Structure of the Native Doublet Microtubule from Trichomonas vaginalis Reveals Parasite-specific Proteins as Potential Drug Targets

UCLA QCBio

Alexander Stevens^{1,2,3,4}, Saarang Kashyap^{1,2,5}, ETHAN CROFUT^{1,2,5}, Edward Wang¹, Patricia Johnson¹, and Hong Zhou^{1,2,6}

1. Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA; 2. California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA; 3. Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA ; 4. Biochemistry, Molecular and Structural Biology (BMSB) Graduate Program, UCLA ; 5. BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA; 6. Electron Imaging Center for Nanomachines, UCLA

Abstract

Doublet microtubules (DMTs) are flagellar components required for the parasite *Trichomonas vaginalis* (*Tv*) to swim through the human genitourinary tract and cause trichomoniasis, the most common non-viral sexually transmitted disease. The lack of high resolution DMT structures has prevented structure-guided drug design to manage Tv infection. Here, we determined the cryoelectron microscopy structure of native Tv DMTs, identifying 29 unique proteins, including 18 microtubule inner proteins and 9 microtubule outer proteins. Notably, the parasite-specific proteins TvFAP35 and TvFAP40 form filaments at the DMT junctions, providing structural stability important for Tv locomotion. Additionally, TvFAP40 has a small molecule coordinated within a charged binding pocket, which may be targeted by an inhibitor. These structural findings shed light on the diversity of flagellar adaptations and provide a framework to inform rational design of therapeutics.

FAP35 is a Key Player in Outer Junction Stability and Organization

Cryo-electron microscopy of doublet microtubules

High resolution structure

revealed new proteins

Fig 2A, Sagittal cross-section of microtubule doublet focused on the outer junction; Fig 2B, model view of Fig2A cross section with FAP35 at the outer junction, **Fig2C**, interactions of FAP35 with tubulin protofilament; Fig2D, electrostatic and hydrophobic interactions that facilitate end to end association of FAP35; Fig2E, FAP35 and FAP77 association via hydrogen bonding.

FAP40 Restructures the Inner Junction of Microtubule Doublet and is Structurally Similar to Other Uncharacterized Proteins in Pathogenic Protists

FAP52 PACRGB Rib72 FAP45 FAP9 FAP53 PACRGA FAP45 RIBMIP $F\Delta P12$ FAP20 Enkurin CCDC173 FAP67 FAP77 FAP127 FAP40 FAP35 B-MIP1 Rib43a BMIP2 FAP161 FAP21

*DUF > Domain of Unknown Function *CCDC > Coiled-Coil Domain Containing Protein *Rib > Ribbon Associating MIP *FAP > Flagellar Associated Protein *UD > Unidentified Fig 1A, Front View of 48-nm repeating doublet microtubule, highlighting 19 conserved and novel MIPs; Fig1B, Phylogeny tree of example organisms with comparisons of their DMTs (bottom) with tubulin (white), conserved flagellar associated proteins (FAPs) (grey), and species-specific FAPs (colored); **Fig1C**, Cross-section through DMT with view orthogonal to filament axis, highlighting B-tubule ribbon proteins.

4. Nia, Shervin. (2023). bioviewer.net (v1.0) [Source code]. Zenodo. doi: 10.5281/zenodo.10152797

Figures created with Adobe Illustrator, BioRender.com, and UCSF ChimeraX.

We gratefully acknowledge the financial support from the National Institutes of Health (R01AI094386 to Z.H.Z). A.S. received support from NIH Ruth L. Kirschtein National Research Service Award AI007323. EM facilities are supported, in part, by National Science Foundation (DBI-1338135 and DMR-1548924 to Z.H.Z) grants. We acknowledge the Undergraduate Research Scholars Program at the University of California, Los Angeles and the Bruins in Genomics Program for providing financial support for this research.