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Background Challenge Approach Conclusion

A Equivariancés aspecialproperty of functions that A Forbioimagingtasks, there exist additional, more A Moment kernels, a novel kind of convolutional A Our benchmarking results revealed the moment
specify a predictable relationship between complex symmetries in the data that classical CNN kernel equivariant to reflections and rotations were kernel approach improved accuracy metrics by a fe
transformations from a given input to an output. approaches are unable to exploit. benchmarked on thdedMNISTdataset against percent over alternatives on most datasets with

A Convolutional neural networks (CNNs), which are A Existing methods of achieving equivariance to classical CNNs and existing equivariant frameworks. rotational symmetry. | |
inherently translationally equivariant, are widely group actions beyond translations are A Moment kernels were used with the Allen Brain A Our new approach to analyzing ABC helps in
used in manyatural imagecontexts for their computationally expensive and unscalable to Cell AtlasABC) to perform classification and understanding how tissues emerge out of mixtures

ability to learncomplexpatterns higher dimensions, limiting their adoption. segmentation on spatidaranscriptomics data. of cells and may benefit from these symmetries.
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I I Figure6. lllustration of cells in the ABC atlas, assigned to different tissue types at different levels of granularity
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Figure 2Input BloodMNISTmage, and visualization of equivariance tcdree rotations of randomly sampled
feature maps at the first layer of a CNN implemented with moment kernels under the trivial irreducible represent
(top row), and a norequivariant CNN model (bottom row). Under the definition of equivariance, there should be n
difference between directly passing the input through the model and applying a transformation to the input, follo
by applying the inverse transformation to the model's output (right column).
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Modelsunder this representation achieve equivariance via scalar and vector mappings. 0 Vanillac 4 q .
using the trivial
Tablg.l.The number of channeisere 0.5 representation (scalar

Accuracy

specified such that models had
approximately the same number of
Trivial Moment Kernel 55 1554527 parameters as the default CNN. Each .

mappings only) vs. a non

Trivial Irreducible Moment Kernel 58 (29 scalars + 29 vectors 1565621 S
equivariant CNN at

o
IS

Trivial Irreducible ECNN 62 (31 scalars + 31 vectors 1562221 model consists of 5 layers which 0.3 / = ~ _different_ rotations of
Trivial ECNN 67 1540404 progressively double the nurmber of | mages inthe OCTMNIST . o8 Segmentation of ABC dataset ROIs at the level of divisions witeglike architecture
via channels. Equivariant CNN (ECNN) . - 100 150 o0 - 500 .o dataset. J N . . . . . o
Regular ECNN 29 1500090 models were implemented using the Rotation Angle using moment kernels with the trivial representation (scalar mappings) and usingquvariant
CNN 32 1574151 ESCNN library released by Qualcomm convolution. The original image (left) is displayed with only cell derisitg 0" of 501 channels.
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