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SUMMARY

Recent biological studies have been revolutionized in scale and granularity bymultiplex and high-throughput
assays. Profiling cell responses across several experimental parameters, such as perturbations, time, and
genetic contexts, leads to richer and more generalizable findings. However, thesemultidimensional datasets
necessitate a reevaluation of the conventional methods for their representation and analysis. Traditionally,
experimental parameters are merged to flatten the data into a two-dimensional matrix, sacrificing crucial
experiment context reflected by the structure. As Marshall McLuhan famously stated, ‘‘the medium is the
message.’’ In this work, we propose that the experiment structure is the medium in which subsequent anal-
ysis is performed, and the optimal choice of data representation must reflect the experiment structure. We
review how tensor-structured analyses and decompositions can preserve this information. We contend
that tensor methods are poised to become integral to the biomedical data sciences toolkit.
Multiplex and high-throughput assays now enable the explora-

tion of cell responses in unprecedented scale and detail. Conse-

quently, studies of biological systems have increasingly focused

onprofiling biological systems acrossmultiple contexts (Table 1).

For instance, a panel of candidate therapiesmight be profiled us-

ing cell samples derived from multiple organs, with several fea-

tures of their response measured over time (Figure 1A). Identi-

fying how responses are shared or distinct across multiple

cellular contexts and experimental conditions reveals more

about the biological mechanism and enhances the generaliz-

ability of the results. At the same time, measuring cell lines and

tissues across multiple parameters generates data with multiple

dimensions (e.g., cell line, time, and experimental conditions),

which necessitates reevaluating how we represent and analyze

such information.

Representing multivariate data in a tabular form can sacrifice

the ultimate insight that can be derived. It is not uncommon

that studies with several dimensions are still laid out in rows

and columns with some dimensions merged. For the example

in Figure 1A, when the experiment is repeated over time, the col-

umns must expand to combine two experimental parameters,

drug and time point, such as ‘‘alfazumab—1 h,’’ ‘‘alfazumab—

3 h,’’ ‘‘bravociclib—1 h,’’ ‘‘bravociclib—3 h,’’ etc. In this format,

one may instinctively apply familiar off-the-shelf statistical ap-

proaches, such as principal-component analysis (PCA), because

the data appears to be in matrix form.

So, what is the problem with this? As communication philoso-

pher Marshall McLuhan famously stated,12 the medium is the

message. The choice of data structure influences its analysis

and the subsequent insights. A tabular form implicitly treats

each column and row as separated from one another, while
All rights are reserved, including those
merged dimensions diverge from this assumption. For instance,

alfazumab—1 h and alfazumab—3 h share the same treatment,

and alfazumab—1 h and bravociclib—1 h share the same timing;

however, bravociclib—1 h and alfazumab—3 h differ in two

distinct ways (Figure 1B).When flattening amultidimensional da-

taset into a table, we compromise this property.

To devise a more effective approach, the ‘‘medium’’ or struc-

ture of the experiment must be incorporated. The example

experiment varies across three degrees of freedom: organ,

drug, and time; this is best represented by a three-dimensional

array or tensor (Figure 1C). A tensor representation aligns entries

with shared meaning. For instance, when examined from the

perspective of an organ (e.g., thymus and the green cubes),

we find the pharmacodynamic profiles of all drugs on this organ;

when viewed from a drug (e.g., foxtrotolol and the pink cubes),

we find its impact on all organs over time (Figure 1C).

In this work, we aim to provide an overview of how tensor

methods have been applied and benefited systems biology

studies, and how they can be deployed more broadly. We pro-

pose that tensor methods should and will become an estab-

lished part of the basic biomedical data sciences toolbox.

Defining tensors and tensor decomposition
Tensors are nothing more than multidimensional arrays.13–15

Zero-, one-, and two-dimensional tensors are scalars, vectors,

and matrices, respectively (Figure 1D). To avoid conflicting def-

initions of ‘‘dimension’’ in linear algebra, ‘‘mode’’ or ‘‘order’’ are

used—three-dimensional, three-mode, and third-order tensors

are all the same concepts. A matrix has two modes—columns

and rows—but tensors over three modes do not have mode-

specific names. When structuring biological data into a tensor,
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Table 1. Some examples of multivariate biological datasets

Ref. Brief description Data modality Contexts

Omberg et al.1 gene expression in S. cerevisiae

cultures

DNA microarray genes, time points, conditions

Hore et al.2 gene expression across multiple

human tissues

RNA sequencing individuals, genes, tissues

Li et al.3 metabolite profiles across cancer

cell lines in Cancer Cell Line

Encyclopedia

liquid chromatography–mass

spectrometry

cell lines, metabolites, genes

Jones et al.4 synovial fibroblasts cytokine

secretion after exposed to drug

perturbations

Luminex assay samples, stimuli, inhibitors

Sikkema et al.5 human lung cell atlas single-cell RNA sequencing cell types, individuals, gene,

anatomical locations

Lloyd-Price et al.6 metagenome data in Human

Microbiome Projects

metagenomic whole genome

shotgun sequencing

subjects, time point, body sites

Gross et al.7 protein expression change in human

mammary epithelial cell after

perturbation

reverse phase protein array proteins, treatments, time

Durham et al.8 roadmap epigenomics data from

ENCODE project9
various epigenomics data cell types, assays, genomic

positions

Kemper et al.10 height and weight-related traits from

UK Biobank

physiological data individuals, traits, time points

Williams et al.11 neuron recordings across time and

trials in rodents and monkeys

neuronal firing rate neurons, trials, time
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each mode ideally relates to a varied parameter of the experi-

ment, such as samples, genes, cell lines, treatments, concentra-

tions, or time points.

Tensors can be analyzed by tensor decomposition. Before

describing this, it is helpful to introduce the concept of rank-

one tensors, the building block for tensor decomposition. Like

with matrices, even large data tensors can be decomposed

into a series of simple patterns, known as rank-one tensors. Un-

like the concept of tensormode, which is directly associatedwith

the data dimensionality, the rank of a tensor is a separate and

less evident concept that requires examining its entries. As

an illustrative example, consider a smaller dataset with the

response of cells from four organs to three drugs over two time

points. By stacking the measurements at 1 h (a 4 3 3 matrix)

on top of the measurements at 3 h (another 4 3 3 matrix), we

obtain a 4 3 3 3 2 tensor with organ, drug, and time modes

(Figure 1E). In this contrived example, along the drug mode,

every vector is a multiple of (2, 1, 3). This indicates that all eight

samples have the same drug-reaction profile. The measure-

ments collected at the 3 hmark are double those at 1 h, suggest-

ing that all measured effects increase to twice the magnitude

from 1 to 3 h. The organ factor is (2, 1, 4, 3), indicating the ratio

of the four organs’ reaction magnitude: cells from the thymus

react twice as much as cells from the skin, while cells from the

pancreas and liver exhibit effects of four and three times as cells

from the skin, respectively. Every entry in this tensor can be pre-

cisely computed bymultiplying three numbers, each from the or-

gan, drug, and time factor with their positions corresponding to

their position in the tensor (Figure 1F). To describe this property,

we define this tensor as the outer product of these three vectors

(Figure 1G). Tensors that can be expressed as the outer product

of a vector set are known as rank-one tensors. The number of
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vectors within the set is the order of this rank-one tensor; there-

fore, a rank-one tensor can have any number of modes. Rank-

one tensors exhibit a single pattern association with each

mode, enabling straightforward interpretation.

Most tensors are more complex than rank-one tensors. None-

theless, by expressing them as the sum of rank-one tensors

(Figure 1H), interpretation becomes significantly easier; they

can be understood as the combination of these rank-one individ-

ual patterns. Even if we do not represent the original tensor

exactly, if a small number of patterns can closely approximate

the original tensor and capture essential information, we can still

gain insights into the overall trends. This process of breaking

down a complex tensor into the sum of a few patterns is known

as tensor decomposition or tensor factorization.

A STEP-BY-STEP GUIDE ON TENSOR DECOMPOSITION

Structuring the data into a tensor format
Organizing a dataset into a tensor requires recognizing the struc-

ture defined by the experiment. In the example presented in

Figure 1C, it is natural to use a three-mode tensor with organ,

drug, and time modes.16 Tensor order can extend beyond three

dimensions if, for instance, each organ, drug, and time combina-

tion was performed across multiple assays (e.g., measurement

of many genes or proteins).

Measurements can only be separated into a distinct mode

when the mode’s labels relate to a common experimental entity

across which the data can be grouped accordingly.17 For

example, should multiple technical replicates for each condition

be grouped in a separate mode? No, because the ‘‘sample 1’’

replicate of cells from the liver does not signify the same repli-

cate as ‘‘sample 1’’ of cells from the skin. We may either
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Figure 1. Basic concepts of tensor-structured data
(A) A dataset of cells collected from different organs responding to various drug treatments can be documented by a table.
(B) When the measurements are performed over multiple time points, the original columns in the table can be expanded into multilevel indices, recording both
drug and time. This nonetheless breaks the assumption that all columns are equally related.
(C) Alternatively, the same data can be recorded as a three-dimensional array, with organ, drug, and time as three separate degrees of freedom. Here, the pink
represents how every cell responds to foxtrotolol over time, and the green represents the pharmacokinetic profile of cells from the thymus over all treatments. The
brown is shared by pink and green.
(D) Tensors are multidimensional arrays. A dimension of a tensor is a mode. 0, 1, and 2-mode arrays are known as scalar, vector, and matrix.
(E) An example of a rank-one tensor. A subset of the drug response dataset on cells from four organs responding to three drugs over two time points and has
dimensions 4 3 3 3 2, organ by drug by time.
(F) Rank-one tensors are those whose every entry can be written as the product of a few numbers, one from eachmode-specific vector, from their corresponding
coordinates.
(G) A rank-one tensor can be written as multiple mode-specific factors joined by the vector outer product, 5.
(H) Evenwritten as sets of vectors, these rank-one tensors should still be understood as arrayswith numbers in every entry. Adding two tensors of the same shape
is to add their corresponding positions together.
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average these replicates during reformatting if their variation is

not of particular interest or apply resampling strategies to pre-

serve replicate variances.18 However, if these samples repre-

sent a common set of patients—sample 1 is the same for all
cell types, indicating that they came from the same individ-

ual—this justifies the inclusion of a corresponding mode. Simi-

larly, single-cell measurements from different samples inher-

ently come from different cells; therefore, single cells cannot
Cell Systems 15, August 21, 2024 681
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Figure 2. Fundamentals of CP tensor decomposition
(A) For a three-dimensional array, a chord is the entries across all labels on one single mode, and slices are entries across two modes.
(B) Canonical polyadic (CP) decomposition approximates a complicated tensor as the sum of a few rank-one tensors. In the example here, for a drug response
tensor of 73 63 5, organ by drug by time, after being decomposed into 3 components, we will have 3 factors for each of the three modes. Organizing them into
matrices, we will have three-factor matrices with shapes 7 3 3, 6 3 3, and 5 3 3 for organ, drug, and time, respectively.

(legend continued on next page)
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form a distinct tensor mode when attempting to parallelize

samples. They may only form a tensor mode when multi-omic

assays are performed on identical cells. As another example,

in single-cell analysis, when combining runs from different

backgrounds, whether the clusters with the same label should

be aligned depends on whether these cluster labels hold the

same meaning across backgrounds. If the cluster labels are as-

signed randomly (e.g., in k-means), they are not equivalent be-

tween runs and therefore cannot form a separate cluster mode.

However, if the clusters can be identified based on cell surface

markers and cluster 1 consistently represents the same cell

type, this cell type mode is justified.

In a tensor format, the items representing positions along a

mode are treated separately. Therefore, the order of items on a

mode is inconsequential to the tensor decomposition. For

instance, switching the positions of 3 and 12 h on the time

mode in the tensor in Figure 1Cdoes not affect its decomposition

results. For longitudinal measurements where sometimes the

time points cannot be aligned perfectly, compromises may

have to be made. One approach can be binning, where similar

time points of different samples are grouped into one category.

For instance, if one individual only has samples at 3 h, while

another only has 4 h, a binned ‘‘3–4 h’’ category may be created

to align them. Sometimes, several positions in the tensor may be

left empty to maintain the data’s logical structure (see ‘‘missing

data and imputation’’ on decomposition with missing entries).

Tensor decomposition can benefit from appropriate data pre-

processing, such as centering, scaling, and transformation.

Centering and scaling operations are always associated with a

specific mode, so they become more complex when data has

multiple modes.19 For a three-mode tensor, chords are an exten-

sion of columns in a matrix, whereas slices are all values associ-

ated with a specific position along one mode (Figure 2A). For

example, chord-wise and slice-wise operations across organ

mode, respectively, correspond to one type of measurement

across all organs, and all numbers aligned to one organ.

Centering is performed to make the data ratio-scaled, as tensor

decomposition models assume. This means that a zero value in-

dicates a true zero effect, makingmultiplicationsmeaningful (i.e.,

doubling the number always equals twice the effect). Scaling is

used to adjust the scale differences among variables to avoid

larger values overshadowing the variation of interest, which

also helps maintain numerical stability during solving. A common

preprocessing choice is tomean-center across the subject/sam-

ple mode and then scale the standard deviation to one within
(C) Plotting the number of components against the error. Error is defined as the
tensor. An optimal component number may be attained at the elbow point on the p
reached.
(D) Sizes of reduced data plotted against their reconstruction errors using CP or PC
whereas the chord-shuffled and all-number-shuffled versions reduce the advanta
(E) Plotting every factor separately to visualize tensor decomposition results. Here
The factors of other components are omitted but can be shown similarly.
(F) Heatmaps to visualize the factor matrices compactly. We can both inspect a
factors within a mode to distinguish their differences.
(G) Factors of a discrete variable mode (such as drug mode here) can be visualiz
(H) Factors of a continuous variable mode (such as time point mode here) can b
(I) Demonstration of factors’ scale indeterminacy. Scaling the factors coordinately
pairs (right) all yield equivalent factorizations, as they all reconstruct to the identi
(J) Organ factor heatmap reordered by hierarchical clustering on the factorization
next to the heatmap to identify their association with the factors.
other modes. Transformation is another technique that usually

applies to nonlinear data to ensure the measurements are ra-

tio-scaled before the decomposition.

Performing the decomposition
The decomposition method we review here is known as canon-

ical polyadic (CP), parallel factor (PARAFAC), or canonical

decomposition (CANDECOMP). Implementations of this method

are available in software packages for various programming lan-

guages (Table 2).

CP decomposition requires a data tensor and the desired

number of components. The component number is the number

of rank-one tensors used to approximate the original data

(Figure 2B). For each mode, the factors of each component

can be regrouped into a factor matrix (Figure 2B, right), in which

the first columns of each matrix represent the first factor, the

second columns the second factor, and so on. Thus, if we take

the outer product of the first columns (factor 1) in the three-factor

matrices, we will obtain the first decomposed rank-one tensor,

component 1. Repeating this process for each component and

summing them up, we can reconstruct a tensor that approxi-

mates the original data (Figure 2B). To summarize, the decom-

posed factors can be either grouped by mode into factor

matrices or by the factor indices into components. The goal of

the decomposition algorithm is tomake the reconstructed tensor

match the original one as closely as possible.

The number of components
With CP decomposition, one must choose the number of com-

ponents. Too few components will miss essential trends, while

too many will lead to redundant factors, noise (overfitting), and

poorer interpretability.

To quantify howwell a decomposition with the chosen number

of components fairly represents the original data, one can quan-

tify the difference between the reconstructed tensor and the

original data, or the reconstruction error. This value is calculated

as the sum of squared differences between these two tensors,

usually normalized by the sum of squares of the original data

(Figure 2C). Smaller errors indicate a better fit. While the error

can range from 0 to any positive number, a successful fit should

result in an error below 1 when normalized. The reconstruction

error consistently decreases with a greater number of compo-

nents with diminishing returns, where each additional compo-

nent improves the fit to a lesser degree (Figure 2C). Achieving

a perfect fit to the data is typically not the goal of tensor
sum of squared differences normalized by the sum of squares of the original
lot (in this example, 3 components), or the point at which an acceptable error is

A. CP decomposition represents the original datasetmore concisely than PCA,
ge of CP, indicating the underlying data structure influences data compression.
, three bar plots demonstrate the three-mode-specific factors of component 1.

ll factors of a component across modes for its interpretation and/or compare

ed with a bar plot.
e visualized with a line plot.
(left), factoring the weights to a separate scalar (middle), or negating factors in
cal rank-one tensor.
results. Other information, like the organs’ biological grouping, can be labeled

Cell Systems 15, August 21, 2024 683



Table 2. Selected tensor decomposition packages and the methods they implement

Programming language Package

Decomposition methods

Constraints implementedReviewed in this work Other methods

Python TensorLy20 CP, Tucker, PARAFAC2,

CMTF, CP partial least

squares

partial Tucker, tensor train,

CP/Tucker regression

nonnegativity, symmetry,

regularization

MATLAB Tensor Toolbox21 CP, Tucker N/A symmetry, sparsity,

orthogonality

R rTensor22 CP, Tucker 3-mode tensor SVD, multilinear PCA N/A

multiway23 CP, Tucker, PARAFAC2 simultaneous component

analysis

nonnegativity

CP, canonical polyadic decomposition (also called PARAFAC or CANDECOMP); CMTF, coupled matrix-tensor factorization; SVD, singular value

decomposition; PCA, principal-component analysis. Tucker decomposition here can be higher-order SVD (HOSVD), truncated HOSVD, or higher-or-

der orthogonal iteration.
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decomposition. While this is technically feasible by setting the

component number equal to the tensor’s theoretical rank,14 in

practice, this number is almost always too high for any practical

use. To choose the optimal number of components, one may

identify where the benefit of adding more components dimin-

ishes. This sometimes corresponds to the kink (or elbow) point

on the error plot. However, such a transition point is not always

evident.

The process described above resembles selecting compo-

nent numbers in PCA, but with a few distinctions. Tensor

decomposition is not a recursive process: the components of a

3-component decomposition are not necessarily a subset of

the 4-component decomposition. On that account, one must

experiment with every candidate component number to identify

an optimal choice. Components are also not guaranteed to

be ordered.24 Therefore, to create an error plot, the decomposi-

tion must be run for each number of candidate components

(Figure 2C).

The choice of component number directly relates to the data

compression efficiency and fidelity trade-off (Figure 2D). Since

a tensor can be approximatedwith its factorization results, which

consist of fewer numbers, tensor factorization effectively com-

presses it. The smaller the size of the reduced data, the better

the data compression ratio. However, this comes with the cost

of a worse approximation (i.e., a larger reconstruction error) of

the original data. For example, for a tensor with 7 3 6 3 5 =

210 values, a 4-component decomposition will compress it

down to 4 3 (7 + 6 + 5) = 72 numbers; if using 3 components,

only 33 (7 + 6 + 5) = 54 numbers, but with a greater reconstruc-

tion error.

The reconstruction error also depends on whether the under-

lying data structure can be well-approximated by a low-rank

model. As illustrated in Figure 2D, CP decomposition can repre-

sent the drug response dataset more concisely than PCA—

achieving a smaller representation under the same fidelity or

comparable size with lower error—since its underlying structure

can be approximated well by the sum of multiple rank-one ten-

sors. However, shuffling the chords in the data disrupts this

low-rank tensor structure, causing the performance of CP to

deteriorate. Further shuffling all numbers in the dataset

completely eliminates the underlying low-rank matrix structure,

thereby degrading even PCA’s performance.
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Another consideration is the inherent noise present in biolog-

ical measurements. With too many components, tensor decom-

position starts to fit trivial patterns, which are more likely to be

noise. In principle, one should cease adding more components

when the algorithm begins to overfit (fit the original data too

closely but lose generality), is prone to excessive local minima,

or starts to violate the properties of CP. These situations may

be assessed respectively through imputation tests (see ‘‘missing

data and imputation’’), factor similarity tests (see ‘‘optimization

algorithms’’), or core consistency diagnostics (see ‘‘tucker

decomposition: allowing all factors to interact’’).

Visualizing and interpreting the results
After validating the decomposition, the resulting factors can

be inspected for biological insight. To provide a concrete

example, we inspect our decomposition results shown in plots

(Figures 2E–2H).

To visualize the results, one should design plots that describe

how each factor is associated with the labels along each mode.

Therefore, one can have one subplot for each factor (one from

each mode) for each component, repeated for all components

(Figure 2E). In these plots, the x axis indicates the labels, and

the y axis shows the factor weights. For a more concise visuali-

zation, one can also plot each factor matrix made from factors

from all components as a heatmap with colors representing

the weights (Figure 2F). To visualize factors within a specific

mode, bar plots and point plots generally work well for discrete

labels such as samples, cell lines, or molecules (Figure 2G), while

line plots are more suitable for continuous labels such as time or

concentration (Figure 2H). Overall, visualization should optimally

serve to present one’s insights; there is no fixed rule.

The initial phase of interpretation involves delineating the

meaning of each component pattern. This requires reading

the plots across all modes. For instance, consider component

1 (Figure 2E). Within the organ factor, the largest signal origi-

nates from cells collected from the heart, followed by smaller

weights from the cells of the kidney. The same information

can also be captured from the first column of the organ factor

heatmap (Figure 2F, left). Along the drug mode, the strongest

signals appear on deltatinib in the positive direction and on

charlivir in the negative. This can be read out from the heatmap

(Figure 2F, middle) or the drug factor bar plot (Figure 2G) too.
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The time mode factor, on the other hand, has increasing values

over time in component 1. The orange line in the time factor

plot best represents this trend (Figure 2H). Putting this informa-

tion together, one concludes that component 1 mostly delin-

eates a temporally increasing impact of deltatinib, positively,

and charlivir, negatively, on cells from the heart (then the kid-

ney). In practice, one can choose whichever plot best depicts

the trend. Following the same logic, we see that component

2 unveils an effect of mostly echoxacin, positively, and alfazu-

mab, negatively, on cells collected from the thymus, peaking

at 6 h. Component 3 mostly indicates an effect of alfazumab

and bravociclib on cells from mostly the heart that persists

over time.

A specific mathematical intricacy, scale indeterminacy, can

hinder clarity (Figure 2I). As the effect along each mode is multi-

plied together, scaling these factors in an opposing way, i.e.,

doubling one factor and halving another within a component,

yields equivalent results (Figure 2I, left). This indicates that only

the relative ratios of weights within a factor are certain, not the

absolute values. Therefore, we should not compare the absolute

weights between factors of different components, only the rela-

tive composition. To avoid ambiguity, one typically normalizes all

factors to a defined scale, storing the weighting as a separate

scalar (Figure 2I, middle). The issue of indeterminacy extends

to negative factors: by the same logic, negating two factors

simultaneously also yields equivalent results (Figure 2I, right).

This is sometimes called sign indeterminacy.25 One approach

to avoid ambiguity is to make most modes positive by negating

the factor vectors in pairs, ensuring that at most only one mode

harbors factors with an overall negative effect (Figure 2I, right).

One can also compare across components within a single

mode. Within the organ mode, for instance, components 1 and

3 assign similar factors to cells from the heart and kidney, unveil-

ing shared localization in drug effect (Figure 2F, left). In the drug

mode, each drug has different factors, suggesting that they have

divergent interaction profiles (Figures 2F, middle, and 2G). Each

time factor also has a distinct trend, ranging from stable (compo-

nent 3) to increasing over time (component 1) and peaking

(component 2) (Figure 2H). To better identify similar entries

(e.g., drugs or organs) on a mode discovered by tensor decom-

position, one can also perform hierarchical clustering on the fac-

tor matrix and reorder the entries accordingly (Figure 2J).

This juxtaposes entries of similar factor weights, helping to

reveal groupings of comparable entries. Additional contextual in-

formation, such as cell categories, sample classes, and patient

statuses, can also be labeled next to the heatmap to help identify

associations between the factors and their known groupings

(Figure 2J).

DETAILS AND CONSIDERATIONS OF TENSOR
DECOMPOSITION

The previous section presented an overview of employing tensor

decomposition. However, several details of the fitting procedure

may help in certain circumstances.

Optimization algorithms
Solving tensor decomposition is, in its essence, an optimization

problem. The objective is to find a set of factor matrices that,
when multiplied, render a reconstructed tensor with minimal er-

ror (Figure 3A). Common mathematical optimization algorithms,

such as gradient descent or the Newton-Raphson method, can

be employed here.26 This ‘‘direct optimization’’ approach offers

the advantage of versatility since many optimization methods

allow additional constraints, making it possible to develop new

decomposition schemes. However, its performance relies heavi-

ly on the chosen method and initialization values, since a sub-

stantial number of parameters must be simultaneously solved.

As an alternative approach, we can first notice that the factor

matrices exhibit symmetry: swapping mode orders does not

change the solving. Also, if we know the correct factors of all

other modes, solving for one mode can be converted into an or-

dinary least squares problem. Thus, we can tackle onemode at a

time using least squares while treating the others as constant,

then repeat this for everymode (Figure 3B).We keep iterating un-

til these factors converge. Over time, we can expect amonotonic

decrease in the reconstruction error. This approach is called

alternating least squares (ALS). Besides its efficiency, ALS often

benefits from more stable and reproducible performance.27

Both methods require initial factor values. While a random

initialization may be sufficient, a more informed estimation can

expedite convergence. One such estimation involves using the

principal components from a flattened version of the original

tensor. This approach, known as singular value decomposition

(SVD) initialization, usually yields more stable results and re-

duces the likelihood of a suboptimal solution (i.e., local mini-

mum). However, neither initialization guarantees an optimal so-

lution.

When the resulting factors are highly dependent on the starting

point of the fitting, it can indicate that the optimization problem is

ill-formed, suggesting that the chosen number of components is

too large or that additional constraints would be helpful. The fac-

tor similarity test exploits this property to determine the appro-

priate component number.11,28 In essence, this test quantifies

to what extent different starting points change the resulting fac-

tors, helping determine up to how many components the factor-

ization algorithm remains stable.

Missing data and imputation
Missing measurements frequently arise from experimental limi-

tations. These omissions are not necessarily a result of oversight;

certain measurements may be intentionally missing. This issue

becomes particularly pronouncedwith tensors, as complete ten-

sors require all possible combinations of all modes. Conse-

quently, missing data can emerge simply from transforming a

dataset into a tensor, even if the original data appears complete

(Figure 3C). For instance, the example dataset in Figure 3C does

not contain any missing values, but because the impacts of del-

tatinib and echoxacin after 6 h were not measured, the reformat-

ted tensor contains missing chords (Figure 3C, right).

Tensor decomposition can be performed even with missing

values in a tensor. This can be achieved either by ignoring the

missing positions and only fitting the existing ones in direct

optimization, or prefilling them with placeholders in the hope of

updating these values iteratively through repeated factorization

and reconstruction.29,30 Note that zeros in a tensor will still be

fit by the tensor decomposition algorithm, unlike explicitly

missing values, so replacing missing values with zeros is
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Figure 3. Technical details on applying CP to biological data
(A) Solving tensor decomposition is an optimization problem aiming to minimize the reconstruction error by adjusting the numbers in the factor matrices.
(B) Alternating least squares (ALSs) is another strategy besides direct optimization. Starting from a set of initial values, it optimizes one factor matrix at a time with
linear least squares while holding the others constant. This process is repeated on each factor matrix until convergence is reached.
(C) A demonstration of how structuring data into tensor format may create missing values. Although the original table on the left does not contain any missing
values, since not all drug-time pairs are measured, the reformatted three-mode tensor contains missing chords.
(D) Various proportions of missing data were introduced to the tensor to evaluate howmissingness impacts reconstruction errors. Each gray point represents one
of 40 runs with random missing patterns. The blue points and error bars show the average reconstruction errors and 95% confidence intervals, respectively.
(E) Demonstration of the imputation test. Ignoring the preexisting missing data, we arbitrarily introduce more missing positions, use the remaining data to fit the
decomposition, and then compare the reconstructed (i.e., imputed) values with the original values at the positions we removed. Plotting against the number of
components, the fitting errors should decrease monotonically with more components. However, the imputation error will eventually increase with excessive
components due to overfitting. Error bars represent 95% confidence intervals from 30 independent runs after masking 30% of the data for the imputation test in
the demonstration dataset.
(F) Sparsity in tensor factors. These organ factors 1 are in the order of increasing sparsity.
(G) Tensor decomposition factors can be used for response prediction when combined with regression. The coefficient of each factor indicates their association
with the sample classes. Error bars represent the jackknife confidence intervals.
(H) For classification, the model may be reduced to using a subset of the factors.
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incorrect. While the fitting process may still function even with a

high proportion of missing values, the resulting factors can

significantly deviate from those obtained with complete data.

The extent of this deviation can vary widely depending on the un-

derlying data structure and the specific missingness, but gener-

ally, a greater portion of missing data leads to larger reconstruc-

tion errors (Figure 3D).

Tensor decomposition also provides an avenue to impute the

missing values of a tensor. Since a full tensor can be recon-

structed from the resulting decomposed factors (Figures 1G

and 2B), one can use these reconstructed values from tensor

decomposition to replace the missing positions, effectively
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imputing them.30 Compared with matrices, higher-order tensors

benefit from the additional information from more shared

coordinates. Tensor imputation through decomposition is not

foolproof; it remains an area of ongoing research. Like

matrix completion, it relies on inherent assumptions. If the orig-

inal data cannot be approximated as lower-rank tensors

(Figure 2B), the imputed values can significantly deviate from

their true values. Other factors, such as the quantity and distribu-

tion of the missing values and the chosen component numbers

and decomposition method, can also influence the accuracy of

imputation. A tensor cannot be missing all its values across a

slice. Thus, in situations where there are very few non-missing
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values, it may be advantageous to consider discarding one po-

sition along a mode.

One can use imputative performance to assess the reliability of

decomposition on a tensor or to determine its appropriate num-

ber of components. In an imputation test, one intentionally intro-

duces additional missing values into the data (Figure 3E, top).

Following decomposition, the entire tensor is reconstructed

from the factors, and the left-out values are compared against

their reconstructed versions. A substantial disparity indicated

by a high imputation error indicates an unsuccessful decompo-

sition, attributable to either an ill-suited dataset or an excessively

high number of components. While the fitting error monotonically

decreases with more components, the imputation error often

shows an optimum at an intermediate number of components

(Figure 3E, bottom).

Constraints on the factors
The optimization processes reviewed so far only aim to best fit the

data. However, their results may suffer from low interpretability,

overfitting, and instability. Numerical constraints on the factors

can help with these issues. Although they may impact the good-

ness of fit, reasonable constraints can enhance themodel’s ability

to reveal meaningful patterns, leading to more insightful discov-

eries. For example, one goal of constraints is to achieve sparsity,

where a factor has nonzero values in only a few positions and ren-

ders others nearly or exactly zeros. This helps establish direct as-

sociations between factors and their effects.2 For instance, in the

hypothetical organ factors 1 in Figure 3F, the low-sparsity factor

has weights on almost all organs, making interpretation more

complicated. The high-sparsity version only has weights on the

heart and the kidney, better indicating that this factor has the

greatest association with these two organs. Regularization is

commonly used to achieve sparsity in factors.

Nonnegativity is the most commonly used tensor decomposi-

tion constraint.31 It aligns intuitively with the expectation that

certain quantities in biology are inherently nonnegative: a cell

cannot secrete a negative number of molecules, and a gene

cannot be expressed at a negative level. Nonetheless, enforcing

nonnegative factors may limit the tensor factors from modeling

negative effects in biology, such as an upstream pathway that

suppresses molecule secretion or inhibits gene expression.

Another rationale for the nonnegativity constraint is to foster

sparsity within the factors and avoid overfitting. Decompositions

allowing negative factor values can yield degenerate compo-

nents, where one component is strongly positive and another

is strongly negative, mostly canceling each other out.24 Enforc-

ing all values in the factor matrices to be nonnegative obviates

such occurrences, as the impact of any component cannot be

counteracted by another. Nonnegative factorization often leads

to minimal sacrifices in model error, solidifying its application in

practice.11

Constraints can also be used to enforce biological knowledge

in a decomposition.32 For instance, in neuroscience, one may

postulate minimal crosstalk among different brain regions and

limit the brain region factors to be a diagonal matrix.33 In molec-

ular biology, one may employ orthogonalization of the factors to

enforce a clean delineation between components and traits.34

This usually lacks a standardized approach, as biological con-

texts vary and may require customized solving.28
Subsequent analysis
While tensor analysis often serves as an important step for

distilling data into significant patterns, further analysis beyond

the factor plots (Figures 2E–2H) is often required to learn what

component patterns indicate about biology. The factor matrices

serve as efficient summaries for individual patterns linked to their

respective modes. Consequently, each matrix can be isolated

for a detailed analysis of the variation within a specific mode of

interest. For instance, the components associated with genes

or molecules of particular interest from prior knowledge can be

further examined to validate their agreement with known mech-

anisms.

The decomposed factors can also be used as reduced data to

predict responses or sample classes when combined with

regression. The scale and sign of theweights for each factor indi-

cate its effect on the regressed quantity (Figure 3G). If only a sub-

set of factors contributes to the effect of interest or the regres-

sion model can achieve comparable accuracy with fewer

factors, the prediction model may use only a subset of them

(Figure 3H). For example, in Figure 3H, prediction using only

two factors, factors 1 and 2, performs just as effectively as all

factors.
ADVANCED TENSOR METHODS BEYOND CP

In this section, we cover more advanced tensor decomposition

methods. For more complex biological data, it is particularly

crucial to choose a method that best reflects the structure of

the expected patterns.
Tucker decomposition: Allowing all factors to interact
In CP decomposition, especially when there are more compo-

nents, some factors may start to look similar within one mode.

For example, in Figure 2F, the organ factors 1 and 3 appear

similar. This redundancy arises from the inherent constraint of

CP decomposition, where factors may only interact within the

same component (Figure 2B). In other words, because CP

does not allow interaction between drug factor 1 and time factor

3, a repetitive drug factor must be present in component 3 to

capture a similar effect on organs. CP permits the existence of

two identical factors in one mode, as long as their corresponding

factors in other modes remain distinct. Therefore, the factors

along a mode in CP decomposition may not succinctly summa-

rize the trends in this mode.

Tucker decomposition is a different tensor decomposition

model from CP with a more flexible construct.35,36 It permits

varying numbers of factors for each mode, and all factors across

modes interact. For example, here we perform a (4,3,2)-rank

Tucker decomposition on the 7 3 6 3 5 drug response data

tensor, in which the organ mode has 4 distinct factors, the

drug mode 3, and the time mode 2 (Figure 4A). Consequently,

there are 4 3 3 3 2 = 24 factor interactions. Each interaction

can be understood as a component in CP (Figure 4A, right).

The magnitude of each interaction is characterized by its corre-

sponding weight, and these 24 weights can be arranged into a

43 33 2 core tensor (Figure 4B, left). The outcomes of a Tucker

decomposition include a core tensor that models the factor inter-

actions and three-factor matrices that represent the principal
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Figure 4. Tensor methods beyond CP: Tucker decomposition, coupling, and partial least squares
(A) Schematic of Tucker decomposition. This (4,3,2)-rank Tucker decomposition on the previous 73 63 5 drug response tensor allows all distinct 4 organ factors,
3 drug factors, and 2 time factors to interact. The weights of these 24 interactions are organized into a 4 3 3 3 2 core tensor. The results of a Tucker decom-
position are a factor matrix for each mode and this core tensor.
(B) The core tensor of a Tucker decomposition. It can be visualized by showing the numbers in each slice. The significance of an interaction is proportional to its
weight squared.
(C) A superdiagonal 4 3 4 3 4 tensor. CP is a special case of Tucker decomposition where the core tensor is superdiagonal.

(legend continued on next page)
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components (the major trends) along those three modes

(Figure 4A, middle).14

There are two ways to utilize the Tucker results. The factor

matrices, consisting of the eigenvectors defined in higher dimen-

sions, can be used as summaries of the modes. They can be

visualized similarly to Figure 2F. One can also analyze the core

tensor to identify the top interactions by significance, which is

defined as proportional to their weights squared (Figure 4B,

right). For example, here,�78%of the variance can be explained

by the interactions among factor 1s of organ, drug, and time.

CP decomposition is equivalent to a specific instance of

the Tucker decomposition, wherein factors associated with

different components are non-interacting, thus the core tensor

assumes a superdiagonal form, signifying that all off-diagonal

positions are zeros (Figure 4C). This superdiagonal property

has been harnessed to test whether a CP decomposition is

correctly implemented, known as core consistency diag-

nostic.37 Specifically, after acquiring the CP factor matrices, if

adding off-superdiagonal interactions to the retrofitted core

tensor can improve the fitting considerably, the number of com-

ponentsmay be inappropriate, or Tucker may be a better model

than CP for this dataset.

Tucker decomposition offers a better mode-specific summary

and more flexible analysis, which opens many possibilities for

method development.38 Many variants of Tucker decomposi-

tion, including higher-order SVD (HOSVD), have been applied

to biological datasets.1,39

Coupling: Sharing factors across multiple tensors
The integration of (epi-)genomic, transcriptomic, and proteomic

data, either in bulk or at the single-cell resolution, has provided

opportunities for an integrated understanding of cellular pro-

cesses. More broadly, biologists often encounter data fusion

challenges when attempting to identify shared patterns among

multiple data sources.40 The joint analysis of several datasets

can be formulated as coupling of tensors.41

Coupling arises when two or more datasets are collected with

differing dimensions, but all tensors share at least one ‘‘coupled’’

mode (Figure 4D, left). Commonly coupled modes include sam-

ples or patients that are shared across multiple assays. For

instance, there may be another dataset on cells from the same

groups of organs measured in the previous dataset (Figure 4D,

tensor A); this new dataset contains the gene expression of the

cells from these organs under various treatments (Figure 4D,

tensor B). In this case, the organ mode is shared, while each

tensor has other uncoupled modes, such as drugs and genes.

In a coupled decomposition, a shared mode will have a common

factor matrix that is used by all tensors that comprise this mode
(D) Schematic of coupled tensor decomposition. Here, two three-mode tensors, A
while the drug and time factors are private to tensor A, and gene and treatment
letters.
(E) The scaling issue in coupled tensor decomposition. When one of the coupled
variance in it if without proper scaling, leading to an uneven representation of th
(F) Some other examples of tensor coupling: coupled matrix and tensor factoriza
(G) Schematics of tensor partial least squares. Partial least squares is perform
separated X and Y factors of the aligned mode (patient mode in the example cas
sequentially, as the next component is found by repeating the same process on
decreasing order of covariance explained.
(H) The performance of partial least squares can be evaluated by calculating the fi
decrease with more components, while the prediction errors (from cross-validat
(Figure 4D, right). In this way, this factormatrix succinctly reflects

the trends across these two coupled tensors.

Visualizing and interpreting the results of a coupled tensor

factorization operate like with CP (Figure 2F). Each tensor is de-

composed into a series of rank-one components, and any

coupled mode will have a single set of factors shared among

all the tensors using it (Figure 4D, middle). All other modes will

still have their own factor matrices (Figure 4D, right). In addition

to examining components within a tensor, one can also compare

the uncoupled private modes between two tensors to assess

their associations. A unique advantage of coupling arises from

missing data. If a certain tensor has missing entries, other ten-

sors can share information through the coupled factors to

improve imputation.

Coupling introduces a new issue. Because factorization mini-

mizes the overall reconstruction error, the relative scaling among

coupled tensors influences the priority in explaining patterns

from each dataset. As the total variance of values can differ

significantly across datasets collected from various assays, the

decomposed factors can be dominated by one source if the

data is not appropriately scaled. Typically, a range of scaling

should be explored, and the overall and tensor-specific errors

evaluated (Figure 4E). If the factor matrices are used to predict

some outcomes, the prediction accuracy can also be used to

compare various scalings and determine an optimal scaling.

Overall, coupling offers remarkable flexibility for data integra-

tion. Although we refer to the methods as coupled tensor factor-

ization, matrices (2-way tensors) are also included. For example,

many applications have used coupled matrix and tensor factor-

ization to jointly analyze a tensor and a matrix (Figure 4F,

left).42,43 Coupling also expands the applicability of tensor

methods to more irregularly shaped data, as illustrated by PAR-

AFAC2.44 PARAFAC2 is a method that decomposes a series of

matrices, where one mode is shared while another is unaligned

and variable in size (Figure 4F, right). This forms a ragged tensor

to which CP or Tucker cannot be applied. PARAFAC2 projects

the variable modes into a latent, uniform shared mode, identi-

fying patterns not only on the sharedmode but also across these

matrices, effectively harnessing the benefits of coupling. Tensor

coupling is an active field of method development, including

combining it with other decomposition strategies (such as

Tucker or partial least squares [PLS]).

Partial least squares: Informing decomposition by
effects
Many scientific questions involve identifying how a series of

measurements associate with a specific phenotype or outcome

of interest. For example, one might associate patients’ blood
andB, are coupled on the organmode. Therefore, the organ factors are shared,
factors tensor B. The dimensionalities of them are indicated by the lowercase

tensors has values with greater total variance, the factorization explains more
e two datasets.
tion (CMTF, left) and PARAFAC2 (right).
ed on two tensors, X and Y, with one aligned mode. During solving, the two
e) yield the maximal correlations. Partial least squares components are solved
the residuals, X0 and Y0, from the last round. Therefore, the components are in

tting errors of X and Y and the prediction errors of Y. Both fitting errors should
ion) of Y should initially decrease but eventually increase due to overfitting.
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panel tensor with their diagnosis. In statistical terms, we have

explanatory variables (X) and outcomes (Y), and our goal is to

reveal only the patterns in X that uniquely associate with Y.

This approach differs from simply coupling them where the joint

variance of both X and Y is considered. Instead, the objective is

to only capture the trends in X when they exhibit correlation

with Y.

As mentioned previously, tensor decomposition factors can

be combined with linear regression models. This two-step

approach bears a resemblance to principal-component

regression: first, the data is decomposed using tensor decom-

position without considering the effects (Y); then, regression is

applied to capture correlations between the decomposed fac-

tors and their effects. However, as the first step is performed

without the knowledge of Y, the decomposed X factors are

not guaranteed to associate with Y. To address these chal-

lenges, PLS methods have been developed in both classifica-

tion form (PLS discriminant analysis) and regression form (PLS

regression).45

Tensor PLS is designed to uncover relationships between

two tensors, X and Y, for predictors and responses, wherein

one mode is aligned (Figure 4G). For instance, consider tensor

X representing medical tests on a group of patients over time,

while matrix Y (a two-way tensor) records their diagnosis. The

result of tensor PLS is analogous to performing two separate

CPs on both X and Y simultaneously with the same number of

components. After decomposition, they will each have a

distinct patient factor matrix. However, PLS decomposes

both datasets with the goal of maximizing the correlations be-

tween these two patient factors (Figure 4G). The factors of

the other non-aligned modes in X and Y come after obtaining

the patient factors and are defined to maximally capture vari-

ance within each dataset.46 While the intricacies of the solving

algorithm extend beyond the scope of this review, one helpful

property to note is that tensor PLS is solved component-by-

component. Each additional component is solved upon the re-

siduals of X and Y (X0 and Y0), which are the original tensors sub-

tracted by the solved components (Figure 4G), meaning that

components are ordered by the covariance they explain. There-

fore, in a correctly performed tensor PLS, the fitting errors of

both X and Y should decrease monotonically as more compo-

nents are added (Figure 4H). However, as a supervised learning

method, tensor PLS does not always predict unseen samples

better with more components due to the risk of overfitting.

The optimal number of components can be determined through

cross-validation, where a portion of the samples is left out dur-

ing fitting to test the model’s performance on them. It is ex-

pected that the prediction error of Y in cross-validation would

initially decrease if the optimal number of components is

greater than one (which is usually the case if Y is a matrix rather

than a vector) and then increase after reaching the optimum

(Figure 4H).

Overall, PLS has unique advantages when focused on a

particular response. Since it is designed to specifically discover

those patterns associated with a prediction of interest, PLS can

predict the effect with fewer components compared with CP.

Tensor PLS can be combined with Tucker decomposition and

coupling in explanatory (X) tensors, and techniques are available

to handle missing values.47
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BIOLOGICAL INSIGHTS FROM TENSOR-BASED
METHODS

Tensor decompositions have applications in virtually all fields of

biological data analysis. In this section, we summarize several

notable examples.

Applications in bioinformatics
In bioinformatic studies, multi-omics data may contain tens of

thousands of genes and millions of genomic positions. Tensor

methods can simplify these large datasets generated by high-

throughput techniques into a succinct set of components and

do so more efficiently than matrix-based counterparts. These

reduced latent structures group genes based on their common

patterns revealed by the data, easing the scale of effect pre-

diction.

Hore et al. illustrated how tensor methods can be applied to

condense genes in RNA-sequencing (RNA-seq) data across

multiple tissues into associated factors to reduce the scale of

statistical testing and to strengthen their statistical power.2 To

reveal gene networks, they structured the gene expression levels

into a gene by individual by tissue tensor. After applying the

tensor method, the data was reduced into around two hundred

components, a great reduction from the tens of thousands of

genes they originally dealt with. These components grouped

the genes by activities and indicated in what tissues they were

active. Using individual scores as genotypes for genome-wide

scanning on SNPs, they discovered the components that were

significantly associated with trans-expression quantitative trait

loci (eQTLs) and revealed their specific pathway or epigenomic

regulation.

Using tensor factors to cluster genes in the transcriptome is

further exemplified by Wang et al.25 With the increasing scale

of multi-tissue datasets, classical clustering methods struggle

to extract information from multi-way interactions in the tran-

scriptome. To fully extract the three-way interactions between

individuals, genes, and tissues, they applied constrained CP to

RNA-seq and microarray measurements. Besides being able

to run on three-dimensional data where traditional methods

failed to reveal true patterns in simulated data, this tensor-based

clustering method was shown to better test for differentially ex-

pressed genes with improved statistical power compared with

single-tissue tests.

Durham et al.,8 on the other hand, applied tensor methods to

large epigenome projects such as Encyclopedia of DNA Ele-

ments (ENCODE)9 and the Roadmap Epigenomics Project.48 In

these massive datasets, many cell type and assay pairs were

not measured due to time and funding constraints. Therefore,

the imputation of these data has been extensively studied.49

Organizing the ENCODE data into a three-mode tensor, they

found that tensor-based imputation outperformed alternative

approaches, demonstrating that structuring the data in tensor

form helps model and explain variation across the data.

Other tensor methods have been applied to epigenomic data

too. For example, a variant of Tucker decomposition has been

applied to model spatial association within topologically associ-

ating domains.50 The decomposed factors directly link epige-

nomic state and chromosomal topology. Tensor decomposition

can be also combined with machine learning methods. For
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example, extending the work of Durham et al.,8 the same group

inputted the concatenated tensor factors from three different

genomic resolutions into a feed-forward deep neural network

to predict the epigenomic signals, allowing a multi-scale view

of the genome.51

Applications in neuroscience
Neuroscience is among the earliest fields to employ tensor

methods.52,53 As electroencephalography and functional mag-

netic resonance imaging data are collected over time, any exper-

iment involving more than one electrode and trial is guaranteed

to be at least three-dimensional. Conventionally, the data has

been converted into matrices by averaging multiple trials, inevi-

tably losing information about trial-to-trial variation. Therefore,

tensor methods, including both CP and Tucker decomposition,

have been attractive to the neural signal processing com-

munity.54

Williams et al. presented a clean framework for applying tensor

component analysis on large-scale neural data across time and

trials.11 Before running on the actual data, they demonstrated

that tensor decomposition works well on simulated linear model

neural networks and nonlinear recurrent neural networks, sepa-

rating positive and negative cells with almost perfect accuracy.

With the same simulations, PCA and independent component

analysis failed to recover the right signal. They then applied the

method to their experiments onmice’s prefrontal activity and pri-

mate motor cortex. Nonnegative tensor decomposition was

shown to cleanly separate neurons that were activated in various

periods and associated with specific movements.

Applications in systems biology
Systems biology makes repeated measurements over different

times, tissues, or spatial structures, so the data are naturally in

tensor structure. These measurements may include sequencing,

flow cytometry, or quantitative cell imaging, requiring solutions

for data integration. Two specific concerns here are avoiding

overfitting, as the datasets are often limited in size, and incorpo-

rating heterogeneous information. Therefore, nonnegative

decomposition, imputation tests, coupling, and PLS have

been used.

Tensor methods offer unique advantages for the study of sys-

tems biology by enabling concurrent comparison of multiple

contexts and extracting their shared trends. For instance, Armin-

gol et al. employed tensor decomposition to study cell-to-cell

communication from RNA-seq data.55 Contrary to many previ-

ous studies that cannot handle more than two cellular contexts

simultaneously, by embedding communication matrices56 into

a four-mode tensor, they were able to characterize variation in

cell-to-cell communication across several contexts coordi-

nately.

The benefit of tensor decomposition in analyzing repeated

measurements simultaneously can also be extended to compo-

sitional data inmicrobiology. Microbiome studies often takemul-

tiple samples from the same individual either longitudinally or

spatially, but there is a lack of methods to account for both bio-

logical change and interindividual variability in them. Martino

et al. took the tensor approach to deconvolute gut microbial

sequencing data.57 They demonstrated that unsupervised

tensor decomposition can identify differentially abundant mi-
crobes, accounting for the high-dimensional, sparse, and

compositional nature of microbiome data.

Tensor PLS can also be helpful in systems biology.58 Netter-

field et al. recently applied it in a study of DNA damage

response.59 They systematically profiled a human cell line with

the treatment of DNA double-strand break-inducing drugs over

time and concentrations, using tensor PLS to directly associate

signaling to response, both as three-mode tensors, separating

the time mode from drug concentrations. This allowed them to

identify signals with time-dependent correlations with senes-

cence and apoptosis. They also observed that tensor PLS

required fewer parameters to predict the response than the con-

ventional unfolded version.

CONCLUSIONS

In this work, we review the application of tensor decomposition

to biological data analysis. The paramount lesson of this work

is the profound influence of the chosen data representation,

the medium, on our comprehension of the data itself and the

analytical approach. The selection of data representation should

be driven by the natural structure of the underlying data and

experiment rather than mere mathematical expediency. Ap-

proaching this analysis appropriately improves on the insights

one can derive from the data through better accuracy, more

evident interpretation, and an enhanced ability to integrate

data across studies and scales. While tensor methods have

gained increased prominence, they havemuch broader potential

yet.60 Part of the field’s maturation will arise from a broader

appreciation and understanding of these techniques.

Nevertheless, tensor decomposition, in its current form, is not

without limitations. First, it is still fundamentally linear, so it may

fail on datasets with nonlinear characteristics. This does not

forbid it from being an adequate baselinemodel though. Further-

more, the existing solving algorithms continue to grapple with

numerical issues such as nonuniqueness in factors, instability

when addressing missing data values, and challenges in hyper-

parameter tuning. These issues will be resolved by new theories

and a broader appreciation of these techniques.

Data and code availability
The example drug response dataset and the code used to

generate the plots in this review can be found at https://github.

com/meyer-lab/tensor_review. The code was written in Jupyter

Notebook in Python 3.12 with a list of packages required, which

accompanies this review and serves as a basic tutorial for tensor

method applications.
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