# INFERRING CORTICAL NETWORK STRUCTURE FROM PATTERNS OF CORRELATED ACTIVITY ACROSS CELL TYPES

### Marcello Berger<sup>1,2,\*</sup>, Kate Jackson<sup>1,3,\*</sup>, Matteo Mariani<sup>4</sup>, Timothy Lindsey<sup>4,5</sup>, Mario Dipoppa<sup>4,†</sup>

<sup>1</sup>B.I.G. Summer Program, Institute for Quantitative and Computational Biosciences, UCLA, <sup>2</sup>Department of Mathematics, Williams College, <sup>3</sup>Department of Computer Science, UCSD, <sup>4</sup>Department of Neurobiology, David Geffen School of Medicine, UCLA, <sup>5</sup>Bioinformatics Interdepartmental Program, UCLA, \*contributed equally, \*senior author

- interpretable and computationally efficient









**B.** Metropolis-Hasting algorithm accurately estimates network **parameters.** Barplots: Marginal distributions of the inferred posterior. Heatmaps: Pairwise inferred gaussian KDE posterior distribution. Scatterplots: Pairwise posterior samples colored by likelihood.

## **5. CORRELATIONS OF INFERRED NETWORK**

![](_page_0_Figure_24.jpeg)

**A. Inferred parameters reproduce** correlations derived by theoretical **model.** Correlation in excitatory and inhibitory activity remains consistent between inferred and ground truth parameters.

## DISCUSSION

- Dialogue between experimental and theoretical research: Inference algorithm extracts network structure from data
  - Correlation model used to develop theories on how network structure influences correlations in activity between cell types
- Theories are tested and validated by experimentalists Future directions:
- Expand our methods to account for multiple inhibitory cell types • Use gradient descent to more efficiently explore parameter space

## REFERENCES

Keller et al. (2020). A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex. Neuron, 108(6), 1181– 1193.e8. https://doi.org/10.1016/j.neuron.2020.11.013 Karnani et al. (2016). Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 90(1), 86–100. <u>https://doi.org/10.1016/j.neuron.2016.02</u>.037

![](_page_0_Picture_33.jpeg)