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« Lung Cancer Mortality: Lung cancer remains the leading cause of cancer-related deaths globally. Various machine learning models were trained on the NLST dataset
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clinical information, potentially limiting their effectiveness.
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: . : : ' Education (high school) -*— =
with clinical features from the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening 2. Only extracted imaging features Srmoking status ‘ 3
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SHAP (SHapley Additive exPlanations) values represent the impact
Feature Extraction Receiver Operating Characteristic (ROC) Curve of each feature on the output of a machine learning model. Red dots
Imagin 1.0 1 7 represent high values, blue dots, low.
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