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alighment-free approach reduces computation time and resource relatively high mappability scores (Figure 4), indicating that the
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mer counting could be more feasible and enable quicker diagnosis
in healthcare settings.

(Figure 3a) involves aligning the sequenced reads to the human
genome before applying peak calling to compute genomic region
counts for each sample. The alignment-free pipeline (Figure 3b)
incorporated the Jellyfish library in order to create a matrix of
11-mer counts. In order to visualize the matrices and portray any
clustering, we used dimensionality reduction to produce UMAPs
of both the alignment and alignment-free data (Figure 4).
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DNA methylation signatures in cell-free DNA have promising
clinical applications to classify tumors as either cancerous or non- RESULTS
cancerous through an alignment pipeline using MeDIP-Seq datal?
(Figure 1). MeDIP-Seq is derived from cell-free DNA; the plasma
provides the clinical advantage of being easily accessible when
tissue samples are insufficient or unavailable. Plasma cfDNA is
also particularly relevant to studying distinctive DNA features of
tumors, as the rapid cell growth and death that accompanies most
cancers will increase the plasma levels of cfDNA. MeDIP-Seq
involves immunoprecipitation of CpG methylated DNA, which are
then typically aligned to the genome.
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Figure 7: 7a) ROC Curve with LOOCV for alignment pipeline. 7b) Confusion matrix with
accuracy of 66.13% for alignment pipeline. 7c) Top 10 regions and their corresponding

model coefficient for alignment pipeline. 7d) ROC Curve with 15-fold for alignment-free
pipeline. 7e) Confusion matrix with accuracy of 79.36% for alignment-free pipeline. 7f) Top
10 k-mers and their corresponding coefficient for alignment-free pipeline.

Figure 4: Violin plot of mappability scores
from aligned MeDIP-seq data.
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The MeDIP-Seq data that we used included colorectal cancer . o : result in a reduction of 105.94 hours, or 85%.
patients (CRC, n=30) and non-cancer control (NC, n=33). The 1 . e o | | | e Fine-tuning of the L1 regression model, as well as

patients are of varying adult ages, are distributed by gender, and
the CRC patients have various stages of cancer (Figure 2).

exploration of various other types of classification
techniques, will have monumental implications in clinical
settings, where cfDNA can be used in conjunction with
these machine learning models to assess risk and diaghose
patients with colorectal colon cancer.
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