ 12%) hav-
ing MI values greater than 0.3 (the cutoff used in L-GIREMI to identify RNA editing 
sites in this dataset).

The above results suggest that allele-specific editing may only affect a minority of edit-
ing sites. To exclude the possibility that apparent allele-specific RNA editing may be 
largely due to the existence of genetic variants among REDIportal-defined editing sites 
(i.e., false positives), we tested 6 likely allele-specific editing sites (arrows, Fig. 4a) using 
Sanger sequencing. Four of these sites were confirmed as RNA editing sites, whereas 
two of them were neither edited nor SNPs (thus likely sequencing errors) (Fig. 4b–f). 
Figure 4g shows the reads harboring an example allele-specific editing event. Therefore, 
our data suggest that allele-specific RNA editing does exist, although relatively rare.

Since L-GIREMI uses MI as its initial step to predict RNA editing sites, this step 
excludes allele-specific editing sites. However, such sites may still be captured in the 
scoring step of L-GIREMI where the GLM model is used for prediction (Additional file 1: 
Fig. S7). In general, L-GIREMI is not recommended for detecting allele-specific editing 
for novel editing sites. Nonetheless, the MI calculation implemented in L-GIREMI can 
be used to uncover allele-specific editing of known RNA editing sites.

dsRNA structures likely affect long‑read coverage

While inspecting RNA editing sites in the RNA-seq reads, we observed a curious pattern 
where some long reads showed skipping of a region, often in the vicinity of RNA edit-
ing sites. Such skipped regions did not coincide with annotated splicing events. Previous 
studies observed similar patterns in expression sequence tags [52]. Figure 5a shows an 
example in the 3′ UTR of the gene MREG. In this example, two Alu repeats are located 
in the skipped region, where many editing sites were identified. This region folds into a 
strong dsRNA structure (Fig. 5a).

We hypothesize that region-skipping in long reads is a consequence of the highly 
structured nature of the RNA. Indeed, it is known that reverse transcriptase (RT) 
can generate deletion artifacts in cDNAs, which is caused by intramolecular template 
switching, an event where RT skips the hairpin structure of the template RNA (illus-
trated in Fig. 5b) [53]. To further explore this hypothesis, we followed a previously pub-
lished method to identify dsRNA structures harboring editing-enriched regions [54]. A 
total of 36,166 and 17,293 predicted dsRNAs were covered by at least 1 read for the AD 
and GM12878 datasets respectively (Additional file 1: Fig. S8). Among these predicted 
dsRNAs, about 20% overlapped reads with region-skipping (Fig. 5c). In addition, 98.2% 
and 97.6% of the skipped regions were located between two Alu repeats for the AD and 
GM12878 datasets, respectively (Fig. 5c). For 34.4% and 31.6% of the dsRNAs in AD and 
GM12878 datasets, respectively, the skipping pattern occurred in ≥ 50% of their reads 
(Fig. 5d). The median length of the skipped region was about 600 to 800 basepairs (bp) 
(Fig. 5e), which is approximately the length of two adjacent Alu repeats [11].

Discussion
Long-read RNA-seq is a powerful means for transcriptome profiling [38, 40, 41, 55, 56]. 
A number of methods have been developed to discover and quantify full-length isoforms 
in long-read RNA-seq data [38, 40, 41, 55, 56]. Specialized methods were also developed 
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to capture the unique signatures of inosines in direct RNA-sequencing of Oxford Nano-
pore long reads [57]. However, analysis of single-nucleotide variants, such as RNA edit-
ing sites, in cDNA long-read RNA-seq presents significant challenges resulting from the 
relatively high level of sequencing errors. To this end, we present L-GIREMI, a method 
to identify RNA editing sites using long-read RNA-seq data.

L-GIREMI examines the linkage patterns between sequence variants in the same 
reads, complemented by a model-driven approach, to predict RNA editing sites. We 
adopted a similar strategy as in our previous method, GIREMI [36], which focused on 
short-read RNA-seq data. We showed that L-GIREMI affords high accuracy as reflected 
by the high fraction of A-to-G sites or known REDIportal sites in its predictions. It 
considerably outperformed the traditional “genome-aware” methods. Although the 
“genome-aware” methods are quite effective for short reads RNA-seq data, their per-
formance deteriorates in the presence of sequencing errors in the long reads. In addi-
tion, we demonstrated that the performance of L-GIREMI is robust given a wide range 
of total read coverage. Furthermore, as expected, RNA editing identification depends on 
the quality of the long-read data, with Sequel II-derived data outperforming those of the 
Sequel platform.

Long-read data is naturally advantageous in capturing correlative occurrence of mul-
tiple nucleotide variants in the mRNA. Compared to short reads where only a limited 
number of mismatch pairs may be captured in the same reads, long reads can theoreti-
cally cover all mismatch pairs in the mRNA. Thus, the MI method applied to long-read 
RNA-seq is expected to be much more effective than in the case of short reads. However, 

Fig. 5 Long‑read RNA‑seq detected highly structured regions. a IGV plot for an example where many reads 
had internal skipping. This region harbors two Alus. The double‑strand RNA structure predicted by RNAfold is 
shown. b Diagram illustrating RT‑induced template switching that may induce region‑skipping in long reads. 
c Read coverage of predicted dsRNAs with or without region‑skipping patterns. d Histogram of dsRNAs with 
different fractions of reads that showed region‑skipping patterns. e The length of skipped regions within 
predicted dsRNAs (median = 813, 627 for the AD and GM12878 data, respectively)
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a challenge still exists with long reads due to the relatively high sequencing error rate. 
As a result, sequencing errors may lead to false positives in the MI-predicted editing 
sites. This limitation may explain the relatively low %A-to-G (70–80%) among the edit-
ing sites predicted by MI alone (Additional file 2: Table S1, S2), which is in stark con-
trast to the very high %A-to-G (> 99%) among the MI-predicted editing sites in the short 
reads [36]. Therefore, for the current long-read datasets, it is necessary to combine MI 
with the GLM method to boost the performance of L-GIREMI. Since the MI-predicted 
editing sites were used as training data for the GLM step, inaccuracy in the training data 
may also affect the performance of the GLM, which is reflected in the relatively small 
variance explained by some features (neighboring nucleotides or allelic ratio, Additional 
file 1: Fig. S2b). It should be noted that the mismatch type feature in the GLM explained 
the most variance (Additional file  1: Fig. S2b). This feature was learned from the MI-
predicted editing sites, thus not allowing any user input to bias the mismatch composi-
tion in the final predicted editing sites. As a result, L-GIREMI is applicable to datasets 
where the dominant type of editing is unknown a priori. With future improvements in 
sequencing error rates and sequencing depth of long reads, we expect the MI method 
alone will become increasingly sufficient and the GLM may not be necessary. Thus, we 
provide an option in L-GIREMI to run only the MI step for future applications.

Compared to short reads, long-read RNA-seq yielded less editing sites, especially 
those in intronic regions. However, this observation may not be universally applicable 
as various types of library preparation protocols for RNA-seq may generate consider-
ably different distributions of reads in different types of genomic regions. At present, 
at least for RNA editing analysis, long-read RNA-seq is not yet a strong replacement of 
short-read RNA-seq, given its relatively high cost and high error rate. A combination of 
the two modalities will undoubtedly yield enriched information, by not only identifying 
more editing sites but also providing ways for concurrent analysis of nucleotide and iso-
form variants.

Long-read RNA-seq allows examination of co-occurrence of RNA editing sites in a 
single molecule. Leveraging this strength, we showed that editing sites in the same Alu 
or mRNA co-occurred more often than expected by chance. This observation extends 
previous reports using short-read RNA-seq that detected clustered RNA editing sites 
in hyper-edited regions [58]. Many scenarios may lead to co-occurrence of RNA editing 
sites, for instance, long lifespan of RNA molecules, higher local concentration of ADAR 
proteins, or synergistic effects [59]. Nonetheless, it is important to note that this level of 
co-occurrence is much lower than that driven by the linkage patterns of genetic variants 
on the same haplotype. Thus, the basic rationale of L-GIREMI that distinct MI distribu-
tions exist for genetic variants and RNA editing sites still holds.

Similar to RNA editing co-occurrence, long-read RNA-seq also allowed us to evalu-
ate the possible existence of allele-specific editing. Our data supported the infrequent 
existence of this phenomenon. Allele-specific editing may be caused by SNP-related 
structural changes in the dsRNA region, demonstrating a mechanism of cis-regulation of 
RNA editing. The calculation of MI as implemented in L-GIREMI can be used to detect 
allele-specific editing events.

Another notable observation of our study is that the dsRNA structure may lead to the 
skipping of a sizable region in the long-read RNA-seq. Previous studies also reported 
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such observations, likely due to reverse transcriptase template switching, thus not 
unique to PacBio data [38, 53, 60]. This artifact may induce false positive calls of alterna-
tive splicing events, if the region-skipping is interpreted as a splicing event. It may also 
reduce the sensitivity in identifying RNA editing sites that reside in the skipped regions. 
On the other hand, compared to short-read data, long reads are uniquely advantageous 
in detecting this phenomenon, which may be leveraged to inform RNA secondary struc-
ture predictions in the future. Lastly, we note that RNA editing is an effective proxy to 
the existence of dsRNA structures. An alternative way to predict dsRNA regions is to 
search for those that harbor inverted repeat Alu (IRAlu) pairs. Region-skipping was rare 
in IRAlu regions with low RNA editing levels (Additional file 1: Fig. S9), presumably due 
to lack of dsRNA structures.

Conclusions
In summary, we present a method for the identification of RNA editing sites in long-
read RNA-seq with high accuracy, even given low sequencing depth. Application of 
L-GIREMI allowed examination of RNA editing sites in single molecules, allele-specific 
RNA editing, and region-skipping due to existence of dsRNA structures. This method 
provides a powerful means in examining nucleotide variants in long reads.

Methods
Mapping of reads using minimap2

Minimap2 was used for the mapping of long-read RNA-seq data against the human 
genome (hg38) [42]. The “--cs” option was included in order to output the cs tags that 
enabled parsing of sequence variants. Only unique mapped reads were retained for the 
identification of RNA editing sites. Samtools was used to remove multi-mapped reads 
with the option “-F 2052” in the samtools view module [61]. Subsequently, the filtered 
SAM files were sorted according to genomic coordinates and converted into BAM files.

The L‑GIREMI analysis steps

The L-GIREMI algorithm consists of four main steps: (1) correction of read orientation, 
(2) collection of mismatches, (3) calculation of mutual information among mismatch 
sites, and (4) scoring of mismatches with a generalized linear model (GLM). The details 
of each step are provided below.

Correction of read orientation

Although most reads generated by PacBio had the correct read strand, a minority of 
reads had wrong orientations, which can affect the accuracy of nucleotide variant analy-
sis. We adopted the following strategy to check and, if necessary, correct the read strand. 
First, we obtained 3 types of strand information: the strand of the read from minimap2 
(namely, mapped strand), the strand of the gene annotated (Gencode v34) at the read 
location (namely, annotated strand), and the strand from which the majority of the splice 
site sequences of the read were consistent with the known motifs (GT-AG, GC-AG or 
AT-AC) (namely, splice site strand). For most reads, all 3 sources gave the same strand. 
Otherwise, the read strand was set to be the dominant one among the three. Further-
more, in rare cases, only two types of strand information were available due to the read 
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mapping to intergenic regions or the lack of known splicing motif. For these cases, 
the annotated strand was given the highest priority, followed by splice site strand and 
mapped strand, respectively. If the read was mapped to a region with sense and anti-
sense gene pairs, the gene that had a larger overlap with the read sequence was used. It 
should be noted that reads harboring no spliced junctions were removed from the analy-
sis to avoid contamination by DNA-derived reads.

Collection of mismatches

In this step, we obtain a catalog of all mismatches in the mapped reads, detected via the 
cs tags generated by minimap2. Their genomic coordinates, reference nucleotides, and 
alternative nucleotides were stored. In order to remove likely sequencing errors, several 
filters were implemented according to common practice in RNA editing identification 
via RNA-seq [44]. Specifically, the following mismatch sites were removed: (1) those 
with low read coverage (< 3 reads), (2) sites within simple repeats or homopolymers, (3) 
sites within the vicinity (default 4 bp) of splice sites, and (4) sites with allelic ratio (minor 
allele/total) less than a threshold (default 0.1). Mismatched sites overlapping dbSNP 
annotations (v38) were labeled as SNPs and those with allelic ratio between a range (0.35 
to 0.65 by default) were labeled as heterozygous SNPs, which were used in the calcula-
tion of mutual information.

Calculation of mutual information among mismatch sites

L-GIREMI calculates the MI for each mismatch site relative to heterozygous SNPs, and 
for pairs of heterozygous SNPs, respectively. For a mismatch (mi) and a SNP (sj), the MI 
(I) was calculated as:

where N1 = {the two most frequent nucleotides for site 1}, N2 = {the two most frequent 
nucleotides for site 2}, and ni and nj denote the nucleotides of the sites in the pair. p(ni, 
nj) represents the probability of observing the ni and nj nucleotides in the same read, 
calculated using the maximum likelihood method. Natural logarithm was used for the 
calculation. Only the two most frequent alleles at each site were used. The MI of a pair of 
SNPs was calculated similarly.

For every mismatch or SNP site, there might exist multiple other SNPs harbored 
within the same reads. Thus, the overall MI for the mismatch or SNP was calculated as 
the average of all the pairwise MI values. Empirical p values were calculated for all the 
mismatches based on the distribution of the SNP MI. Mismatches with p value smaller 
than a threshold (0.05 by default) and not included in the dbSNP database were selected 
as predicted RNA editing sites, which were used for GLM training described below.

Scoring of mismatches via a GLM

GLM was used as the scoring model of L-GIREMI. Features included in the model are 
the allelic ratio of the mismatch, the mismatch type, and the sequences of the nearest 
neighbor nucleotides before and after the mismatch site. RNA editing sites identified in 

I mi, sj =

ni∈N1 nj∈N2

p ni, nj log(
p ni, nj

p(ni)p nj
)
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the above MI calculation step were used as positive training data. dbSNPs with p values 
larger than the threshold (0.05 by default) in the MI calculation step were used as nega-
tive training data. The training and testing of the GLM was carried out similarly as in 
GIREMI [36]. The score of each mismatch was calculated using the GLM. A score cutoff 
was chosen to maximize the F1 value. By default, predicted editing sites were defined as 
those that passed the score cutoff. This cutoff is dataset-specific. Alternatively, the user 
can define a customized score cutoff to achieve a desired level of %A-to-G among the 
predicted editing sites. As noted in the Results, for datasets with acceptable quality, the 
%A-to-G increased nearly monotonically relative to the GLM scores. Note that the MI-
predicted editing sites were also scored by the GLM and only those that passed the score 
cutoff were retained.

Calculation of the Gini index of Alu editing

The Gini index was calculated for each Alu using the editing ratio of each read. For each 
Alu, all possible editing sites were identified using all the reads that covered the Alu. 
Then, for each read, the fraction of possible editing sites that were edited in this read was 
calculated, referred to as the editing ratio of the read. The editing ratios of all reads for 
each Alu were then used to calculate the Gini index (G). In order to speed up the calcu-
lation, the Gini index was calculated as half of the mean absolute difference normalized 
by the mean of editing ratios [62]:

where xi and xj are the relative editing ratios of the read i and j, respectively, and x is the 
mean of all the editing ratios. n is the total number of reads for the Alu. This calculation 
was also carried out for shuffled data (based on randomization of As and Gs at possible 
editing sites across reads).

Identification of RNA editing sites in short‑read RNA‑seq data

We obtained polyA-selected cytosolic short-read RNA-seq data for GM12878 from the 
ENCODE project (ID: ENCSR000COR (ENCLB555ANM)). The RNA-seq reads were 
aligned to the human reference genome (hg38) with HISAT2 [63]. We then identified 
RNA editing sites using the “genome-aware” strategy, where pre-filtering and a SNP fil-
ter were applied [36]. Downsampling of the original mapped BAM file was carried out 
to achieve a similar sequencing depth as the long-read data to enable a fair compari-
son (with read length accounted for; about 30 million reads retained for the short-read 
RNA-seq).

Double‑stranded RNA prediction

We applied a previously developed method to identify long dsRNAs harboring editing-
enriched regions (EERs) [54]. This method is based on the rationale that the observation 
of A-to-I editing in an endogenous RNA is proof that the RNA is double stranded in vivo 
because ADARs edit dsRNAs. Briefly, we identified EERs using known RNA editing sites 
[64]. Overlapping 50 bp windows (each with ≥ 3 editing sites) were combined and EERs 
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within 1 kb were classified as one EER. This distance allows formation of structures by 
distant binding partners. RNAfold was used to fold the EERs. Filters on minimum free 
energy and mismatch patterns were implemented to retain dsRNAs with > 200 bp stem 
length.

Experimental validation of allele‑specific editing via Sanger sequencing

Genomic DNA (gDNA) and total RNA were extracted from GM12878 cells using the 
Quick-DNA™ Miniprep kit (Zymo Research) and the Direct-zol™ RNA Miniprep Plus 
kit (Zymo Research), respectively, following the manufacturer’s protocols. Two micro-
grams of the total RNA was used to generate cDNA using the SuperScript™ IV First-
Strand Synthesis System (Invitrogen). Sequences + / − 100  bp flanking the mismatch 
site were amplified using the DreamTaq PCR Master Mix (2X) (Thermo Scientific). The 
primers used for each amplicon are provided in Additional file  2: Table  S3. The PCR 
amplicons were resolved in 1% agarose gel and the bands of desired sizes were cut out 
and purified using the Zymoclean™ Gel DNA Recovery Kit (Zymo Research). Following 
purification, the amplicons were sent for Sanger sequencing (GENEWIZ from Azenta) 
using one of the PCR primers. Sites with alternative alleles in both gDNA and cDNA 
were validated as SNPs. Those with both A and G in the cDNA but only A in the gDNA 
were validated as RNA editing sites.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 023‑ 03012‑w.

Additional file 1: Fig. S1. Overview of the Alzheimer’s disease (AD) data. Fig. S2. Summary of mismatches observed 
in the AD dataset. Fig. S3. The data quality and RNA editing sites in the GM12878 long‑read RNA‑seq datasets gener‑
ated by the Sequel II platform. Fig. S4. The data quality and RNA editing sites in the GM12878 long‑read RNA‑seq 
datasets generated by the Sequel platform. Fig. S5. Comparison of RNA editing sites identified in the short‑ and 
long‑read data of GM12878. Fig. S6. Cumulative distribution of mutual information of pairs of REDIportal editing 
sites or pairs of SNPs in the same gene. Fig. S7. Histogram of the MI for the editing site. Fig. S8. Histograms of the 
read coverage of detected dsRNAs in two datasets. Fig. S9. Pattern of region‑skipping and editing index of inverted 
Alu repeats.

Additional file 2: Table S1. Performance of L‑GIREMI in different types of regions of the Alzheimer’s Disease Brain 
dataset. Table S2. Performance of L‑GIREMI in different types of regions of the GM12878 dataset. Table S3. Primer 
sequences of validated sites.

Additional file 3: Peer review history.

Acknowledgements
We thank members of the Xiao laboratory for helpful discussions and comments on this work. We thank the ENCODE 
Project Consortium for generating the RNA‑seq datasets used in this study.

Review history
The review history is available as Additional file 3.

Peer review information
Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
Z.L. and X.X. conceived the study. Z.L. and G.Q.V developed the algorithm. Z.L., E.H., M.C. and F.R. conducted data analysis. 
T.F. conducted the experiments. X.X. and A.M. provided supervisory inputs. All authors contributed to the writing of the 
paper. The authors read and approved the final manuscript.

Funding
This work was supported in part by grants U01HG009417, R01MH123177 and R01CA262686 to XX, and UM1HG009443 
to AM.

Availability of data and materials
PacBio data derived from the brain sample of a patient with Alzheimer’s disease were downloaded from the PacBio web‑
site (https:// downl oads. pacbc loud. com/ public/ datas et/ Alzhe imer2 019_ IsoSeq/). PacBio data and short‑read RNA‑seq of 

https://doi.org/10.1186/s13059-023-03012-w
https://downloads.pacbcloud.com/public/dataset/Alzheimer2019_IsoSeq/


Page 16 of 18Liu et al. Genome Biology          (2023) 24:171 

GM12878 cells were downloaded from the ENCODE data portal (https:// www. encod eproj ect. org/). L‑GIREMI is available 
at https:// github. com/ gxiao lab/L‑ GIREMI [65] and Zenodo: https:// zenodo. org/ record/ 70632 10 [66].

Declarations

Ethics approval and consent to participate.
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 22 March 2022   Accepted: 12 July 2023

References
 1. Eisenberg E, Levanon EY. A‑to‑I RNA editing — immune protector and transcriptome diversifier. Nat Rev Genet. 

2018;19:473–90.
 2. Hough RF, Bass BL. Purification of the Xenopus laevis double‑stranded RNA adenosine deaminase. J Biol Chem. 

1994;269:9933–9.
 3. Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K. Purification and characterization of double‑stranded 

RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem. 1994;269:13480–9.
 4. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. A mammalian RNA editing enzyme. Nature. 

1996;379:460–4.
 5. O’Connell MA, Keller W. Purification and properties of double‑stranded RNA‑specific adenosine deaminase from calf 

thymus. Proc Natl Acad Sci. 1994;91:10596–600.
 6. Bass B, Weintraub H. A developmentally regulated activity that unwinds RNA duplexes. Cell. 1987;48:607–13.
 7. Nishikura K, Yoo C, Kim U, Murray JM, Estes PA, Cash FE, et al. Substrate specificity of the dsRNA unwinding/modify‑

ing activity. EMBO J. 1991;10:3523–32.
 8. Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. 

Cell. 1987;48:599–605.
 9. Polson AG, Crain PF, Pomerantz SC, McCloskey JA, Bass BL. The mechanism of adenosine to inosine conversion by 

the double‑stranded RNA unwinding/modifying activity: a high‑performance liquid chromatography‑mass spec‑
trometry analysis. Biochemistry. 1991;30:11507–14.

 10 Athanasiadis A, Rich A, Maas S. Widespread A‑to‑I RNA Editing of Alu‑Containing mRNAs in the Human Transcrip‑
tome. Marv Wickens, editor. PLoS Biol. 2004;2:e391.

 11. Bazak L, Haviv A, Barak M, Jacob‑Hirsch J, Deng P, Zhang R, et al. A‑to‑I RNA editing occurs at over a hundred million 
genomic sites, located in a majority of human genes. Genome Res. 2014;24:365–76.

 12. Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY. Is abundant A‑to‑I RNA editing primate‑specific? 
Trends Genet. 2005;21:77–81.

 13. Kim DDY, Kim TTY, Walsh T, Kobayashi Y, Matise TC, Buyske S, et al. Widespread RNA Editing of Embedded Alu Ele‑
ments in the Human Transcriptome. Genome Res. 2004;14:1719–25.

 14. Jain M, Jantsch MF, Licht K. The Editor’s I on Disease Development. Trends Genet. 2019;35:903–13.
 15. Li JB, Church GM. Deciphering the functions and regulation of brain‑enriched A‑to‑I RNA editing. Nat Neurosci. 

2013;16:1518–22.
 16. Eisenberg E. Proteome Diversification by RNA Editing. In: Picardi E, Pesole G, editors. RNA Ed. New York: Springer US; 

2021. p. 229–51. [cited 2022 Feb 16]. Available from: http:// link. sprin ger. com/ 10. 1007/ 978‑1‑ 0716‑ 0787‑9_ 14
 17. Rueter SM, Dawson TR, Emeson RB. Regulation of alternative splicing by RNA editing. Nature. 1999;399:75–80.
 18. Kapoor U, Licht K, Amman F, Jakobi T, Martin D, Dieterich C, et al. ADAR‑deficiency perturbs the global splicing 

landscape in mouse tissues. Genome Res. 2020;30:1107–18.
 19. Hsiao Y‑HE, Bahn JH, Yang Y, Lin X, Tran S, Yang E‑W, et al. RNA editing in nascent RNA affects pre‑mRNA splicing. 

Genome Res. 2018;28:812–23.
 20. Brümmer A, Yang Y, Chan TW, Xiao X. Structure‑mediated modulation of mRNA abundance by A‑to‑I editing. Nat 

Commun. 2017;8:1255.
 21. Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, et al. Adenosine‑to‑inosine RNA editing 

controls cathepsin S expression in atherosclerosis by enabling HuR‑mediated post‑transcriptional regulation. Nat 
Med. 2016;22:1140–50.

 22. Morita Y, Shibutani T, Nakanishi N, Nishikura K, Iwai S, Kuraoka I. Human endonuclease V is a ribonuclease specific for 
inosine‑containing RNA. Nat Commun. 2013;4:2273.

 23. Nishikura K. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol. 
2006;7:919–31.

 24. Wulff B‑E, Nishikura K. Modulation of MicroRNA Expression and Function by ADARs. In: Samuel CE, editor. Adenosine 
Deaminases Act RNA ADARs ‑‑ Ed Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 91–109. [cited 
2022 Jan 27]. Available from: http:// link. sprin ger. com/ 10. 1007/ 82_ 2011_ 151

 25. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, et al. RNA editing by ADAR1 prevents MDA5 
sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–20.

 26. Patterson JB, Samuel CE. Expression and regulation by interferon of a double‑stranded‑RNA‑specific adenosine 
deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995;15:5376–88.

https://www.encodeproject.org/
https://github.com/gxiaolab/L-GIREMI
https://zenodo.org/record/7063210
http://link.springer.com//10.1007/978-1-0716-0787-9_14
http://link.springer.com/10.1007/82_2011_151


Page 17 of 18Liu et al. Genome Biology          (2023) 24:171  

 27. Kim S, Ku Y, Ku J, Kim Y. Evidence of Aberrant Immune Response by Endogenous Double‑Stranded RNAs: Attack 
from Within. BioEssays. 2019;41:1900023.

 28. Baysal BE, Sharma S, Hashemikhabir S, Janga SC. RNA Editing in Pathogenesis of Cancer. Cancer Res. 2017;77:3733–9.
 29. Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med. 

2019;17:319.
 30. Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci. 2018;11:163.
 31. Bahn JH, Lee J‑H, Li G, Greer C, Peng G, Xiao X. Accurate identification of A‑to‑I RNA editing in human by transcrip‑

tome sequencing. Genome Res. 2012;22:142–50.
 32. Peng Z, Cheng Y, Tan BC‑M, Kang L, Tian Z, Zhu Y, et al. Comprehensive analysis of RNA‑Seq data reveals extensive 

RNA editing in a human transcriptome. Nat Biotechnol. 2012;30:253–60.
 33. Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB. Accurate identification of human Alu and non‑Alu RNA editing 

sites. Nat Methods. 2012;9:579–81.
 34. Park E, Williams B, Wold BJ, Mortazavi A. RNA editing in the human ENCODE RNA‑seq data. Genome Res. 

2012;22:1626–33.
 35. Mansi L, Tangaro MA, Lo Giudice C, Flati T, Kopel E, Schaffer AA, et al. REDIportal: millions of novel A‑to‑I RNA editing 

events from thousands of RNAseq experiments. Nucleic Acids Res. 2021;49:D1012–9.
 36. Zhang Q, Xiao X. Genome sequence‑independent identification of RNA editing sites. Nat Methods. 2015;12:347–50.
 37. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X‑J, et al. Comprehensive comparison of Pacific 

Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 
2017;6:100.

 38. Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo‑Palacios FJ, del Risco H, et al. SQANTI: extensive characteriza‑
tion of long‑read transcript sequences for quality control in full‑length transcriptome identification and quantifica‑
tion. Genome Res. 2018;28:396–411.

 39 Dong X, Tian L, Gouil Q, Kariyawasam H, Su S, De Paoli‑Iseppi R, et al. The long and the short of it: unlocking 
nanopore long‑read RNA sequencing data with short‑read differential expression analysis tools. NAR Genomics 
Bioinforma. 2021;3:lqab028.

 40. Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta‑Robinson E, Wu CJ, et al. Full‑length transcript characteriza‑
tion of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun. 
2020;11:1438.

 41. Wyman D, Balderrama‑Gutierrez G, Reese F, Jiang S, Rahmanian S, Forner S, et al. A technology‑agnostic long‑read 
analysis pipeline for transcriptome discovery and quantification. Genomics; 2019. Available from: http:// biorx iv. org/ 
lookup/ doi/ 10. 1101/ 672931

 42 Li H. Minimap2: pairwise alignment for nucleotide sequences. Birol I, editor. Bioinformatics. 2018;34:3094–100.
 43. Lee J‑H, Ang JK, Xiao X. Analysis and design of RNA sequencing experiments for identifying RNA editing and other 

single‑nucleotide variants. RNA. 2013;19:725–32.
 44. Quinones‑Valdez G, Tran SS, Jun H‑I, Bahn JH, Yang E‑W, Zhan L, et al. Regulation of RNA editing by RNA‑binding 

proteins in human cells. Commun Biol. 2019;2:19.
 45. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human genomes to 

characterize benchmark reference materials. Sci Data. 2016;3: 160025.
 46. Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O’Connell MA, et al. Identifying RNA editing sites using RNA 

sequencing data alone. Nat Methods. 2013;10:128–32.
 47. Roth SH, Levanon EY, Eisenberg E. Genome‑wide quantification of ADAR adenosine‑to‑inosine RNA editing activity. 

Nat Methods. 2019;16:1131–8.
 48. Paz‑Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob‑Hirsch J, et al. Adenosine‑to‑inosine RNA editing 

shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A. 2010;107:12174–9.
 49. Duan Y, Dou S, Zhang H, Wu C, Wu M, Lu J. Linkage of A‑to‑I RNA Editing in Metazoans and the Impact on Genome 

Evolution. Mol Biol Evol. 2018;35:132–48.
 50. Moldovan MA, Chervontseva ZS, Nogina DS, Gelfand MS. A hierarchy in clusters of cephalopod mRNA editing sites. 

Sci Rep. 2022;12:3447.
 51. Zhou Z‑Y, Hu Y, Li A, Li Y‑J, Zhao H, Wang S‑Q, et al. Genome wide analyses uncover allele‑specific RNA editing in 

human and mouse. Nucleic Acids Res. 2018;46:8888–97.
 52. Osenberg S, Dominissini D, Rechavi G, Eisenberg E. Widespread cleavage of A‑to‑I hyperediting substrates. RNA N Y 

N. 2009;15:1632–9.
 53. Cocquet J, Chong A, Zhang G, Veitia RA. Reverse transcriptase template switching and false alternative transcripts. 

Genomics. 2006;88:127–31.
 54. Blango MG, Bass BL. Identification of the long, edited dsRNAome of LPS‑stimulated immune cells. Genome Res. 

2016;26:852–62.
 55. Holmqvist I, Bäckerholm A, Tian Y, Xie G, Thorell K, Tang K‑W. FLAME: Long‑read bioinformatics tool for comprehen‑

sive spliceome characterization. RNA. 2021;27:1127–39.
 56. Tian L, Jabbari JS, Thijssen R, Gouil Q, Amarasinghe SL, Voogd O, et al. Comprehensive characterization of single‑cell 

full‑length isoforms in human and mouse with long‑read sequencing. Genome Biol. 2021;22:310.
 57. Nguyen TA, Heng JWJ, Kaewsapsak P, Kok EPL, Stanojević D, Liu H, et al. Direct identification of A‑to‑I editing sites 

with nanopore native RNA sequencing. Nat Methods. 2022;19:833–44.
 58. Porath HT, Carmi S, Levanon EY. A genome‑wide map of hyper‑edited RNA reveals numerous new sites. Nat Com‑

mun. 2014;5:4726.
 59. Rodriques SG, Chen LM, Liu S, Zhong ED, Scherrer JR, Boyden ES, et al. RNA timestamps identify the age of single 

molecules in RNA sequencing. Nat Biotechnol. 2020 [cited 2020 Oct 20]; Available from: http:// www. nature. com/ 
artic les/ s41587‑ 020‑ 0704‑z

 60. Houseley J, Tollervey D. Apparent non‑canonical trans‑splicing is generated by reverse transcriptase in vitro. PLoS 
ONE. 2010;5: e12271.

http://biorxiv.org/lookup/doi/10.1101/672931
http://biorxiv.org/lookup/doi/10.1101/672931
http://www.nature.com/articles/s41587-020-0704-z
http://www.nature.com/articles/s41587-020-0704-z


Page 18 of 18Liu et al. Genome Biology          (2023) 24:171 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics. 2009;25:2078–9.

 62. Sen A, Foster J. On Economic Inequality. Oxford University Press; 1973 [cited 2023 Jun 20]. Available from: https:// 
doi. org/ 10. 1093/ 01982 81935. 001. 0001

 63. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph‑based genome alignment and genotyping with HISAT2 and 
HISAT‑genotype. Nat Biotechnol. 2019;37:907–15.

 64. Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDI‑
tools and REDIportal. Nat Protoc. 2020;15:1098–131.

 65. Liu Z, Quinones‑Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L‑GIREMI uncovers RNA editing 
sites in long‑read RNA‑seq. 2023. https:// github. com/ gxiao lab/L‑ GIREMI.

 66. Liu Z, Quinones‑Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L‑GIREMI uncovers RNA editing 
sites in long‑read RNA‑seq. 2023. https:// doi. org/ 10. 5281/ zenodo. 70632 10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/0198281935.001.0001
https://doi.org/10.1093/0198281935.001.0001
https://github.com/gxiaolab/L-GIREMI
https://doi.org/10.5281/zenodo.7063210

	L-GIREMI uncovers RNA editing sites in long-read RNA-seq
	Abstract 
	Background
	Results
	Overview of the L-GIREMI method
	Performance evaluation of L-GIREMI
	Identification of RNA editing sites with data of different PacBio platforms
	Comparison of RNA editing sites identified in short and long reads
	Co-occurrence of RNA editing sites
	Allele-specific RNA editing events detected by L-GIREMI
	dsRNA structures likely affect long-read coverage

	Discussion
	Conclusions
	Methods
	Mapping of reads using minimap2
	The L-GIREMI analysis steps
	Correction of read orientation
	Collection of mismatches
	Calculation of mutual information among mismatch sites
	Scoring of mismatches via a GLM

	Calculation of the Gini index of Alu editing
	Identification of RNA editing sites in short-read RNA-seq data
	Double-stranded RNA prediction
	Experimental validation of allele-specific editing via Sanger sequencing

	Anchor 25
	Acknowledgements
	References


