Multi-omics analysis of BRPF1 mutations in rare disease
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Background

Bromodomain and PHD finger-containing protein 1 (BRPFT) is an epigenetic ‘reader’ and
scaffolding protein that forms a complex with the lysine acetyltransferases KAT6/B and
accessory proteins to facilitate histone acetylation at H3K23, H3K14, and H3K9, increasing
chromatin accessibility and gene expression.

De novo, pathogenic mutations in BRPFT result in a rare neurodevelopmental disorder,
Intellectual Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP,
OMIM#617333).
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Figure 1: BRPF1 facilitates lysine acetyltransferase (KAT) activity at histone and non-histone proteins. A) As a chromatin
reader, BRPF1 forms a tetrameric complex with KAT6A/B and accessory proteins to facilitate histone acetylation at H3K23,
H3K14, and H3K9. B) Germline mutations in BRPFT result in a rare neurodevelopmental disorder known as Intellectual
Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP). Approximately 60 cases of IDDDFP are reported in the
literature.

The specific molecular mechanism linking BRPF71 mutations to disease is not well
understood. To this end, we developed clonal BRPF1-reporter Schwann cell models that
recapitulate pathogenic mutations in BRPFT1 endogenously: p.Q96*, p.Y713*, and p.C998Afs*73.
These lines were subsequently used to profile the effect of BRPF7 mutations on the epigenome
and transcriptome via multi-omics assays such as ATAC-seq, RNA-seq, and CUT&RUN.
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BRPF1 mutations dysregulate the epigenome and transcriptome
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Figure 4: BRPF1 mutations drive dysregulation of expression and transcription of HOXA cluster genes and other genes associated with key developmental
pathways. Epigenomic data from BRPF7-mutated samples compared to controls shows regulation of HOXA cluster genes and GJA5. A) Integration of
chromatin accessibility (ATAC-seq, X-axis) and gene expression (RNA-seq, Y axis) data derived from BRPFT-HiBiT Schwann cells that were edited to reflect
pathogenic mutations in BRPF1 (controls n=6, cases n=6). Differentially expressed peaks or genes are marked in red (Bonferroni p-adj<0.05 and |log2 fold
change (FC)[>0.58). 155 unique targets were dysregulated across both datasets (center). Genes associated with the HOXA cluster and other key developmental
pathways are labeled. B) ATAC-seq and RNA-seq gene ontology highlights enrichment of genes related to development and cell signaling. C) (i) bigWig coverage
tracks for ATACseq across GJAS5. (ii) bigWig coverage tracks for ATACseq across the HOXA cluster.

Conclusions and Future Directions
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Figure 7: Validation of H3K9ac and H3K14ac antibodies for CUT&RUN. A) Total peak count for the
H3K4me3 (positive control), H3K9ac, and H3K14ac antibodies relative to IgG antibody (negative control) (i,

factor start sites (TSS). Example tornado plots in the the Schwann cell line with the BRPFT mutation
p.C998Afs*73 assessing the H3K4me3, H3K9ac, and H3K14ac antibodies (i, ii, iii, respectively).

 BRPF1 mutations result in epigenetic and transcriptional dysregulation of the HOXA cluster of
genes, SEPR2, and GJASY, involved in key developmental pathways.

* Pilot assay validates H3K9ac and H3K14ac antibodies for CUT&RUN.

« BRPF1 mutations alter H3K9ac and H3K14ac at HOXAQ3, suggesting impaired reader
function.

* Future directions include the optimization of additional antibodies for CUT&RUN.
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Figure 8: Pilot CUT&RUN assay identifies altered H3K9 and H3K14 acetylation at HOXA3 upon BRPF1
mutation. A) BigWig coverage tracks for CUT&RUN H3K9ac antibody bound control and mutated samples
across HOXA3. B) BigWig coverage tracks for CUT&RUN H3K14ac antibody bound control and mutated
samples across HOXAS3.




