
Article
Single-cell stimulus-respo
nse gene expression
trajectories reveal the stimulus specificities of
dynamic responses by single macrophages
Graphical abstract
Highlights
d Imputation of stimulus-induced single-cell gene expression

trajectories (scGETs)

d Trajectory features reveal unexpected stimulus specificity in

macrophage responses

d Expression integrals identify cell-cell correlations and co-

regulated gene sets

d Stimulus-response expression trajectories readily

characterize cell functional states
Sheu et al., 2024, Molecular Cell 84, 4095–4110
November 7, 2024 ª 2024 The Author(s). Published by Elsevier I
https://doi.org/10.1016/j.molcel.2024.09.023
Authors

Katherine M. Sheu, Aditya Pimplaskar,

Alexander Hoffmann

Correspondence
ahoffmann@ucla.edu

In brief

Because RNA measurements are cell

destructive, it is unclear how variable

stimulus-induced dynamic gene

expression trajectories (GETs) are. Sheu

et al. developed a method to assess

single-cell gene expression trajectories

(scGETs) in macrophages responding to

stimuli and found scGETs to be much

more informative than any single time-

point measurement.
nc.
ll

mailto:ahoffmann@ucla.�edu
https://doi.org/10.1016/j.molcel.2024.09.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2024.09.023&domain=pdf


OPEN ACCESS

ll
Article

Single-cell stimulus-response gene expression
trajectories reveal the stimulus specificities
of dynamic responses by single macrophages
Katherine M. Sheu,1 Aditya Pimplaskar,1 and Alexander Hoffmann1,2,*
1Department of Microbiology, Immunology, andMolecular Genetics, and Institute for Quantitative and Computational Biosciences, University

of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
2Lead contact

*Correspondence: ahoffmann@ucla.edu
https://doi.org/10.1016/j.molcel.2024.09.023
SUMMARY
Macrophages induce the expression of hundreds of genes in response to immune threats. However, current
technology limits our ability to capture single-cell inducible gene expression dynamics. Here, we generated
high-resolution time series single-cell RNA sequencing (scRNA-seq) data from mouse macrophages re-
sponding to six stimuli, and imputed ensembles of real-time single-cell gene expression trajectories
(scGETs). We found that dynamic information contained in scGETs substantially contributes to macrophage
stimulus-response specificity (SRS). Dynamic information also identified correlations between immune
response genes, indicating biological coordination. Furthermore, we showed that the microenvironmental
context of polarizing cytokines profoundly affects scGETs, such that measuring response dynamics offered
clearer discrimination of the polarization state of individual macrophage cells than single time-point
measurements. Our findings highlight the important contribution of dynamic information contained in the
single-cell expression responses of immune genes in characterizing the SRS and functional states of
macrophages.
INTRODUCTION

Macrophages are immune sentinel cells that deploy their diverse

functions in response to exposure to pathogens or activating

stimuli.1,2 Immune response genes not only differ in the magni-

tudes of induction but also show distinctive temporal dynamics

evident in the gene expression trajectory (GET). GETs reveal

that some genes respond rapidly and often transiently, with

others being delayed constituting a second phase and still others

being activated into a near permanent state.3–5 These diverse

dynamics relate to phasing different immune functions, starting

with the initiation of tissue inflammation and ending in resolution

and wound healing.6

Recent studies have furthermore revealed that macrophage

responses are stimulus specific as evidenced by transcriptomic

response to stimulation with defined pathogen-associated mo-

lecular patterns (PAMPs) or cytokines.7 Indeed, the stimulus-

response specificity (SRS) of macrophages, which describes

how tightly regulated is the deployment of only stimulus-appro-

priate immune functions, is thought to be a functional hallmark of

healthy macrophages.8 Yet, quantifying the SRS of gene expres-

sion responses is challenging as it requires not only measures of

the heterogeneity of cells but also their full GETs over the time

course.
Molecular Cell 84, 4095–4110, Novem
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Thus far, studies of inducible GETs at the transcriptome level

have largely been confined to bulk assays of a population of cells

given the destructive nature of single-cell RNA sequencing

(scRNA-seq).9–11 Thus attempts to quantify SRS of gene expres-

sion responses have been confined to single time-point snapshot

assays, which revealed that SRS is affected by microenviron-

mental context either via defined polarizing cytokines or the un-

defined milieu of obese and aged mice.12 But they also showed

that single cellswithin a population showsubstantial heterogene-

ity in gene expression and that much stimulus information is lost,

presumably for two reasons: (1) snapshot expression values do

not allow us to consider dynamic trajectory features of GETs,

and (2) technical noise of the assay could not be mitigated by

repeated sampling of the same cell. In contrast, recent single-

cell signaling studies, enabled by fluorescent reporter proteins

and non-destructive live-cell imaging, have shown that there

is substantial SRS information in the temporal dynamics of nu-

clear factor kB (NF-kB) and mitogen-activated protein kinase

(MAPK)13–15 and that these are modulated by polarizing cyto-

kines.16 Yet these studies only report on one or two signaling in-

termediates rather than the hundreds of immune response genes

that are also subject to chromatin epigenetic heterogeneity.

Studying stimulus-response GETs at the single-cell level is

particularly important inmacrophages, as they generally function
ber 7, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 4095
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Figure 1. Mechanistic models simulate the full trajectories of single-cell gene expression responses

(A) Schematic of single-cell signaling activity used as signal-dependent transcription factor (SDTF) inputs into the mathematical models of gene expression.

Single-cell signaling activity trajectories were derived from measured averages.10

(B) Mathematical models are used to simulate unique genes with different gene regulatory mechanisms (GRMs) and activation/degradation characteristics.

Transcriptional activation and mRNA degradation rates are determined by three parameters, the dissociation constant KD (affinity KTF = 1=KD), the Hill coefficient

n, and the mRNA degradation rate kdeg, as described by Cheng et al.10

(C) Example single-cell gene expression trajectories (scGETs) simulated from the models described in (B). Five example genes are shown that have different

GRMs, with 50 single-cell trajectories shown per gene. Genes were defined by the following parameters (genes shown have parameters taken from GRM cluster

averages determined in Cheng et al.10): AP1-regulated gene (n = 1, KTF,AP1 = 0.48, mRNA half-life 30 min); NF-kB-regulated gene (n = 1, KTF,NF-kB = 1.3, mRNA

half-life 30 min); NF-kB|p38-regulated gene (n = 1, KTF,NF-kB = 1.3, mRNA half-life p38 dependent [Figure S1B]); NF-kB|IRF-regulated gene (n = 1, KTF,NF-kB = 1.3,

KTF,IRF = 1.25, mRNA half-life 30 min, governed by OR gate regulatory logic); and IRF-regulated gene (n = 1, KTF,IRF = 1.25, mRNA half-life 30 min).

(legend continued on next page)
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as individuals rather than within homotypic assemblages. Thus,

aberrant outlier responses by individual cells may drive pathol-

ogy, such as the failure to resolve the inflammation associated

with an immune response event. Indeed, the need for studying

single-cell GETs (scGETs) is broadly appreciated and new

experimental modalities have been pioneered but comewith lim-

itations: Fluorescent reporters of mRNA abundance require ge-

netic perturbation of the chromosomal locus and are limited to

one or two genes at a time.17–21 Microscopically sampling cyto-

plasmic RNA repeatedly from the same cell requires long recov-

ery times and is associated with unavoidable technical noise.22

Metabolic labeling allows for measurements of mRNA synthesis

rate and abundance,23 but it does not quantify GETs that allows

determination of dynamic features.

Can scGETs be computationally inferred from scRNA-seq

data? Multiple computational methods identify GETs across

pseudotime, by leveraging the heterogeneity of expression

states to order cells along a pseudotime axis. Pseudotime has

been applied to understand biological processes such as cell dif-

ferentiation,24 disease courses,25,26 or progressive changes in

immune cell gene expression after stimulation27 (Table S1). How-

ever, pseudotime approaches cannot provide scGETs of macro-

phage stimulus responses where cells respond to a perturbation

with gene expression dynamics that are more rapid than the het-

erogeneity in their timing.

Here, to study the SRS of macrophage gene expression re-

sponses to immune stimuli, we developed an experimental

workflow and computational approach to impute the ensemble

of true-time scGETs. We evaluated the scGET imputation

approach using hundreds of scGETs simulated from mathemat-

ical models, such that the ground truth is known. We then

applied the method to new single-cell datasets of immune

response genes across thousands of macrophages of three po-

larization states, whose expression is measured over five time

points after stimulation with six distinct pathogen or cytokine

stimuli. We found that trajectory expression features from indi-

vidual macrophage cells were much more informative about

the stimulus than single time-point measurements. The trajec-

tory features of distinct combinations of genes are coordinated

to provide stimulus distinction, and the differences in gene reg-

ulatory mechanisms (GRMs) (for example, between Nfkbia and

Tnf) were more apparent when considering trajectory integrals

rather than time-point data. Polarizing cytokine microenviron-

ments altered the dynamics and variation in macrophage-induc-

ible gene expression, such that individual cell functional states

could be characterized more precisely than with single time-

point measurements.

RESULTS

Simulating the dynamics of scGETs
Single-cell signaling studies of macrophages have captured the

inducible dynamics of transcription factor or kinase activity via
(D) scGETs can be decomposed into dynamical features (arbitrary units [a.u.]; sc

(E) Violin plots showing the single-cell distributions of dynamical feature values f

(F) Gene-gene correlation of the Integral values across single cells are indicative

genes as C). Bottom: same NF-kB-regulated gene vs. NF-kB|IRF-regulated gene
live-cell microscopy.13,28–31 The features of these signaling pro-

tein trajectories are dependent on the stimulus but also exhibit

cell-to-cell heterogeneity (Figure 1A).10,14 Yet, within each cell,

the dynamic activity of signaling proteins results in the further

downstream activation of hundreds of unique genes. To explore

what dynamic gene expression might look like in single cells, we

constructed and simulated mathematical models of immune

response genes informed by prior literature, each with their syn-

thesis and degradation rates regulated by gene-specific param-

eters and the previously measured activities of signaling effector

molecules after lipopolysaccharide (LPS) stimulation (Figures

S1A and S1B).10,32,33 Genes were classified into five previously

characterized GRMs (genes regulated by Activator Protein-1

[AP1], NF-kB, interferon regulatory factor [IRF], NF-kB|p38, or

NF-kB|IRF),10,12,32 where genes within each GRM differed in

which effectors controlled their activation and degradation (Fig-

ure 1B). Each of the six stimuli activated signaling effectors

with stimulus-specific dynamics (Figure S1C). In response to

LPS, the resulting simulations illustrated the full induction dy-

namics of 200 unique genes for each individual cell, with cell-

to-cell heterogeneity derived from single-cell signaling heteroge-

neity (Figures 1C and S1A).

To quantify the dynamical patterns of gene expression, we

considered a set of metrics that characterizes GETs: relative

peak amplitude (Peak Amp), maximum log fold change from

time zero (Max LFC), total expression over the time course (Inte-

gral), and activation speed (Speed) (Figure 1D; Table S2). Calcu-

lating these features for the simulated ground truth scGETs sum-

marized the single-cell heterogeneity of trajectories with a set of

interpretable values (Figure 1E). Notably, as each cell contains

the trajectories of hundreds of genes, gene-gene correlations

across single cells can be determined. As expected, across sin-

gle cells, genes that were regulated by GRMs that shared tran-

scription factors had highly correlated trajectory features, while

genes that are regulated by different transcription factors were

less correlated (Figure 1F).

An imputation method identifies scGETs from time
series data
To determine whether scGETs can be imputed from scRNA-seq

time series data, we developed amethod that encompasses two

distinguishing steps: direct linkage of measured cells across

adjacent time points and interpolation across unmeasured

time frames (Figure 2A). Similar to other scRNA-seq analysis

methods,34–37 we employed principal-component analysis

(PCA) on data from all time points, with the goal of assembling

individual cell trajectories before then recovering individual

gene trajectories over hundreds of cells (Figure 2B; STAR

Methods). To ameliorate the sparsity of single-cell measure-

ments, cell archetypes (metacells) were constructed via

k-means clustering. Cell archetypes are linked across time

points using random walks weighted by a transition probability

matrix, inversely proportional to the Euclidean distance between
GETs normalized to the maximum over all trajectories).

or the five example genes in (C).

of related GRMs. Top: NF-kB-regulated gene vs. IRF-regulated gene (same

(same genes as C).
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Figure 2. An imputation method identifies scGETs that match time series data distributions

(A) Schematic of a workflow to impute the ensemble of single-cell gene expression trajectories (scGETs) and quality control its performance. Key steps of the

imputation workflow are depicted in blue. This workflow begins with measured scRNA-seq data at several time points (gray) or for quality control, simulated

scGETs (green). The resulting scGETs are then decomposed in dynamic trajectory features, which may be used to address three questions (orange) with higher

precision than single time-point measurements.

(B) PCA on simulated data for selected time points, either five front-loaded time points (referred to as 5.selected) or five evenly spaced time points, shows that

selecting front-loaded time points produces smoother cell-state trajectories. For simulated data, the same number of cells was present at each time point, and

k-means clustering was not used. Gray lines represent ground truth connections over time.

(legend continued on next page)
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cell archetype pairs over adjacent time points (Figure 2C). The

weighted randomwalksmake every permutation of cell-cell con-

nections possible but reduce the probability of trajectories

across less likely paths (Figure 2D); exponentiation of the transi-

tion probability matrices makes inclusion of certain cell arche-

types more determined but reduces tolerance to noise (Fig-

ure S2A). To interpolate between measured time points and

obtain time course single-cell trajectories, splines were then fit

across each principal component. The result is a set of trajectory

profiles decomposed over principal components, with each

component’s spline describing a feature of the cell’s transcrip-

tomic trajectory (Figure 2E). Using the original PCA loadings,

the cell trajectories are then projected back to the original

gene expression space to recover correlated transcriptome-

scale GETs (i.e., the expression dynamics of hundreds of individ-

ual genes per cell over real time) for hundreds of cells per gene

(Figure 2F). scGETs can then be described by decomposing

them into dynamical features (Figure 2G).

Evaluating the imputed expression trajectories against
a model-simulated ground truth
To evaluate the imputed trajectories, at each step, we compared

output to the ground truth dynamics provided by model simula-

tions. We compared random walks weighted by transition prob-

ability matrices vs. completely random cell-cell connections, and

we found that using weighted random walk generated paths

closer to the ground truth for any number of time points used

(Figure 2H). We also compared the effect of selecting different

distributions of time points on cell-cell linkage, and we found

that five time points selected to be front-weighted performed

better than five evenly spaced time points (Figure 2H). We varied

the number of components used to calculate the cell-cell link-

ages, and we found that more components did not significantly

improve performance but that using weighted random walks

and five front-loaded time points resulted in paths closer to the

ground truth across any number of components (Figure S2B).

The trajectory features of the imputed ensemble of trajec-

tories, compared with those of the ground truth, were concor-

dant across a range of simulated genes with different mRNA

degradation rates (Figure 2I). We explored different interpolation

options to smooth the trajectories over selected single-cell paths
(C) Heatmaps of the transition probability matrices weighted by Euclidean distanc

for the first two time steps from 0 to 0.5 h and from 0.5 to 1 h. Blue boxes indica

(D) Random walks are weighted by inverse distance, so that some cell archetyp

decreases the randomness of the random walks and identifies the high probability

not exponentiated). Two archetypes in particular are included at higher frequency

low pairwise Euclidean distance across adjacent time points.

(E) Spline interpolation over the paths determined by weighted random walks. To

Colored points indicate the distribution of PC scores of single-cell gene expressio

cell (left) or hundreds of cells (right), given the distribution of single-cell gene exp

(F) Recovery of single-cell trajectories for individual genes (scGETs) from the int

Shown is an NF-kB-regulated gene (gene defined by parameters n = 1, KTF,NF-kB

(G) Violin plots of the distribution of trajectory features obtained from decomposing

NF-kB-regulated gene in (F) and three other genes that only vary in mRNA half-l

(H) Based on Euclidian distance, weighted random walks are closer to ground trut

spacing of time points, across a range of time points used. The number of princi

(5.selected) are closer to the ground truth than five evenly spaced time points (5

(I) Dynamical features calculated from the ground truth model-simulated scGETs
(Figure S2C), as this choice might affect the quantification of tra-

jectory features, including locally estimated scatterplot smooth-

ing (LOESS),38 cubic splines with three (spline.df3) or five

(spline.df5) degrees of freedom, cubic splines using leave-one-

out cross validation (spline.cv),39 and monotone Hermite splines

(spline.mono).40 We found that each reasonably recapitulated

the different trajectory features of the ground truth across a

range of genes with different synthesis and degradation charac-

teristics (Figure S2D). Across interpolation methods, however,

gene trajectories with rapid degradation and high dissociation

constants had Integrals that were less accurately recapitulated

(Figure S2D). We proceeded with cubic splines fitted via leave-

one-out cross validation as they provided both gene-specific

features and maintained single-cell heterogeneity in comparison

to the ground truth distribution of features.

Time series scRNA-seq unveils time-dependent
heterogeneity in macrophage responses
Based on the performance analysis of the imputation method,

we generated time series scRNA-seq data from thousands of

macrophage cells at five relatively front-loaded time points,

following addition of the stimulus (0, 0.25, 1, 3, and 8 h). We stim-

ulated macrophages of three different polarization states with a

panel of six immune ligands, encompassing cytokines or distinct

bacterial or viral components, which each bind distinct Toll-like

receptors (TLRs) or cytokine receptors: LPS (TLR4), poly(I:C)

(PIC) (TLR3), Pam3CSK4 (P3C) (TLR2), CpG (TLR9), tumor ne-

crosis factor (TNF) (TNF receptor [TNFR]), and interferon (IFN)-

b (interferon-a/b receptor [IFNAR]) (Figure 3A). This resulted in

over 72 scRNA-seq samples consisting of in total >100,000 indi-

vidual macrophages (Figure S3A). We noted that gene expres-

sion heterogeneity was highly time-point dependent, and thus

no single time point accurately represented the heterogeneity

of macrophage responses to stimuli (Figure 3B). To reduce

drop-out rate and improve sequencing depth for genes of inter-

est such as cytokine genes (Figure 3B), sequencing was per-

formed on a targeted set of 500 immune response genes previ-

ously identified as providing high SRS in macrophages12

(Figure S3B; STAR Methods).

We collected replicate data from both overlapping and com-

plementary time points for naive M0 macrophages (0, 0.5, 3, 5,
e of every pair of cells from one time point to the next. Shown are the heatmaps

te lower Euclidean distance and thus higher probability linkages.

es are passed through more frequently. Exponentiating the probability matrix

linkages (in applications of the method in the paper, the probability matrix was

at 0.5 h and 1 archetype at 1 h, corresponding to the archetypes in (C) that have

p: PC1 (left) or PC2 (right) for a single-cell trajectory with respect to real time.

n values collected at each time point. Bottom: PC1 vs. PC2 plotted for a single

ression values collected at each time point.

erpolated PC scores matrix, using the loadings matrix from the original PCA.

= 1.3, mRNA half-life 30 min).

imputed scGETs (illustrated in Figure 1D and defined in STARMethods) for the

ife.

h paths than completely random connections, given an equivalent number and

pal components is held constant at 50. Five selected front-loaded time points

).

show similar distributions to those imputed (G).

Molecular Cell 84, 4095–4110, November 7, 2024 4099



A B

C D E

F

G

Figure 3. Imputation of scGETs in single macrophage cells responding to immune threats

(A) Schematic of time series scRNA-seq data collected for 3 macrophage states responding to 6 different immune stimuli, totaling over 72 scRNA-seq samples

(3 macrophage states 3 6 stimuli 3 at least 4 time points).

(B) Violin plots illustrate the stimulus-response distributions of single-cell Tnf vs.Cxcl10 expression forM0macrophages responding to each of the labeled stimuli,

at each of the measured time points. Black points represent single cells. Green points represent the median across cells.

(C) Left: heatmap of measured time series data for Tnf. Once the cell is sampled, it is destroyed, leading to gray boxes (no measurement) across time. Right:

imputed scGETs for Tnf expression in stimulated M0 macrophages. scGETs are displayed as a heatmap scaled to max expression across all stimuli. Row

annotation colors indicate the stimulus each cell received.

(D) Hierarchical clustering of single cells using the Tnf expression trajectory. Row colors indicate the stimulus each cell received. scGETs scaled to max

expression across all stimuli.

(legend continued on next page)
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and 8 h) to evaluate data quality and reproducibility. Replicate

time points produced concordant data (Figure S3C). Pseudobulk

patterns of the single-cell data were also concordant with

previously published population-level macrophage stimulus-

response RNA-seq data10 (Figure S3D).

Imputation of scGETs in single macrophage cells
responding to immune threats
As time series scRNA-seq data are snapshots, they fail to

capture a fundamental aspect of a single cell’s immune

response transcriptome—its inducible dynamics. We applied

both pseudotime algorithms36,41 and the scGET imputation

method to our time series scRNA-seq data of macrophages

stimulated with LPS (Figure S4). Unlike pseudotime trajectories

(Table S1),27,34,36,42,43 which provide the order of single cells

along a sometimes branching trajectory (Figures S4A and

S4B), scGETs instead provide heterogeneous gene induction

characteristics such as fold changes, peak amplitudes, induc-

tion speeds, or accumulated total in mRNA abundance (Figures

S4C and S4D). Plotting the pseudotime trajectories vs. single-

cell real-time dynamics of a few genes illustrates this contrast

(Figures S4E and S4F). Across multiple genes, pseudotime pla-

ces single cells in order based on their expression profiles, and

genes can be clustered based on their pseudotime pattern (Fig-

ure S4G); in imputing scGETs, the order is known as the data

were collected across a time series, and single-cell archetypes

are explicitly linked across adjacent time points, enabling clus-

tering of single cells based on scGETs (Figure S4H).

Applying the scGET imputation method to time series

scRNA-seq data from populations of M0 macrophages stimu-

lated with six different ligands, we recovered continuous sin-

gle-cell expression dynamics for the 8 h of stimulation, such

as for Tnf (Figure 3C). We evaluated the accuracy of the

imputed single-cell trajectories for each gene by comparing

the mean and variance of the inferred trajectory ensemble to

the measured mean and variance in the scRNA-seq data, at

each of the measured time points (Figures S5A and S5B).

Notably, some genes were more accurately imputed than

others. Tnf was among the more poorly imputed genes, with

relatively higher normalized root-mean-square deviations

(RMSDs) for mean and variance (Figures S5C and S5D). How-

ever, even Tnf trajectories still reasonably matched the data

and maintained the expected SRS (Figure 3C). Mean and vari-

ance of other genes more closely matched the data at the

measured time points, such as Ccl5 and Cxcl10 (Figures S5C

and S5D). In addition, the induction patterns of scGETs were

consistent with the known GRM for each gene,10,32 while

providing an estimate of the cell-to-cell heterogeneity in the

expression dynamics.
(E) Hierarchical clustering of the response trajectories of five genes from each c

single-cell responses to each stimulus. Row annotation colors indicate the stimu

(F) Single-cell gene expression response trajectory distributions, with distribution

regulatory strategies. Vertical dotted lines at 0, 0.25, 1, 3, and 8 represent time

NF-kB-only gene. Center: NF-kB gene also affected by p38 activity. Right: IRF gen

all stimuli; only three stimulus condition distributions are shown for clarity.

(G) Distribution of scGETs for 3 example genes, for 3 different stimulus conditio

distribution boundaries drawn at ±2 standard deviations stabilize between 50 an
Importantly, the imputed scGETs allowed single macrophage

cells to be clustered using information from the entire trajectory

of gene expression, rather than solely their gene expression at a

particular time point. The scGET of a single cytokine gene, Tnf,

revealed that macrophages responded distinctly to at least three

stimuli groups—IFN-b, bacterial PAMPs (LPS, P3C, CpG), and

TNF/PIC—using solely Tnf as a readout (Figure 3D). In contrast,

Tnf expression measured at only a single time point, such as 3 h

post-stimulation, does not distinguish even two stimuli groups,12

supporting the notion that a tailored response to immune threats

relied on Tnf expression dynamics and not simply on expres-

sion level.

Furthermore, imputing scGETs recovered the co-regulated

expression dynamics of all measured genes for each cell,

enabling an assessment of stimulus-specific responses based

on the heterogeneity of multigene time courses (Figure 3E). Hier-

archical clustering on the combination of dynamic information

from five genes, pro-inflammatory cytokines Tnf and Il6, lympho-

cyte chemokines Ccl5 and Cxcl10, and NF-kB negative feed-

back regulator Nfkbia, further separated single cells responding

to different stimuli, indicating that the robustness of distinct

macrophage cell responses was through multi-gene comple-

mentary dynamical features of expression. Cells stimulated

with TNF vs. PIC, which were undistinguishable by Tnf dynamics

alone (Figure 3E), could now be distinguished by the late induc-

tion of Cxcl10 and Ccl5 in response to PIC only (Figure 3E).

Measuring a single early time point such as at 1 h of stimulation

would not have captured this temporal distinction in gene

expression. Plotting expression distribution boundaries further

illustrated that specificity between stimulus pairs is reliant on

the regulation of heterogeneity of specific genes over the time

course, for example, with LPS vs. TNF response distributions

partially overlapping at late time points for Nfkbia but distinct

for Tnf and Cxcl10 (Figure 3F). We noted stable distribution

boundaries from the imputation of �100 cells, suggesting that

a sufficient number of scGETs were imputed (1,000 cells) to

well capture the characteristics of stimulus-specific response

distributions (Figure 3G).

Dynamical features of scGETs convey stimulus
information
To quantify the dynamical patterns of scGETs, we again consid-

ered the presence of four dynamical features that characterize

gene expression responses: Peak Amp, Max LFC, Integral, and

Speed (Table S2). For Tnf, Nfkbia, and Cxcl10, plotting the sin-

gle-cell distributions of trajectory features suggested that Peak

Amp and Integral were more stimulus specific than Max LFC or

Speed, with less overlapping single-cell distributions (Figure 4A).

To quantify the SRS, we calculated the maximum mutual
ell that have different gene regulatory strategies, which further distinguishes

lus each cell received. scGETs are scaled to max expression across all stimuli.

boundaries drawn at ±2 standard deviations, for three genes with different gene

points at which single-cell distributions were measured via scRNA-seq. Left:

e also affected by NF-kB activity. scGETs are scaled tomax expression across

ns, when 2, 10, or 100 cells are imputed. Far right: for LPS-stimulated cells,

d 100 imputed cells.
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Figure 4. Dynamical features of imputed scGETs contain more stimulus information than single time-point values

(A) Distributions of the four dynamical features of scGETs: Peak Amp, Max LFC, Integral, and Speed. Each point represents a single cell’s Tnf, Nfkbia, or Cxcl10

dynamical feature value in response to the indicated stimuli.

(B) Stimulus information (quantified bymaxMI) within a gene when considering single time points (green) vs. linked time points (blue) vs. dynamical features (red),

for all individual genes (points). Max MI values for each gene are connected by black lines across each feature type. Three known stimulus-response genes, Tnf,

Nfkbia, and Cxcl10, are highlighted as examples.

(C) Paired boxplots of the max MI for a gene at 3 h post-stimulation vs. the corresponding information gain by considering the trajectory Integral. Genes were

categorized by their reported GRM, resulting in five categories as also mathematically modeled in Figure 1. The trajectory Integral contains more stimulus in-

formation than the 3-h time point across most genes. Genes regulated by NF-kB|IRF are less reliant on the temporal dynamics of gene expression; the estimated

SRS of NF-kB|IRF genes does not increase as much when considering trajectory Integrals.
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information (max MI) between the six-stimulus input and the

expression output. Higher max MI indicates more information

about the stimulus and that the gene’s dynamical feature is

more stimulus specific.44 We found that the max MI of each

gene at a single measured time point was consistently less,

compared with when trajectory information was available in the

form of dynamical features (Figure 4B). In addition, we noted

that using four randomly linked time points improved the max

MI slightly over single time points, but four time points linked

via weighted random walks revealed significantly greater SRS

for all genes (Figure 4B).

To examine howmuch the features of scGETs reveal about the

SRS, we next assessed the max MI of each feature, for each

gene (Table S3). We found that Integral and Peak Amp had on

average the highest max MI, while Max LFC and Speed were

less informative (Figure 4B). Interestingly, certain genes more

greatly relied on the differences in dynamical features to retain

stimulus-specific information. For example, the NF-kB target

gene Nfkbia was quantified as considerably less stimulus spe-
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cific when considering expression at a time point than when

considering either multiple time points linked via the scGET

imputation method or Nfkbia dynamical features (Figure 4B).

This finding aligns with prior work on the importance of the

induction dynamics of Nfkbia,5 which encodes a key NF-kB

feedback protein, in generating appropriate responses to im-

mune threats.

We noticed that for subsets of genes, the trajectory features

revealed much more stimulus information than expression at a

single time point, while other genes showed smaller gains in in-

formation, such as Cxcl10 (Figure 4B). To investigate this

further, we categorized the immune response genes based on

which signaling pathways activate them, according to prior

literature, resulting in five categories (AP1, NF-kB, IRF, NF-kB

‘‘AND’’ p38, NF-kB ‘‘OR’’ IRF).10,12,32 Interestingly, genes that

were regulated by single transcription factors such as AP1,

IRF, or NF-kB showed an information gain of �1 bit when

considering expression Integral rather than expression level,

but genes regulated by an NF-kB|IRF ‘‘sequential OR’’ gate10



A B

C D

E F

Figure 5. Dynamical features of imputed scGETs identify gene-gene correlations more reliably than single time-point scRNA-seq data

(A) Scatterplot of Tnf vs. Nfkbia expression from scRNA-seq data, at three of the time points measured after stimulation. Colors represent the stimulus the cell

received. Only weak correlations are observed between these two NF-kB-regulated genes at any of the response time points.

(B) Scatterplot of Tnf vs.Nfkbia, using the dynamical feature Integral (total activity), reveals much stronger correlations. The dynamical feature Integral reveals the

known regulation of Tnf by NF-kB|p38 while Nfkbia is NF-kB-only. The activation of MAPKp38 by the bacterial ligands LPS, CpG, and P3C results in a shift of Tnf

expression from the identity line.

(C) Scatterplot of Cxcl10 vs. Cxcl9 expression from scRNA-seq data, at three response time points. Single-cell within-stimulus and across-stimulus correlations

are time-point dependent, and responses appear uncorrelated.

(D) Scatterplot of Cxcl10 vs. Cxcl9, using the Integral (total activity) values from scGETs, reveals within-stimulus correlations of gene expression across single

cells and across stimulus response specificity. Co-regulated genes within single cells can appear uncorrelated at time points due to different timing of activation,

but Integral reveals their correlation.

(E) Left: heatmaps of hierarchically clustered Pearson correlations across all genes at the 3-h time point. Right: hierarchical clustering of Pearson’s correlations

across all genes, using Integral values from scGETs.

(F) Pearson correlation values between the Integral values of scGETs in response to all six stimuli, of all gene pairs, separated byGRM.Genes of the sameGRMor

sharing the same transcription factors are correlated across single cells, and positive and negative correlations across GRMs are also detected.
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showed gains of only �0.5 bits (Figure 4C). This pattern sug-

gested that the combinatorial activity of two transcription fac-

tors at the gene promoter may allow for stimulus distinction

through combinatorial control with less reliance on the tempo-

ral dynamics of gene expression, while genes induced by a sin-

gle transcription factor are more likely to show SRS through dy-

namic control (Figure 4C).

Trajectory features expose gene correlations not
evident in time-point measurements
In transcriptome measurements of single cells, target genes of

different signaling pathways may be correlated due to similar

chromatin or signaling environments within each cell. To deter-

mine dynamics-dependent gene-gene correlations across
single cells, we compared correlations of gene pairs that are

targets of the same or different transcription factors, for either

single time-point scRNA-seq data or scGET features. Two

prominent NF-kB-regulated genes, Tnf and Nfkbia, showed

weak to no correlation at any single response time point of 1,

3, or 8 h (Figure 5A). The lack of correlation at a single time point

could be attributed to differences in the timing of activation: Tnf

expression was more sustained, while Nfkbia more front-

loaded, and thus total expression was not well captured by

any single time point. However, considering the trajectory

feature Integral revealed high gene-gene correlations both

across stimuli and within each stimulus condition (Figure 5B).

Examining the single-cell Integral values of these two genes

also highlighted an increase in Tnf expression relative to Nfkbia
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for cells stimulated with CpG, P3C, or LPS (Figure 5B). CpG,

P3C, and LPS are immune ligands that signal through Myd88

to activate MAPKp38, resulting in an increase in NF-kB|p38-

regulated Tnf expression relative to the NF-kB-only regulated

Nfkbia. Only scGET features could clearly reveal this subtle shift

in the Tnf-Nfkbia correlation that reflected the known regulation

of these two genes.

We then examined two genes that encode Cxcr3 ligands,

Cxcl9 and Cxcl10, both chemokines produced by macro-

phages that lead to the recruitment of T cells (Figure 5C).10,12

At single time points after stimulation, Cxcl9 and Cxcl10 were

not well correlated across single cells, with only Cxcl10

showing early activation by LPS-, IFN-b- or PIC-induced IRF

signaling (Figure 5C). However, the Integrals of Cxcl9 and

Cxcl10 were correlated to a much greater extent than evident

from time-point data (Figure 5D). Furthermore, inspecting the

Integral showed that Cxcl9 and Cxcl10 were positively corre-

lated across single cells within each population of cells re-

sponding to the same stimulus, suggesting a co-regulation

achieved through either shared activation of signaling pathways

or similarly responsive chromatin environments. More globally,

the correlation heatmap of all genes at a single time point of 3 h

showed weak correlations between genes regulated by the

same GRMs, while clustering genes based on Integral recov-

ered stronger correlations that better distinguished NF-kB-

vs. IRF-regulated gene clusters (Figure 5E). Gene pair Integrals

showed high correlations when regulated by the same GRM or

by GRMs with shared transcription factors, but some gene

pairs that controlled different GRMs were also correlated (Fig-

ure 5F). Inspection of these pairs revealed correlations be-

tween, for example, NF-kB-regulated cytokines (e.g., Il1a,

Ccl5) and IRF-regulated genes such as the virally induced

Heatr9, which is involved in feedforward regulation of cyto-

kines.45,46 The full dynamic trajectory of single-cell gene induc-

tion was thus critical for capturing many additional correlative

relationships between gene pairs, identifying the effect of

shared chromatin or signaling environments.

Polarization alters which immune response genes
mediate macrophage specificity
How do dynamical feature distributions of scGETs change when

macrophages are polarized by microenvironmental cytokines?

We next imputed scGETs using time series scRNA-seq data

from thousands of M1(IFN-g)- andM2(interleukin [IL]-4)-polarized

macrophages, again stimulated with each of the six immune li-

gands (Figures S6A–S6C). Initial inspection of cells hierarchically

clustered based on scGETs revealed expected changes to the

average GETs of several immune response genes (Figure 6A).

For example, in response to the bacterial PAMPs LPS, CpG,

and P3C, the NF-kB target gene Nfkbia exhibited more transient

activity in M1(IFN-g) macrophages, which was diminished by

3 h, in contrast to more sustained activity in M0 macrophages.

NF-kB|IRF target genes Ccl5 and Cxcl10 were more rapidly

induced inM1(IFN-g) macrophages, while exhibitingmuch slower

speedof induction inM2(IL-4)macrophages (Figure 6A). The clus-

tering of both M1(IFN-g) and M2(IL-4) macrophage cells showed

that responses remained stimulus specific, but the specificity

could be attributed to different aspects of gene dynamics.
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To identify genes with scGET dynamical features that were

most variable across polarization states, we performed PCA on

the scGET dynamical features using cells from all polarization

states. We found that genes regulated by certain GRMs were

weighted more highly in the PC loadings. For Max LFC, NF-kB-

and NF-kB|p38-regulated genes were weighted most strongly

along PC1, while IRF- and NF-kB|IRF-regulated genes were

weighted most strongly along PC2, among them Mx1 and Ifit1

(Figure 6B; Table S4). PlottingMx1 and Ifit1Max LFC for all single

cells showed that differences in the stimulus-response distribu-

tions of these IRF genes were lost in M1(IFN-g) macrophages,

most prominently between two bacterial stimuli like CpG and

LPS (Figure 6C). This loss of specificity in IFN-g-polarized mac-

rophages was due to either more similar average responses

across stimuli (e.g., Mx1 Max LFC) or increased heterogeneity

of responses (e.g., Ifit1 Max LFC). A similar analysis of Speed

showed that specificity produced in M0 macrophages by

response Speed (e.g., Mx1 or Ifit1 Speed) was lost in M2(IL-4)

macrophages, most notably between IFN-b and all other stimuli

(Figure 6D). Taken together, the microenvironmental cytokines

assessed here (IFN-g and IL-4) had a notable impact on the het-

erogeneity of trajectory features, such as in Max LFC and Speed

of IRF genes.

As polarization profoundly affected the expression dynamics

of many genes, we asked how much these changes impacted

macrophage SRS. We identified the gene combinations whose

dynamical expression features were most informative of stim-

ulus identity (Table S5; STAR Methods). Considering the Integral

of scGETs in M0 macrophages, max MI approached �2.5 bits

with just three genes (Mx2, Nfkbiz, Egr3) (combination of an

IRF gene, a NF-kB|p38 gene, and an AP1 gene), near the theoret-

ical maximum of 2.58 bits (distinguishing six stimuli, as 21 = 2,

22 = 4, 22.58 z6). A max MI near the theoretical ceiling could

also be achieved with three genes in M1(IFN-g) (Mx2, Tnf,

Gna15) and M2(IL-4) macrophages (Cited, Ehd1, Pou2f2)

(Figure 6E). In contrast, the top three gene combinations using

a single time point (3 h) reached atmost 2 bits of information (Fig-

ure 6E). Plotting the Integral of the selected genes corroborated

the conclusion that the dynamic trajectory features separated

the six stimuli distinctly, although some stimulus information

was still lost due to overlap in CpG and P3C distributions (Fig-

ure 6F). Thus, while SRS of particular genes like Cxcl10 might

be diminished in polarized macrophages, macrophages main-

tain SRS upon polarization but rely on different gene combina-

tions that mediate the specificity.

scGETs effectively distinguish polarization states
The context-dependent cell state ofmacrophages is typically as-

sessed by protein markers or single-cell transcriptomics in their

quasi-steady state. Yet, macrophage functions are deployed in

response to stimuli. Therefore, we hypothesized that stimulus-

response gene expression dynamics may provide more accu-

rate markers of a cell’s functional state. To examine the differ-

ence between steady-state measurements and scGET features

in distinguishing polarization states, we focused on canonical

marker genes that are used to identify M1(IFN-g) or M2(IL-4)

polarization, Nos2 (M1 marker), Cd86 (M1 marker), and Retnla

(M2 marker). Plotting their expression values at the unstimulated
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Figure 6. scGETs reveal how the SRS of macrophages is altered by polarization
(A) Hierarchical clustering of M1(IFN-g) cells (center) andM2(IL-4) cells (right), comparedwithM0 (left), based on scGETs after stimulation, for a subset of cytokine

and feedback regulator genes. Each row represents the imputed scGETs of a cell stimulated with the ligand indicated by the color code.

(B) PC loadings obtained from performing PCA on the dynamical features Max LFC (top) or Speed (bottom) for all genes across all macrophage cells. Genes with

high loading values are genes with highly variable dynamical feature values across polarization states, identifying genes with loss of specificity in either Max LFC

or Speed.

(C) Violin plots of Ifit1 and Mx1 Max LFC distributions for M0 vs. M1(IFN-g) macrophages illustrate that loss of SRS in the fold change of IRF genes occurs in

M1(IFN-g) macrophages.

(D) Violin plots of Ifit1 and Mx1 Speed distributions for M0 vs. M2 (IL-4) macrophages illustrate that loss of SRS in the activation speed of IRF genes occurs in

M2(IL-4) macrophages.

(E) SRS is preserved in polarizedmacrophages. Line plot of SRS (maxMI) for themost informative combination of genes, when considering scGET Integrals (solid

lines) vs. scRNA-seq data at the 3-h time point (dotted lines). (Inset displays the genes selected as most informative in combination.) When considering Integral,

the best 3-gene combination can account for nearly the maximum possible SRS of macrophage, �2.58 bits, whereas the best 3-gene combination when

considering a single time point post-stimulation (3 h) does not reveal as high a SRS.

(F) Scatterplots of scGET Integrals for each polarization state show that the different combinations of three complementary genes do indeed provide high SRS.
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Figure 7. The scGETs of marker genes distinguish macrophage polarization states more precisely than time-point measurements

(A) Scatterplots of scRNA-seq expression values of three canonical M1(IFN-g) or M2(IL-4) marker genes at steady state (unstimulated) vs. the LPS response

Integral of scGET dynamics after 8 h of LPS stimulation. The response Integral of these canonical markers better distinguishes polarization states.

(B) Violin plots of time series scRNA-seq of one of the canonical M1(IFN-g) macrophage markers, Nos2, across polarization states.

(C) F1 score of polarization state classification accuracy when considering the three marker genes for unstimulated macrophages at steady state (0 h) and

stimulus-response time points (1, 3, and 8 h) or for scGETs’ stimulus-response dynamics/dynamical features (Integral, Peak Amp, Max LFC, Speed). Classifi-

cation accuracy is greater for dynamical features than for either expression at single time points or expression at steady state (0 h).
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steady state vs. their LPS response Integral revealed that the

scGET Integral distinguished all three macrophage polarization

states more distinctly (Figure 7A). On average, Nos2 was ex-

pressed more highly in M1macrophages, but single-cell expres-

sion distributions of Nos2 overlapped across polarization states,

such that not all single cells could be identified as M1-based one

time point alone (Figure 7B). A classifier for polarization state on

these three marker genes showed that the trajectory features,

especially Integral, Peak Amp, or Max LFC, drastically improved

polarization state identification (higher F1 score) over steady-

state values or responses measured at a single time point

(Figure 7C).

We asked whether other genes at steady-state distinguished

polarization states better than the canonical marker genes.

Based on MI analysis, the top three genes that individually

best distinguished unstimulated M0, M1(IFN-g), and M2(IL-4)

macrophages were Irf1, Fgl2, and Tgtp1 (Figure S7A). While

steady-state expression values poorly distinguished M0 and

M2(IL-4) macrophages, the LPS response Integral of the same

three genes perfectly distinguished the three polarization states

(Figure S7B), pointing to the importance of response dynamics of
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genes encoding TFs (Irf1) or secreted proteins (Fgl2) in also

specifying cell functional states.

To examine the relative number of genes needed to explain

differences in polarization states, we next built a multinomial

least absolute shrinkage and selection operator (LASSO)-penal-

ized regression model using either steady-state or stimulus-

response data. We found that performing LASSO-regularized

regression on steady-state expression values (0 h) resulted in a

model containing �150 genes, those built on single time-point

response values (1, 3, and 8 h) �50–120 genes, and those built

using a trajectory feature such as Integral only �25–30 genes

(Figure S7C), again indicating the increased information content

of GETs in specifying single-cell functional states.

DISCUSSION

To study macrophage SRSwe present here an integrated exper-

imental and computational approach to impute an ensemble of

scGETs from time series scRNA-seq data. Stimulus-response

gene expression is dynamic and heterogeneous, but current sin-

gle-cell RNA measurement technology has not been able to
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capture both characteristics simultaneously, as scRNA-seq is

destructive to cells. Imputing scGETs from high-resolution time

series data revealed the heterogeneity of dynamic responses

of macrophages, thus quantifying macrophage SRS more

completely. When considering dynamical expression features,

SRS was calculated to be much higher, and scGETs were found

to be both dramatically and subtly altered by the microenviron-

mental context of polarizing cytokines, indeed so distinctive

that response trajectories were much more informative of cell

functional state than steady-state mRNA abundances that are

typically measured by scRNA-seq.

We developed the scGET imputation method to quantify SRS

when considering single-cell gene expression response dy-

namics in a manner that is not possible with previously reported

methods (Table S1). For specific signaling proteins, methods for

imputing single-cell trajectories of protein activity have involved

fitting mechanistic models of signaling networks to measured

time series distributions,47–51 but models of gene expression

remain coarse and insufficiently precise. Further, the gene

expression data consist of hundreds of data points per cell

from many genes, posing additional challenges in fitting mecha-

nistic models but enabling a statistical approach for constructing

a transition matrix. Experimentally, the primary methodology for

measuring scGETs is the MS2 reporter, which allows for live-cell

imaging of fluorescently tagged mRNA transcripts. However,

this technology only images one or two genes at a time, preclud-

ing analysis of correlations or biological importance of genes ex-

pressed in combination. In addition, it requires genetic engineer-

ing of the genes of interest, which necessitates cells that are

immortal or have long lifespans (as opposed to primary macro-

phages) and may affect chromatin-determined expression

dynamics.

As cells must adapt to changes in their environment, SRS is an

important biological characteristic, particularly in immune

sentinel cells such as macrophages. Several studies have inves-

tigated the stimulus information transmitted in biochemical

signaling networks through live-cell imaging of kinase activities

or transcription factor nuclear translocation, including NF-kB in

macrophages. The trajectory vector of NF-kB signaling was

shown to distinguish different doses of ligandsmuchmore accu-

rately than single time points of NF-kB activity, and dynamical

features of the NF-kB trajectories were identified to best distin-

guish different ligands,14 analogous to what we found with

gene expression.13,52 However, estimations of stimulus informa-

tion within the dynamics of a single transcription factor like

NF-kB were consistently lower than information within the dy-

namics of the most informative genes in our study. That may

not be surprising as many of the GETs we examined are the

outcome of multiple non-redundant signaling pathways that op-

erate on individual genes with different timescales, such as Tnf

(NF-kB|p38) or Cxcl10 (NF-kB|IRF). In addition, stimulation in-

duces hundreds of individual genes per cell, enabling identifica-

tion of multi-gene dynamics that together can result in high SRS,

whilemeasuring the trajectories ofmore than a few signaling pro-

teins simultaneously in a single cell has not been feasible.53

A hallmark of healthy macrophages is SRS as a function of

microenvironmental context and the history of exposure.8

Macrophage stimulus-response gene expression dynamics are
determined by (1) the activities of upstream signaling effectors

(e.g., transcription factors NF-kB, IRF, AP1), whose abundances

and nuclear translocation dynamics are strongly affected by

contextual cytokines,54–56 and (2) the mechanisms and mole-

cules that interpret information within transcription factor activa-

tion, including chromatin opening mechanisms, nucleosome dy-

namics, and histone modifications,30,57,58 which can also be

significantly altered by contextual cytokines that either prime

or repress gene regulatory elements. For example, an IFN-g po-

larization context not only increases the nuclear availability of

NF-kB16,54,55 but also alters the epigenomic landscape of

open chromatin and histone modifications.59–61 Thus, the cell’s

response to stimuli not only encodes information about the stim-

ulus but also about the cell’s functional state.

Why might the functional state of a cell be predicted more

accurately when accounting for dynamical features of stim-

ulus-response expression trajectories rather than steady-state

gene expression? Conceptually, response dynamics are more

informative than steady state because the functional state of a

cell is not only defined by abundances of molecules but also

by the rate constants that determine synthesis, degradation, as-

sociation, dissociation, and catalysis. For example, two cells

may have exactly the same abundance of a ligand receptor,

but if one cell has higher synthesis and degradation of the recep-

tor than the other, theywould be in different cell functional states,

and the two would respond with different gene expression dy-

namics to the same ligand concentration.15,62 Measuring stim-

ulus responses reveals both the kinetic and abundance informa-

tion of a cell’s functional state at the time of stimulation, including

availability of receptors, activities of kinases, and dynamics and

localization of transcription factors. Capturing responses at the

level of gene expression dynamics also captures the cell’s chro-

matin state.

In this study, we focused on the dynamics of single-cell-induc-

ible gene expression in macrophages, key to the initiation of

immune responses. Response trajectories were critical for

revealing the high SRS that is essential to macrophage function

and supplied the kinetic information necessary for defining cell

functional states. Future applications of defining cell states by

stimulus-response trajectories could allow more robust clus-

tering and subtyping for macrophages derived from undefined

cytokine environments of inflammatory diseases, or they could

enable the identification of rare subsets of single cells in other

diseases where the function of outlier cells is pivotal, such as

the responses of individual cancer cells to drugs or cell damage

signals.

Limitations of the study
This study focuses on imputing rather than measuring scGETs.

That is because there is no reliable technology to measure

multiple scGETs in primary immune cells. In developing and

evaluating the imputation method, we identified several limita-

tions. First, we developed the experimental and computational

pipeline for the particular biological application of innate immune

cells responding to a defined stimulus, to quantify their SRS.

Substantial biological knowledge is available about this system,

including which genes are induced, the duration of the response,

and population-level trajectories of gene expression, all of which
Molecular Cell 84, 4095–4110, November 7, 2024 4107



ll
OPEN ACCESS Article
informed the experimental design and the imputation method.

The described approach may not work well for other biological

systems where less prior knowledge is available. Second, while

we quality controlled the method on a defined population of cells

all stimulated at the same time, it may not perform well on sam-

ples with mixed cell populations or cells receiving different or

differently timed stimuli. Third, when the imputation method re-

lies on a limited number of measured points, the imputed

scGETs are generally less complex than the ground truth. In

consideration of this, we used finer time points during the early

phase when gene expression levels change more rapidly, and

we decomposed scGETs into trajectory features for quantifying

SRS.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD45-hashtag antibodies BD Rhapsody 633793

Chemicals, peptides, and recombinant proteins

LPS Sigma, B5:055 L2880

murine TNF Roche 11271156001

Pam3CSK4 Invivogen tlrl-pms

low MW polyinosine-polycytidylic acid (Poly(I:C)) Invivogen tlrl-picw

synthetic CpG ODN 1668 Invivogen tlrl-1668

murine IFNb R&D 12401-1

murine IFNg R&D 485-MI

murine IL-4 R&D 404-ML

Critical commercial assays

BD Rhapsody Express Single-Cell Analysis system BD 633702

Targeted mRNA and AbSeq Reagent Kit 4 Pack BD 633771

BD Rhapsody Cartridge Reagent Kit BD 633731

BD Rhapsody Cartridge Kit BD 633733

BD Rhapsody cDNA Kit BD 633773

BD Rhapsody P5000M pipette BD 633705

BD� Stain Buffer (FBS) BD Pharmigen 554656

Deposited data

BD Rhapsody scRNA-seq This paper GSE224518

BMDM bulk RNA-seq data Cheng et al.10 GSE68318

Experimental models: Cell lines

Immortalized Myeloid Progenitor-derived macrophages Singh et al.16 N/A

Oligonucleotides

Rhapsody Custom Panel: ID 1330 BD 633743

Rhapsody Custom Panel: ID 1331 BD 633743

Rhapsody Custom Panel: ID 1332 BD 633743

Rhapsody Custom Panel: ID 1334 BD 633743

Rhapsody Custom Panel: ID 1341 BD 633743

Software and algorithms

CARET Kuhn et al.63 http://caret.r-forge.r-project.org/

Seurat Stuart et al.64 https://www.rdocumentation.org/

packages/Seurat/versions/3.1.4

BD Rhapsody Targeted Analysis Pipeline (version v1.0) Shum et al.65 https://www.sevenbridges.com/

edgeR Robinson et al.66 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

HOMER Heinz et al.67 http://homer.ucsd.edu/homer/

SLEMI Jetka et al.68 https://cran.r-project.org/web/

packages/SLEMI/index.html

rtensor Li et al.69 https://cran.r-project.org/web/packages/

rTensor/index.html

clusterProfiler Yu et al.70 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

(Continued on next page)
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ISnorm Lin et al.71 PMID 33575610, PMC7671304

Analysis code This paper https://github.com/KSheu/scResponseDynamics;

Zenodo: https://doi.org/10.5281/zenodo.13370505

ll
OPEN ACCESS Article
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Macrophage cell culture
Macrophages were generated by differentiating HoxB4-transduced myeloid precursors (hMPs) to HoxB4-transduced myeloid pre-

cursor-derived macrophages (hMPDMs), as previously described and characterized.12,16 hMPs were initially thawed and expanded

in 10cm non-adherent petri dishes for 3 days. Cells were then washed once and placed in differentiation media for a total of 10 days

(DMEM/10% FBS, 30% L929 supernatant, 1% PS, 1% L-Glut, b-Me (1:1000)), with replating onto 6cm plates with newmedia on day

7, at a density of�20k cells/cm2. For polarized macrophages, cells were incubated in 50ng/ml IFNg or 50ng/ml IL4 for 24 hours prior

to stimulation on day 10. On day 10, macrophages were stimulated with one of six stimuli: 100ng/mL lipopolysaccharide (LPS, Sigma

Aldrich B5:055 #L2880), 10ng/mL murine TNF (Roche #11271156001), 50mg/mL low molecular weight polyinosine-polycytidylic acid

(Poly(I:C), Invivogen tlrl-picw), 100ng/mL Pam3CSK4 (P3C, Invivogen tlrl-pms), 100nM synthetic CpGODN 1668 (CpG, Invivogen tlrl-

1668), 500U/ml IFNb (R&D #12401-1), or media only Untreated control. Samples were collected for scRNA-seq prior to stimulation,

0hrs, and at multiple timepoints post-stimulation, including 15 or 30 minutes, 1hr, 3hrs, 5hrs, and 8hrs.

METHOD DETAILS

Macrophage scRNA-seq
To collect the adherent macrophages for scRNA-seq using the BD Rhapsody platform, macrophage cells were washed 1x with cold

PBS, then lifted into suspension by incubating at 37C for 5minutes with Accutase, which resulted in cell viability typically >85%. Cells

were centrifuged at 4C, 400g for 5 minutes, and resuspended in PBS + 2% FBS. Cells were hash-tagged with anti-CD45-hashtags

(BD Rhapsody # 633793) and loaded onto the cartridge according to manufacturer’s instructions (BD Rhapsody # 633771), with the

following modifications, which helped ensure sufficient cell viability for the subsequent steps: Incubation with hashtags was per-

formed for 30mins on ice, instead of 20mins at room temperature; only two washes were performed after hashtag incubation to mini-

mize cell loss. Each cartridge was then loaded with a total of�36k cells across 12 hash-tagged samples (�3k cells/sample). A set of

500 custom-designed primers were generated with the services of BD Rhapsody (Rhapsody Custom Panel: ID 1330, 1331, 1332,

1334, 1341), to preferentially amplify the gene set of interest for single-cell sequencing.12 Libraries were prepared using the custom

primer set according to manufacturer’s instructions (BD Rhapsody # 633771) and sequenced 2x100 on Novaseq 6000.

Gene panel selection
To select genes for single-cell targeted gene profiling, we used a previously published algorithmic approach.12 Briefly, we analyzed

existing bulk transcriptomic profiling of macrophage responses (GSE68318)10, to determine macrophage inducible genes across 14

stimulus conditions and 4 timepoints. From this set of�1500 induced genes, we used PCA across all time points for the 14 stimuli in

the dataset. The loadings matrix obtained from the PCA was used to calculate a rank score for each gene: scorej =
P20

x = 1ðPCxjÞ2,
where PCxj is the component x loadings value for gene j. The top 480 ranked genes were included in the panel, and the remaining 20

genes were manually selected to add genes such as cell type markers, macrophage polarization markers, and transcription factors.

scRNA-seq processing and analysis
Raw fastq files were processed using the BD Rhapsody� Targeted Analysis Pipeline (version v1.0)63 hosted on Seven Bridges Ge-

nomics. Distribution-Based Error Correction (DBEC)-adjusted UMI counts (molecules per cell) were used in the downstream analysis.

Multiplets, cells with undetermined barcodes, and cells with less than 80 features were removed from the analysis. Because the

selected 500-gene panel was comprised of largely inducible genes, the assumption that the total number of RNAs per cell is constant

does not hold. Counts were therefore normalized using the package Isnorm,64 rather than the more standard approach of dividing by

total counts per cell. The internal-spike-in geneset calculated included 10 genes, among them amacrophage cell type gene Adgre1,

further supporting the relevance of the selected spike-in geneset: ‘‘Adgre1’’, ‘‘Alas1’’, ‘‘Casp4’’, ‘‘Gsr’’, ‘‘Ifrd1’’, ‘‘Nfkb1’’, ‘‘Ptafr’’,

‘‘Rela’’, ‘‘Sdc4’’, ‘‘Swap70’’.Bulk RNA-seq data from bone-marrow-derivedmacrophages was obtained fromGSE68318 to compare

it against time-series scRNA-seq pseudobulk data.

Mathematical modeling
Model equations

We used mechanistic models to simulate the five gene regulatory logics previously identified as regulating macrophage

stimulus-response gene expression.10 These gene regulatory mechanisms (GRMs) involve the dynamic activity of four key effector
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proteins: AP1, NFkB, IRF, and MAPKp38. Three of the five GRMs involve only one transcription factor: AP1-only, NFkB-only, IRF-

only, a fourth involves an NFkB-IRF OR gate, and the fifth an NFkB-p38 AND gate.10

To simulate dynamic gene expression resulting from each of the five GRMs, we solved ordinary differential equations that followed

the same general form,

dmRNA

fdtg = ksynfðtÞ-- kdeg �mRNA;

with ksyn representing the gene synthesis rate constant, fðtÞ representing time-varying transcription factor activity that affects syn-

thesis rate, and kdeg representing the mRNA degradation rate that can be stabilized by time-varying MAPKp38 activity.

The function fðtÞ was transcription factor dependent and governed by a Hill equation. For single transcription factor logic gates

(AP1-only, NFkB-only, IRF-only),10,33 fðtÞ was written as:

fðtÞ = ð1 � k0Þ
�
KTF � ½TFðtÞ�Þn

1+ðKTF � ½TFðtÞ�Þn
+ k0;

where k0 represents a small basal transcription rate in the absence of transcription factor activity, n represents the Hill coefficient, and

KTF = 1=KD;TF , with KD representing the dissociation constant of the transcription factor. As KD decreases, the transcription factor’s

binding affinity KTF increases and thusmRNA synthesis increases. TFðtÞ is the time-dependent transcription factor activity measured

over 8 hours.

Using the same notation, the logical OR gate that involved two transcription factors (i.e. NFkB OR IRF)10,33 was written as,

fðtÞ = ð1 � k0Þ
�
KTF1 � TF1ðtÞ

�n
+
�
KTF2 � TF2ðtÞ

�n
+
�
KTF1 � KTF2 � TF1ðtÞ � TF2ðtÞ

�n
1+

�
KTF1 � TF1ðtÞ

�n
+
�
KTF2 � TF2ðtÞ

�n
+
�
KTF1 � KTF2 � TF1ðtÞ � TF2ðtÞ

�n�+ k0

For the logical AND gate where p38 controls mRNA half-life (i.e. NFkB AND p38),10 we modified the degradation rate by extending

themRNA half-life as an exponential function of p38 activity levels. Deriving the expression for exponential decay, the decay constant

l is written as a function of half-life t1=2, l = kdeg = lnð2Þ=t1=2. The decay rate is affected by two sources, the basal mRNA degra-

dation rate, and the added stabilization from p38 activity. kdeg can thus be written as,

kdeg = lnð2Þ
.�

t1=2 + tmax
1=2 � p38

�

where t1=2 represented the half-life of the mRNA regardless of p38 activity, and tmax
1=2 represented the maximum half-life extension

(8hrs) provided by dynamic p38 activity. p38 activity was modeled as a percentage of maximum p38 activity, such that the half-

life extension provided by p38 varied between 0 and tmax
1=2 .

Model simulations

1. Model parameters: Three parameters were varied in the simulations to produce genes/gene promoters with unique character-

istics: the Hill coefficient of transcription factor binding (n), the dissociation constant of transcription factor binding (KD), and the

mRNA degradation rate (kdeg). The Hill coefficient was set to either 1 or 3, the KD was varied with reference to the KD of the

averaged gene for each GRM, over two orders of magnitude from 0.25x to 4x, and the kdeg was varied to equate half-lives

from 30 mins to 5hrs. The parameters previously fit to the average of clusters corresponding to each GRM were n =1,

kdeg = lnð2Þ =30, KTF,AP1 = 1/KD;AP1 = 0.48, KTF,NFkB = 1/KD;NFkB = 1.3, KTF,IRF = 1/KD;IRF = 1.2510. All together the parameter

combinations represented a total of 200 unique genes/gene promoters (2 Hill coefficient values, 5 KD values, 4 kdeg values,

5 GRMs).

2. Generating a library of single-cell signaling inputs: To generate single-cell signaling inputs for the gene expression model, we

used previously published average measured dynamic activity of each of the effector proteins AP1, NFkB, IRF, and p38 over

the 8hour timecourse.10 Single cell heterogeneity was generated by random sampling from a zero-truncated normal distribu-

tion, using the measured timepoints along both the value and time axes as the mean. Interpolating over the sampled values at

measured timepoints provided the single-cell signaling input trajectories. The full signaling profile of a single cell encompasses

the activities of all four effectors (AP1, NFkB, IRF, p38) and was determined by random sampling of a trajectory from the library

of dynamic activity profiles of all four signaling proteins.

3. Running the model: The model was simulated using the single-cell signaling activity inputs of 100 individual cells, resulting in

dynamic gene expression profiles of 200 genes in every cell. In these simulations, the cell-to-cell heterogeneity of gene expres-

sion is derived from the heterogeneity in the signaling activity inputs for each cell. To simulate transcriptional or measurement

noise observed in scRNA-seq data, we added a random jitter of up to 10% of the modeled gene expression value. Simulations

were performed in R using the packages ‘‘deSolve’’ and ‘‘doParallel’’.
scGETs imputation algorithm
In imputing scGETs, we aimed to link cell archetypes from timepoint to timepoint, to estimate the gene expression dynamics within

individual cells over a short time course, with the assumption of minimal division or cell differentiation into other cell types. The key
Molecular Cell 84, 4095–4110.e1–e6, November 7, 2024 e3
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elements of the imputation method were designed to address several challenges in a computational approach to estimating transcrip-

tome trajectories: 1) maintaining measured gene-gene correlation within single-cell trajectories across time, 2) linking cells within dis-

tributions to reflect biophysically plausible continuity of gene expression, and 3) using minimal computational resources/time.

1. Dimensionality Reduction: We performed Principal Component Analysis (PCA) on the time-series single-cell RNA-seq data.

PCA was performed across all stimuli simultaneously, generating a lower dimensional data embedding that captured the

gene expression information of individual cells. The initial data matrix can be written as
M = N3P;

where N is the total number of measured genes and P is the number of single cells, including all stimulus conditions and timepoints

together. The resultingmatrix decompositionS = WT3M, whereS is the r3P component scoresmatrix for all single cells, andW the

N3r loadings matrix for all genes, embeds the gene-gene relationships for each cell within the loadings matrix.

2. k-means Clustering: A conceptual assumption of the method was that an ensemble of cell archetypes at each timepoint ac-

counted for the behavior of individual cells. Clustering reduces sparsity, as a large degree of the sparsity observed in scRNA-

seq data arises from technical noise. The choice of k is user-defined and dependent on the number of cells measured and the

structure of the data. At any time-point, a cell is classified as amember of one of k archetypes, and principal component scores

of each cluster is summarized by a consensus value – the mean or median of individual cell PC scores,
PCk;n = meanðCkÞn;
where Ck is the set of cells C bellowing to archetype k, and n is the principal component.

3. Weighted RandomWalks: The probability of archetype connections across consecutively measured timepoints was weighted

by Euclidean distance. Thus, the linkage probability from a cell archetype ki at timepoint i, to cell archetype kfi+1g at timepoint

fi + 1g, for all archetype pairs can be written as
P =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j = 1

�
ki-- kfi+1g

�2q ;

where n is the number of principal components. Larger distances between cell archetypes across timepoints resulted in lower prob-

ability of linkage. Random walks through archetypes were weighted by these probabilities, and the cell path defined as the arche-

type’s consensus principal component values at each given timepoint.

4. Spline interpolation: For each set of cell archetypes linked across timepoints, spline interpolation is used to estimate values

across unmeasured timepoints. This provides a true-time continuous linkage of the lower dimensional cell-level data, resulting

in a trajectory for each cell in PC space, with gene expression trajectories for each cell embedded and recoverable from the

original PCA loadings.

5. Recovering gene trajectories: Individual gene trajectories for each cell can be recovered from the cell trajectories by using the

loadings matrix to re-rotate the lower dimensional cell-based data back to the higher-dimensional gene expression space. In

other words,
Snew = WT 3Mnew;

where Snew contains cell trajectories represented as principal component scores, W the original N3r loadings matrix for all genes,

and Mnew the desired matrix of single-cell gene expression for all genes over true-time.

QUANTIFICATION AND STATISTICAL ANALYSIS

scGETs imputation applied to model-simulated trajectories
Selecting time points

Model-simulated trajectories contain the full single-cell gene expression trajectories (scGETs) (ground truth); we can apply and test

the scGETs imputation method by selecting different timepoints and comparing the resulting reconstructions to the ground truth tra-

jectory. We selected five front-loaded timepoints, 0, 0.5, 1, 3, 8 hrs, and compared them to five evenly spaced timepoints, 0, 2, 4, 6,

8 hrs. Ten, 20, and 50 evenly-spaced timepoints were also compared.

Dimensionality reduction

PCA was performed on the selected timepoints. For model-simulated trajectories, k-means clustering to obtain cell archetypes was

not necessary, as every timepoint already contained the same number of individual cells.
e4 Molecular Cell 84, 4095–4110.e1–e6, November 7, 2024
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Weighted random walks

Transition probability matrices were calculated using Euclidean distance between every pair of archetypes across consecutive time-

points. The number of principal components used to generate the transition probability matrices were compared, to assess the

impact of recapitulating ground truth connections, including 5, 10, 20, and 50 components.

Spline interpolation

Spline interpolation was performed using several different methods, to compare each to the shape of the ground truth trajectories.

The R function smooth.spline was used to test the interpolation of third-order splines with different degrees of freedom. Spline

functions that were trialed included third-order splines with 3 vs 5 degrees of freedom, or third-order splines fitted using leave-

one-out cross validation. Other smoothing methods compared were the monotonic splines fitted using the method ‘‘monoH.FC‘‘,

which computes a monotone Hermite spline according to the method of Fritsch and Carlson, and loess smoothing, with span set

to 0.75.

scGETs imputation method note

In imputing scGETs, we aimed to provide the least complex ensemble of trajectories that accounted for the data distributions at

all measured time points. This reduced the effect of technical noise (e.g. drop-outs in scRNA-seq), but it may also reduce bio-

logical noise. The method first relied on PCA to compress the information from 500 genes per cell into a cell score, with gene-

gene correlations maintained in the PCA loadings. To reduce the impact of technical noise and to decrease computational time,

cells at each timepoint were binned into cell archetypes. While specifying too few archetypes may miss outlier behavior of rare

cells, we noted that 205 (5 timepoints) equated 3.2 million possible paths, far exceeding the number of cells measured. Thus,

leveraging cell archetypes reduced the impact of technical noise at each timepoint, but still maintained sufficient coverage of

possible trajectories. Using weighted random walks to link cell archetypes over timepoints resulted in trajectories that were both

data-driven and biochemically plausible, as no trajectories were imputed with rapidly oscillatory characteristics that contra-

dicted knowledge of mRNA half-lives.72,73 This probabilistic approach to linking data across timepoints also ensured that all

permutations of paths were possible, but some were less likely given the data. Identifying the trajectory paths for the entire

cell in the latent space and then recovering individual gene trajectories by multiplying the PCA loadings matrix also allowed

cellular gene-gene correlations to be preserved, which would not be the case if trajectory paths were identified for each

gene independently

scGETs imputation method applied to macrophage scRNA-seq data
Dimensionality reduction

PCA was performed on all timepoints and all stimulus-conditions combined, for each macrophage polarization state. Timepoints

used for M0 macrophages were 0, 0.25, 1, 3, and 8hrs. Timepoints used for M1(IFNg) and M(IL4) macrophages were 0, 0.5, 1, 3,

5, and 8hrs.

k-means clustering

To obtain cell archetypes at each timepoint, we utilized k-means clustering with k = 20, after examining the elbow plots derived from

the data. Each archetype was defined by the median of PC scores of all cells belonging to that archetype. Note that with archetype

numbers k > 10, linked combinatorially across five timepoints, the number of possible single cell trajectories is 10^5 = 100,000,

exceeding the number of individual single cellsmeasured per stimulus. The use of k-means clustering to group similar cells into repre-

sentative archetypes thus both decreases computational time and can theoretically capture the full range of heterogeneous behavior

of individual cell trajectories.

Weighted random walks

Transition probability matrices were calculated using Euclidean distance between archetypes over timepoints over 50 principal com-

ponents. The cell paths were realized via randomwalks over timepoints, weighted by the values specified by the transition probability

matrices. We used 1000 random walks per stimulus to approximate the number of cells measured in the data.

Spline interpolation

We used the R function smooth.spline, setting {cv = T} to fit a smoothing spline using leave-one-out cross-validation.

Calculation of trajectory features
For comparing stimulus-specificity, trajectories were first scaled 0-1 across all stimuli for each polarization state separately, and the

trajectory features were calculated on the scaled trajectories. By doing so we focused on gene expression expressed not in absolute

units, but in relative counts or fold-changes. Scaling maintained the same relative amplitudes across genes and increased the

comparability of trajectory features. For comparisons across polarization states, trajectories from all stimuli and all polarization states

were scaled 0-1 across all cells together. Features were calculated in R, with the following definitions:

d Integral:

Z8

0

fðxÞdx, definite integral from 0 to 8 hours.

d Peak amplitude: max fðxÞ, maximum value over 8 hours.

d Max log fold change: log2ðmax fðxÞ =fð0ÞÞ, log of the max value divided by value at t=0.

d Activation speed f 0ðxÞjx = 1, the derivative at 1 hour.
Molecular Cell 84, 4095–4110.e1–e6, November 7, 2024 e5
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Comparing scGETs imputed from timeseries data to scGETs from model-simulated ground truth
Weighted random walks

To compare paths chosen by 1) random connections vs. 2) weighted random walks, to 3) the ground truth connection of cells over

timepoints, we calculated the mean Euclidean distance of the imputed path to the ground truth path, across all the timepoints. We

calculated these distances across each possible pair of an imputed path to the ground truth path; as imputed paths and ground truth

paths are not 1-1 matched, across all possible pairs, we graphed the distance of the closest imputed path to each ground truth path.

Spline interpolation

To compare the impact of different spline interpolation options, we interpolated over the chosen paths with several types of splines,

using the function smooth.spline, setting the function parameters as {df=3} or {df=5}. As the resulting scGETs are described by

dynamical features, we compared the dynamical features of the trajectories for genes with different synthesis and degradation

characteristics.

Calculation of maximum mutual information
An information theoretic approach was used to identify either individual genes or combinations of genes providing the highest

maximum mutual information between ligand identity and gene expression. Estimation of maximum mutual information was imple-

mented using the R package SLEMI,67 which uses a statistical learning-based approach to more accurately and more efficiently es-

timate maximum mutual information for data types with higher dimensional outputs. The max MI was calculated for each gene indi-

vidually, using all six stimuli (highest theoretical max MI = log2ð6Þ = 2.58 bits).

Identification of optimized gene combinations
To estimate themaximummutual information of the best combination of 1;2;3;.;N genes for each dynamical features, we compiled

the top 20 genes that individually had the best max MI value. For each of these single-dimension channels, we scanned every com-

bination of two genes, calculated the max MI for the two-dimensional output, and again ranked the best combinations of two genes

and retained the top 20, following approaches published previously.12,14 This forward-selection process was repeated for each addi-

tional gene until the gain in max MI for each additional gene plateaued. Retaining only the top 20 sets at each dimension made the

calculation computationally feasible, while still allowing the possibility for gene combinations that are not simply additive of the pre-

vious dimension’s highest max MI combination.

Statistical learning models to predict polarization state
Statistical learningmethodswere applied to develop classification models to identify cell functional states from 1) steady-state abun-

dances, 2) single timepoint responses, or 3) response trajectory dynamical features. Individual classification models for polarization

statewere trained for each stimulus. To determine classification accuracy of cell polarization state for each of the above three types of

input, we trained LASSO (Least Absolute Shrinkage and Selection Operator)-regularized regression models, as implemented in the R

package glmnet, on three canonical marker genes. Models were trained and then tested using a 70%/30% split of the data. After the

model was trained, the remaining held-out data were tested, resulting in F1 scores and confusion matrices that summarized predic-

tion accuracy for each stimulus used.We also fit amultinomial LASSO-penalized regressionmodel using all measured genes as input

and polarization state as output, to identify the number of genes/features selected for each of the above three types of data input.
e6 Molecular Cell 84, 4095–4110.e1–e6, November 7, 2024


	Single-cell stimulus-response gene expression trajectories reveal the stimulus specificities of dynamic responses by single ...
	Introduction
	Results
	Simulating the dynamics of scGETs
	An imputation method identifies scGETs from time series data
	Evaluating the imputed expression trajectories against a model-simulated ground truth
	Time series scRNA-seq unveils time-dependent heterogeneity in macrophage responses
	Imputation of scGETs in single macrophage cells responding to immune threats
	Dynamical features of scGETs convey stimulus information
	Trajectory features expose gene correlations not evident in time-point measurements
	Polarization alters which immune response genes mediate macrophage specificity
	scGETs effectively distinguish polarization states

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Macrophage cell culture

	Method details
	Macrophage scRNA-seq
	Gene panel selection
	scRNA-seq processing and analysis
	Mathematical modeling
	Model equations
	Model simulations

	scGETs imputation algorithm

	Quantification and statistical analysis
	scGETs imputation applied to model-simulated trajectories
	Selecting time points
	Dimensionality reduction
	Weighted random walks
	Spline interpolation
	scGETs imputation method note

	scGETs imputation method applied to macrophage scRNA-seq data
	Dimensionality reduction
	k-means clustering
	Weighted random walks
	Spline interpolation

	Calculation of trajectory features
	Comparing scGETs imputed from timeseries data to scGETs from model-simulated ground truth
	Weighted random walks
	Spline interpolation

	Calculation of maximum mutual information
	Identification of optimized gene combinations
	Statistical learning models to predict polarization state




