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Abstract 

Elucidating the sources of a microbiome can provide insight into the ecologi-
cal dynamics responsible for the formation of these communities. Source tracking 
approaches to date leverage species abundance information; however, single nucleo-
tide variants (SNVs) may be more informative because of their high specificity to certain 
sources. To overcome the computational burden of utilizing all SNVs for a given sample, 
we introduce a novel method to identify signature SNVs for source tracking. Signature 
SNVs used as input into a previously designed source tracking algorithm, FEAST, can 
more accurately estimate contributions than species and provide novel insights, dem-
onstrated in three case studies.
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Background
Understanding the sources that could contribute to the formation of a given microbiome 
is of great interest in elucidating the ecological processes that give rise to these com-
plex communities and the impact of these communities on human and environmental 
health. For example, a hospital environment may introduce antibiotic resistance genes 
to an infant’s gut microbiome, and local selective pressures may result in vastly different 
microbial compositions in different parts of the ocean. Approaches for determining the 
proportion of a microbiome of interest (the “sink”) that is attributed to different micro-
biomes (the “sources”) are known as “source tracking” [1, 2]. Source tracking is useful for 
forensics, categorization of samples, detecting contamination, and tracing transmissions 
between different hosts or environments. While source tracking was developed as a way 
to quantitatively characterize a sample based on a set of samples with known origin, in 
most studies, the true source of samples may never be collected. In these cases, source 
tracking approaches are useful in identifying similarities between microbiome samples 
even if they cannot be used to definitively identify the true source of origin.
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Current approaches for source tracking include the Bayesian approach, SourceTracker 
[1], and more recently the expectation–maximization approach, FEAST [2]. These 
source tracking methods use species abundance profiles of the sample of interest (the 
sink) and of potential sources and compute percentages of sinks that are attributable to 
each potential source. However, species abundance profiles miss important sub-species 
single nucleotide variants (SNVs), which may provide higher resolution information 
than species about transmission patterns. For example, Nayfach et al. [3] found that the 
sharing of microbiome SNVs private to mothers and their infants decreases over the first 
year of the infant’s life while species sharing increases. This suggests that while the infant 
microbiome increasingly resembles the adult microbiome ecologically, sources other 
than the mother also colonize the infant. Thus, species-level resolution may obscure true 
sources of microbes while SNVs can reveal actual transmissions to the infant.

While tracking strain transmissions with SNVs has been highly successful in a number 
of studies [3–9], current approaches to strain tracking are limited. These methods pro-
vide binary information by inferring whether or not a strain transmission has occurred 
per species but they do not shed light on the relative proportions of microbiomes that 
are similar. A specific example of this is inStrain [6] which computes a pairwise popula-
tion-level average nucleotide identity (popANI) between two samples. If an infant har-
bors several strains derived from the mother at low frequency, these shared strains will 
have high popANI values, but they will represent a relatively small proportion of the 
infant’s microbiome. By contrast, source tracking allows us to simultaneously infer the 
putative proportions for multiple sources contributing to a given sink, integrated over 
all community members in the sink. As shown in Fig. 1, one may be able to estimate that 
an infant microbiome is explained 25% by their mother, 10% by their dog, and 30% by 
unknown sources [1, 2]. In other words, source tracking with SNVs leverages not only 
the genetic variants within species, but also the relative abundances of the species that 
carry the SNVs.

Here, we evaluate whether source contributions estimated with SNVs are more accu-
rate than with only species when they are provided as input to FEAST [2] (hereafter 
referred to as SNV-FEAST and species-FEAST, respectively). FEAST [2] is faster and 

Fig. 1  Signature SNV selection and SNV-FEAST. A A signature SNV is present in one or few but not all 
sources. By contrast, a non-signature SNV is generically present in multiple sources and thus provides little 
discriminating information. B SNV-FEAST estimates the proportion a given sink derived from various sources 
using the read counts for each allele in sinks and sources
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more accurate than previous source tracking tools [1] and therefore is ideal for adapta-
tion to SNV source tracking since it can accept larger numbers of features and input 
sources. Despite this improved computational efficiency, the potentially millions of sin-
gle nucleotide variants across all microbiome species in a given host still can computa-
tionally overwhelm FEAST. To address this, we introduce a novel approach to determine 
signature SNVs that can be used as input to FEAST. This both reduces memory require-
ments and computation time in the FEAST estimation, allowing us to optimally esti-
mate the source contribution of a sink. We find that SNV-FEAST and species-FEAST 
yield different outcomes when applied to simulated data, with SNV-FEAST frequently 
out-performing species-FEAST. We apply SNV-FEAST to three real-world case stud-
ies, including source tracking between infants and their mothers in the first year of 
life, between infants and the neonatal intensive care unit (NICU), and between oceans 
around the world. We confirm the ability of SNV-FEAST by recapitulating several pre-
viously published findings in our case studies, as well as discover new source tracking 
patterns across oceans. In sum, we show that SNVs can be used to estimate potential 
transmissions across hosts and across environments.

Results
SNV‑FEAST algorithm

Here we adapt FEAST to accept SNV abundance instead of species abundance as input. 
A computational challenge in using SNVs instead of species as input to FEAST is that 
SNVs contribute a significantly larger feature space. The number of different species 
comprising a microbiome can range from a few hundred to a few thousand, while the 
number of possible SNVs for a given species alone can be in the thousands [10]. This 
difference in the number of input features can result in FEAST runtimes that last several 
hours instead of a few minutes and memory-intensive storage of read counts at all sites 
of variation.

We devised a likelihood-based approach for selecting a set of informative or “signa-
ture” SNVs for a given source tracking analysis, allowing us to overcome the time and 
memory-intensive challenges of utilizing SNV-level data. We identify these informative 
SNVs by computing a signature score (Fig. 1A) (see the “Methods” section) that quanti-
fies the extent to which SNVs in the sink are most likely derived from one of the poten-
tial sources. This is analogous to identifying SNVs private to sources and their sinks, but 
more generalized to include SNVs that may be found in multiple sources, albeit at higher 
frequency in one of the potential sources (see the “Methods” section).

To compute a signature score for a given SNV, two hypotheses are compared for each 
potential source: (1) that one source solely explains the observed allele counts in the sink 
and (2) all sources except that one source collectively explain the observed allele counts 
in the sink. For each hypothesis, we calculate the binomial log-likelihood for the esti-
mate of the allele frequency in the sink, θ.

Hypothesis 1: Source i with allele frequency pi explains the allele counts in the sink.

Hypothesis 2: A combination of all other sources except i (sources j  =i) explains the 
observed allele count distribution in the sink. The estimate of the sink allele frequency is 

θ = pi
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computed using a mixture of the allele frequencies pj from those sources. The mixing 
parameter αj is learned using Sequential Least Squares Programming with the constraint 
that 

∑
j  =i

αj = 1.

The binomial log-likelihood is calculated as follows, where there are n reads with the 
reference allele and m reads with the alternative allele in the sink.

A log-likelihood ratio representing the support for hypothesis 1 relative to hypothe-
sis 2 is calculated per site per potential source. The maximum log-likelihood ratio per 
site is the signature score for that SNV, representing how favorably one of the sources 
explains the sink over all other sources. Signature SNVs are those with scores greater 
than two standard deviations over the mean signature score computed for all SNVs (see 
the “Methods” section).

Evaluation of SNV‑FEAST in simulations

To compare the accuracy of species-FEAST and SNV-FEAST, we performed simulations 
mimicking mother-infant transmissions with the goal of estimating contributions of dif-
ferent sources to an infant sink. Our simulations tested the ability of SNVs and species to 
recapitulate the true source composition in synthetic samples comprised of a mixture of 
reads drawn from multiple real fecal adult samples. To construct these synthetic infant 
microbiomes, we mixed metagenomic data from mothers sampled in a mother-infant 
dataset [11] at various proportions as described below (see the “Methods” section).

The difficulty of source tracking increases with the number of contributing sources [2]. 
Thus, we simulate infants that have a small (≤ 5) versus large (6–10) number of con-
tributing sources (Additional file 1: Table S1), including an unknown source (e.g., a ran-
domly selected unrelated mother). Known source contributions to the simulated gut 
microbiome sample of the infant varied between 1 and 90% while the unknown contri-
bution varied between 10 and 90%. The unknown source was not presented to FEAST as 
a potential known source.

Additionally, not all species in a mother are transmitted to the infant [5, 7, 12–14]. 
Thus, in our simulations, species transmission rates were determined using a beta distri-
bution, which is a natural model for values between (0, 1) and often proposed for micro-
bial abundance data [15–18] (see the “Methods” section). We therefore consider four 
simulated scenarios: a combination of low versus high number of sources and low versus 
high transmission rates (see the “Methods” section).

Figure 2 compares the performance of SNV-FEAST and species-FEAST in estimating 
the true contribution of sources. FEAST using SNVs has equal if not better performance 
than species in most scenarios and performs especially well when transmission rates are 
low and unknown source proportions are high. SNVs have a lower root mean squared 
error (RMSE) compared to species in three of the four scenarios and higher Pearson cor-
relation between true and estimated contributions in all four scenarios. The difference 

θ̂ =
∑

j �=i

αjpi
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θ̂
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in these correlations for SNVs versus species is significant in all four cases when using 
a paired Wilcoxon signed rank test (high transmission: p-value = 0.00560, 0.00251 for 
small and large number of sources, low transmission: p-value = 0.00024, 0.002340 for 
small and large number of sources). These results suggest that SNVs may offer useful 
signatures of transmission.

To assess whether all species and all signatures SNVs in the sink are needed for accu-
rate source tracking, we varied the proportion of species (10%, 50%, or 100%) and SNVs 
(10%, 50%, or 100%) included as inputs to the algorithm (Additional file 1: Fig. S1). We 
used Pearson correlation between the true and estimated proportions to represent the 
accuracy of SNV-FEAST. When decreasing the percentage of SNVs used, there is no 
statistically significant change in the performance. However, when decreasing the per-
centage of species used, there are statistically significant decreases in the performance 
(Additional file 1: Fig. S1).

To illustrate the advantage of SNV-FEAST over traditional strain tracking approaches 
such as inStrain [6], we used the same synthetic communities produced in the above 

Fig. 2  Ability of SNV and species-FEAST to recapitulate true contributions in simulations. Estimated known 
and unknown source proportions for infant microbiomes simulated with in silico mixtures of real maternal 
fecal microbiomes under different scenarios: either a small number of contributing sources (≤ 5) or large 
number of sources (6–11), and a high transmission rate of species or low transmission rate. The transmission 
rate is the probability of an infant being colonized by a given species, simulated using a beta distribution 
centered on the relative abundance of species in sources (see the “Methods” section). Twenty-three infants 
were simulated with five or fewer sources and 19 infants were simulated with a large number of sources 
(Table S1). The black line indicates the ground truth for proportions. For each simulated infant, there are 11 
points plotted, whereby 10 correspond to known sources (some of which have zero contribution), and one 
corresponds to an unknown source which is indicated by hollow circles in the plot
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simulation for inStrain profiling between each infant and each of their potential con-
tributing sources (Additional file 1: Fig. S2). InStrain computes a popANI score, which 
represents the average nucleotide identity between two different metagenomic samples 
for a given species. As per the inStrain paper, popANI values > 99.999% represent the 
same strain being shared between samples for a given species (see the “Methods” sec-
tion). However, this approach provides a binarization as to whether or not a strain was 
transmitted and does not account for the relative abundance of the strain in the sink. 
Thus, we computed the fraction of each infant’s species that have popANI ≥ 99.999%, 
with each potential source.

As expected, both SNV-FEAST and inStrain produce estimates of sharing that cor-
relate positively with the ground truth mixture proportions of the contributing source 
samples in each infant (Additional file  1: Fig. S2). We found inStrain results yielded a 
0.742 Pearson correlation (p-value < 1 × 10−12) with the true mixture proportions, 
whereas SNV-FEAST has a 0.866 Pearson correlation (p-value < 1 × 10−12) with the true 
proportions. The higher correlation values for SNV-FEAST likely reflect that relative 
abundances of strains and their genomic identities are simultaneously taken into account 
for source tracking, whereas inStrain only accounts for genomic identities. Finally, sev-
eral of the shared species in the simulations had popANI values < 99.999%, reflecting the 
complex mixtures from multiple sources.

We next compared SNV-FEAST with the strain tracking procedure in Nayfach et al. 
[3]. Again, we used the same synthetic communities produced in the simulation to 
determine marker alleles as defined in Nayfach et  al. [3] (see the “Methods” section). 
Here a marker allele is determined to be a SNV that is private to mother, infant, or the 
mother-infant dyad, and absent from the background population, which consisted of 
other samples in the dataset as well as samples from US adults in the Human Micro-
biome Project [19, 20] (see the “Methods” section). Species with ≥ 5% marker allele 
sharing between mother and infant were deemed to share a strain (see the “Methods” 
section). We found a high correlation between the true mixture proportions (on x-axis) 
and the percentage of species with transmission events (y-axis) (Pearson correlation 
0.915, p-value < 1 × 10−16) (Additional file  1: Fig. S3A). The higher correlation for the 
Nayfach et al. [3] approach compared to the inStrain approach possibly reflects horizon-
tal gene transfers between lineages residing in infants and mothers. By contrast, there 
was a lower correlation between the true mixture proportions (x-axis) and the sharing 
for all marker alleles across species present in the infant (y-axis) and (0.575 Pearson cor-
relation, p-value < 1 × 10−16) (Additional file 1: Fig. S3B).

Source tracking in infants over the first year of life

Having assessed the abilities of SNV-FEAST in synthetic data, we next estimated the 
contribution from the true mother over time to the true infant with SNV and species-
FEAST in the Bäckhed et  al. [11] dataset. This dataset is composed of metagenomic 
samples from infants collected at 4 days, 4 months, and 12 months after birth, as well as 
their mothers at the time of delivery. Previous analyses on this data have shown that even 
while species similarity increases, infants and their mothers share fewer proportions 
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of strains over time as revealed by sharing of SNVs private to mother-infant dyads [3]. 
Thus, SNVs belonging to strains shared only by the infant and their mother may be 
more informative of the true source compared to species. Here we sought to test 
whether SNV and species-FEAST recapitulate these results (see the “Methods” 
section).

In applying FEAST to the Bäckhed et al. [11] dataset, we estimated the proportion of 
the infant sample at birth attributable to their own mother. For 4-month-old infants, we 
estimated the proportion attributable to the mother and itself at birth. For 12-month-old 
infants, we estimated the proportion attributable to the mother and itself at birth and 
4 months [2]. This allowed “unknown” to be more strictly defined as the component of 
the infant microbiome that could not be explained by the mother. It also allowed us to 
better discern if completely new strains were acquired at the 4th and 12th months of life 
(that were not already acquired during previous life stages).

First, consistent with previous findings made with species and SNVs [3], spe-
cies-FEAST estimates an increasing contribution of the mother over time (t-test 
p-value = 5.1 × 10−4), but SNV-FEAST estimates a decrease over time (p-value = 0.063) 
(Fig. 3).

Second, we assessed the ability of species and SNV-FEAST to distinguish the true 
mother from three randomly selected unrelated mothers. Species-FEAST estimates an 
increasing contribution of unrelated mothers over time (t-test p-value = 0.014) while 
SNV-FEAST estimates no significant change over time (t-test p-value = 0.59) (Fig.  3). 
The increase in contribution from unrelated mothers with species-FEAST does not sug-
gest that these particular unrelated mothers are seeding the infant. Rather, the opposing 
trend observed with SNVs suggests that similarity at the species level is consistent with 
the maturation of the infant microbiome over time.

Finally, we estimated contributions from unknown sources, i.e., the proportion 
of the infant microbiome not explainable by the true mother, the three randomly 
selected unrelated mothers, or any previous time point. Species-FEAST estimates a 
sharp decline in the contribution of unknown sources over the first year of life (t-test 
p-value = 7.1 × 10−12) (Fig.  3). This significant decrease in unknown at the species 
level reflects the infant microbiome maturation over the first year of life. By contrast, 
SNV-FEAST estimates little change in the contribution of unknown sources (t-test 
p-value = 0.49) (Fig.  3). Note that this unknown component reflects what was gained 
since a previous time point. In other words, at 12 months, the infant on average acquired 
the same fraction of unknown as it did at 4  months and birth. When source tracking 
is run without including previous time points as sources, the unknown component 
increases over the first year of life for SNVs only (Additional file 1: Fig. S5).

Next, we sought to understand the effect of swapping sink and source in the re-analy-
sis of Bäckhed et al. [11] data. In Fig. 3G and H, the infant at birth is the potential source 
and the mother is the sink. The estimated contribution from baby to mother is signifi-
cantly smaller (species-FEAST: 11.9 difference, Wilcoxon rank sum test p-value = 0.013; 
SNV-FEAST: 16.0 difference, p-value = 2.2 × 10−5) compared to that of mother to baby. 
This trend may be suggestive, but is not conclusive, of directionality, whereby a less 
diverse source is seeded by a more diverse source.
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Fig. 3  Source tracking in the infant gut microbiome over the first year of life. Species- and SNV-FEAST were 
applied to Backhed et al. 2019 data to estimate the contribution of A, B mother, C, D unrelated mothers, and 
E, F unknown sources to infants sampled at birth, 4 months, and 12 months. The black line and inset statistics 
pertain to the linear regression fit for the source estimates as a function of age of the infant. G, H are swapped 
source tracking analyses with mother and infant swapped when using species-FEAST and SNV-FEAST, 
respectively. Additional file 1: Fig. S4 shows the species that were included in species-FEAST and species that 
had SNVs included in SNV-FEAST. Additional file 1: Fig. S5 shows the estimate of the unknown component 
when previous time points of the infant are excluded from the sources
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Contribution of the NICU‑built environment to infant microbiomes

Next, we re-analyzed a metagenomic dataset studying the contribution of the hospital 
environment to the infant gut microbiome in the neonatal intensive care unit (NICU) 
[21]. This dataset is composed of microbiomes of infant stool, as well as the NICU rooms 
of the same infants at frequently touched surfaces, sink basins, the floor, and isolette-top 
sampled over an 11-month period [21]. We applied SNV and species-FEAST to assess 
the contribution of the infant’s own NICU room as well as a different NICU room in the 
vicinity to the infant’s gut microbiome (see the “Methods” section).

Concordant with the findings of Brooks et al., both SNV and species-FEAST detected 
that the most common source contributing to the infant microbiome was the floor and 
isolette-top from the infant’s own room (Fig. 4A, B). SNV-FEAST found Infant 18 also 
had large contributions from their own room’s touched surfaces at multiple time points 
(Fig. 4B), which is consistent with a finding by Brooks et al. that three strains found in 
Infant 18 perfectly matched (> 99.999% average nucleotide identity) strains found in 
the touched surfaces samples of Infant 18’s own room. Lastly, both species-FEAST and 
SNV-FEAST found Infant 6’s microbiome was explained almost entirely by samples 
from a different room with SNV-FEAST finding a sizeable contribution from both the 
floor and isolette top and the sink basin in this different room. This is concordant with 
Brooks et al.’s finding of multiple cases of strain sharing across rooms of Infant 6 and 12 
for the different surfaces. FEAST with both data types can quantify the extent to which 
Infant 6’s microbiome was influenced by strains present in the built environment.

Through application of SNV and species-FEAST, we can quantify any time trends 
for the influence of the built environment on the infant microbiome (Fig. 4A, B). SNV-
FEAST more consistently finds that contribution from the infant’s own room exceeds 
contributions from a different room over time (paired Wilcoxon signed rank test 
for same room > different room: Infant 3: p-value = 1.95 × 10−9, Infant 6: 1.0, Infant 
12: 3.05 × 10−5, Infant 18: 3.81 × 10−6) as compared to species-FEAST (Infant 3: 
p-value = 0.41, Infant 6: 1.0, Infant 12: 5.8 × 10−4, Infant 18: 3.81 × 10−6). Interestingly, 
species-FEAST assigns one dominant source primarily, whereas SNV-FEAST more 
often finds a combination of sources for a given sample.

Additionally, both SNV and species-FEAST estimated a large unknown component 
for all four infants, with Infant 18 showing the largest mean unknown component across 
the NICU stay based on SNVs (Additional file 1: Fig. S6). This unknown component is 
important because it signifies the extent to which other sources such as the mother and 
diet impact infant gut colonization.

We then asked the question is the infant more explained by the built environment 
rather than vice-versa, the built environment is more explained by the infant. We 
tested this by swapping the infant and each of the three built environment sources 
(Fig.  4C, D). The estimated contribution of room to infant is significantly higher 
than the estimated contribution of infant to room, but this asymmetry is more pro-
nounced with SNV-FEAST. SNV-FEAST showed significantly higher contribution of 
room to infant for two of the three surface types (floor and isolette top: Wilcoxon 
rank sum test p-value = 7.00 × 10−9, touched surface: p-value = 0.0058, sink basin: 
p-value = 0.274) while species-FEAST found this to be true for one of the three 
surface types (floor and isolette top: Wilcoxon rank sum test p-value = 7.1 × 10−5, 
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Fig. 4  Source tracking of infant gut microbiome in the NICU. A Species-FEAST and B SNV-FEAST applied 
to infants in the NICU. Each bar represents one sampling day in the NICU stay of an infant. Infants 3 and 6 
stayed in the same room, but at different times. The same applies to Infants 12 and 18. The contribution of 
a different room was determined by using samples from Infant 12’s room for Infants 3 and 6, and samples 
from Infants 6’s room for Infants 12 and 18 for each of the categories of surfaces per infant: touched surface, 
sink basin, or floor and isolette top surface. The asterisks represent the result of a paired Wilcoxon signed 
rank test indicating whether the total contribution of surfaces from the infant’s own room was higher than 
contributions from the other room. Iterative swapping of the infant sink and each potential source for source 
tracking with C species-FEAST and D SNV-FEAST. The first column shows source tracking results in which the 
infant was treated as the sink. In each column after the first column, a different environmental source was 
swapped with the infant and treated as a sink. The brackets indicate the pairs of results that are compared 
using a paired Wilcoxon signed rank test. For all results, the following symbols represent the results of the 
statistical test: **** for p-value < 0.0001, *** for p-value < 0.001, ** for p-value < 0.001, * for p-value < 0.05, and 
n.s. for p-value > 0.05
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touched surface: p-value = 0.968, sink basin: p-value = 0.998). Interestingly, the 
built environments of different rooms highly resemble each other. This is especially 
apparent with species-FEAST, suggestive of similar ecological forces operating in 
similar built environments. By contrast, SNV-FEAST reveals a higher diversity of 
contributing sources of the built environment samples to other NICU-built environ-
ments, once again highlighting the utility of performing source tracking with SNVs.

Global source tracking of ocean microbiomes

The ocean microbiome is a complex community that displays biogeography at the 
species and functional levels [3, 22]. To further understand global patterns of ocean 
microbiomes, we applied SNV and species-FEAST to the Tara Oceans microbiome 
dataset [22]. In the source tracking context, rather than defining sharing as evidence 
of a transmission event (which is more likely in mother-infant data), estimated source 
contributions at best explain the extent to which a given ocean sample resembles 
other ocean samples. On one extreme, an ocean sample might be entirely explain-
able by a single ocean’s samples, and at the other extreme, an ocean sample might 
be explainable by multiple oceans at the same time. Another alternative is for an 
ocean sample to not be explainable by any of the provided sources, resulting in a high 
unknown component and potentially suggesting high endemism. These source track-
ing estimates could be indicative of the extent to which oceans mix or may be reflec-
tive of similar niches.

Tara Oceans is composed of 182 whole metagenomic sequencing samples derived 
from 64 stations at multiple depths. Previous research indicates that temperature is 
one of the highest drivers of variability in microbial composition in the ocean [22, 23]. 
For this reason, we restricted the source tracking analysis to sinks and sources from 
the same temperature and depth range: above 20  °C and within an average of 5  m 
below the surface.

First, we performed source tracking between oceans using SNV and species-FEAST. 
We treated each station around the world as a sink and estimated the contribution of 
different oceans around the world to that sink (see the “Methods” section). Unknown 
represents any portion of the microbiome in these sink samples that cannot be explained 
by any of the provided source samples. We found that species and SNV-FEAST estimate 
different amounts of sharing between oceans, where SNVs estimate a higher unknown 
on average, potentially indicative of endemism. The finding that SNV-FEAST estimates 
a higher unknown contribution on average is most evident in the North Pacific, North 
Atlantic, South Atlantic, and Mediterranean oceans (Additional file 1: Fig. S7). Addition-
ally, in some oceans, SNVs identify contributions from oceans that species-FEAST does 
not detect (Fig. 5, Additional file 1: Fig. S7). For example, in applying FEAST to Indian 
Ocean samples, we find that there is measurable sharing of microbes with the Mediter-
ranean Sea, but this is not detected with species (Fig. 5C). Such differences were found 
in samples from other oceans as well (Additional file 1: Fig. S7).

Next, we assessed whether source tracking estimates display a distance-decay rela-
tionship. Previous studies found that genetic distance, such as that represented by 
fixation index FST, increases with geographic distance between populations [24, 25]. 
Based on these findings, our expectation was that samples that are further away from 
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a given station will have reduced resemblance to that station. To assess this distance-
decay relationship, we plotted pairwise source tracking results across all possible 
pairs of ocean samples (Fig. 6A, B). We found that indeed as the distance increases, 
the % explainability of a given source ocean decreases − 0.23% per thousand km 
according to species-FEAST (t-test p-value < 1 × 10–16), and − 0.5% per thousand 
km according to SNV-FEAST (t-test p-value = 0.0018). The steeper slope for SNV-
FEAST suggests that SNVs may be more sensitive to distance decay signals on a 
global level.

Finally, we investigated whether some oceans have higher estimated contributions 
to other oceans than vice versa, potentially indicative of the directionality of trans-
missions (though see the “Discussion” section). Specifically, we investigated the 
relationship between the Red Sea to the Mediterranean Sea (Fig.  6C, D). Migra-
tion from the Red Sea to the Mediterranean, known as Lessepsian migration, is 
well-documented for not only microorganisms but also macroorganisms like fish 
[26–28]. Additionally, recent studies may suggest that anti-Lessepsian migration of 
bacteria (Mediterranean to the Red Sea) is more common than Lessepsian migra-
tion [29]. Studies find that the Mediterranean has brine pools that produce a similar 
environment to the Red Sea’s [30], allowing for bacteria from the MS to potentially 
thrive in the RS.

By swapping the Red Sea and Mediterranean as source and sink, we found that there 
was indeed a significant difference in the estimated contribution from one direction 
to another with SNVs but not species (Fig. 6C, D). SNV-FEAST found the Mediter-
ranean explained an average of 15% of the Red Sea, while the Red Sea explained an 

Fig. 5  Microbial source tracking in the Tara Oceans dataset with SNV and species-FEAST. A World map 
indicating the location of sampling sites. Source tracking estimates for the contribution of different oceans to 
the B South Pacific (n = 16) and C Indian Oceans (n = 16) are depicted with vertical bars. In each experiment, 
all stations around the world excluding those from the “sink” ocean are treated as potential sources. Light 
blue, for example, represents the total contribution of the four stations from the Mediterranean Sea that had 
samples in the surface layer that were also greater than 20 °C in temperature
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average of 1.8% of the Mediterranean (Wilcoxon rank sum test, p-value = 0.02), con-
sistent with anti-Lessepsian migration. Meanwhile, a similar analysis with species-
FEAST found the Mediterranean explained 2.5% of the Red Sea and the Red Sea 
explained 4.9% of the Mediterranean (Wilcoxon rank sum test, p-value = 0.25). In a 
similar analysis between North Atlantic and South Pacific, we found that both species 
and SNVs supported significantly greater contributions from the North Atlantic to 
the South Pacific, with SNV-FEAST estimating a greater contribution (17%, Wilcoxon 
rank sum test p-value = 5.1 × 10−11) than species-FEAST (10%, Wilcoxon rank sum 
test p-value = 1.8 × 10−4). The same analysis performed in the other oceans is pre-
sented in Additional file 1: Fig. S8.

Together, these results suggest that on average, SNV and species FEAST generate sim-
ilar source tracking results in the Tara Oceans dataset, with SNVs displaying stronger 
signals of endemism, distance-decay relationships, and potential directionality of 
transmission.

Fig. 6  Source tracking with ocean samples. Distance decay in the contribution of a “source” ocean to a “sink” 
ocean when using A species-FEAST and B SNV-FEAST. In each experiment, only stations from one ocean 
were considered sources for a given sink station. For example, when performing source tracking between the 
Mediterranean and North Atlantic, for each Mediterranean station, the 10 available North Atlantic stations 
were considered potential sources. Thus, plotted are 10 points for a given Mediterranean sink, where each 
point represents the contribution of a source station from the North Atlantic to the Mediterranean sink 
station in question. Shown in the inset text are the slope and t-test p-value for the slope. C and D are flipped 
source tracking analysis with the Red Sea and Mediterranean, as well as the South Pacific Ocean and North 
Atlantic Ocean using species-FEAST and SNV-FEAST, respectively
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Discussion
Source tracking provides insight into potential source contributions to a metagenomic 
sample as well as similarities between metagenomic samples. While species abundances 
have been informative in source tracking in several studies [1, 2, 31–33], they may be 
limited in their resolution. SNVs provide a potential alternative because of their ability to 
distinguish sources of strain transmissions. Here we compared the ability of a previously 
published source tracking algorithm FEAST using species versus SNVs as input data. 
In the application of species and SNV-FEAST to simulations as well as three case stud-
ies, we demonstrate that the two input types can provide distinct insights into microbial 
sharing and similarities across different environments. As a hypothetical example, two 
unrelated samples may have very similar species composition due to similar colonization 
processes and similar environmental influences without any actual microbial sharing. It 
would be unlikely for these two unrelated samples to share rare SNVs, however. This 
distinction suggests that SNVs indeed can provide insight into the ecological processes 
shaping microbial communities that species information alone cannot, and our three 
case studies are able to demonstrate this.

In the first case study, we confirmed previous findings that SNV sharing between 
mothers and infants decreases over the first year of life while species sharing increases 
[3], suggesting that while the infant microbiome matures to resemble adults at the spe-
cies level, sources other than the mother may seed the infant over time. In the second 
case study, we confirmed source contributions from the NICU-built environment to the 
infant microbiome [21] and found that SNVs detect a more consistent estimate in source 
contributions over time compared to species as well as detecting contribution from 
sources not detectable by species-FEAST.

In the third case study, we perform source tracking in the Tara oceans dataset [22] and 
found SNVs display a stronger distance decay relationship than species. These distance-
decay results parallel recent findings made with gene content [34]. While previous stud-
ies have examined the biogeography of the ocean using species profiles, genes [3, 34], or 
amino acid variants from a single species (SAR11) [35], for the first time, we leverage the 
use of SNVs across all detected prevalent species in the ocean microbiome to identify 
proportions of sharing across oceans. A benefit of using SNVs in the ocean microbiome 
is that SNVs can track fragments of DNA that have moved due to horizontal gene trans-
fer in the distant past rather than relying on inference of whole genomes or presence of 
private SNVs that may be transmitted in the recent past. This global-level source track-
ing is analogous to admixture estimation with human genotypes [36, 37].

We note that source tracking provides insights into similarities between microbiomes 
and potential transmissions, though the directionality is less conclusive. It is possible 
that increased contributions in one direction but not the other are suggestive of the 
directionality of transmission. For example, in the case of the mother-infant data from 
Bäckhed et al. [11], FEAST predicted a higher contribution from mother to baby than 
vice versa. This is consistent with work done on crAss-like phage transmissions between 
mother and infant in the same dataset that showed evidence of directionality by track-
ing the accumulation of mutations over time that are private to the infant and absent 
from the mother [38]. But in the case of the ocean, it is possible that over longer time 
periods, differences in relative contributions from one part of the world to another (e.g., 
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Mediterranean to Red Sea) are more reflective of local selection pressures that permit 
certain species and genotypes [35]. Thus, source tracking in certain instances, such as 
the ocean microbiome, at best reflects the extent of similarity between samples and is 
less conclusive about directionality.

A popular approach used to track strain transmissions is by detecting high average 
nucleotide identity (ANI) for species shared between source and sink. For example, 
inStrain [6] identifies a match between samples for a given species when ANI exceeds 
99.999%. However, it is to be noted that inStrain provides distinct and complementary 
information from FEAST given its binarization of whether or not a strain is shared. For 
illustration purposes, if an infant harbors 100 species, of which only 1 came from their 
mother, but that species’ strain’s relative abundance is 50% of the infant’s microbiome, 
SNV-FEAST would infer that the mother’s contribution is 50%, while inStrain would 
infer that only 1/100th of the infant’s species are derived from the mother.

Other studies rely on tracking transmissions of strains with private SNVs shared only 
between the sink and putative source [3, 7, 9, 11]. The private marker allele tracking 
approach in Nayfach et al. [3] provides an improved estimate of true percentage of spe-
cies that share some portion of their genome with putative sources compared to inStrain 
(Additional file 1: Fig. S2, S3). It is possible that requiring only 5% of marker alleles to 
be shared rather than a 99.999% ANI permits the detection of horizontal gene transfers 
between lineages residing in mothers and infants [39, 40]. However, in FEAST, by using 
any SNV with an informative distribution across sources as determined by our signa-
ture scoring method, we are able to quantify the relative contribution of all the sampled 
environments and assign a proportion to these putative sources. Another advantage to 
FEAST is that the contribution of unknown sources can be quantified. For example, the 
significant fraction of marine biodiversity estimated to be “unknown” may be endemic, 
as previously noted in the Mediterranean [41].

A drawback, however, with using SNVs over species is deeper, whole genome sequenc-
ing is required to accurately call SNVs. Moreover, even when there is sufficient coverage, 
there is still the challenge of a large number of SNVs that make FEAST computation-
ally prohibitive. We demonstrate one way to subset SNVs that uses a scoring method 
for informativeness, but there may yet be other methods for filtering SNVs to the most 
informative set. Another potential caveat of SNV filtering is that not all species present 
will be represented in the final signature SNV set (Additional file  1: Fig. S4). Species 
with higher abundance are more likely to be represented in the signature SNV set. How-
ever, we show that not all species need to contribute signature SNVs in order to make 
accurate inferences, and likewise, not all SNVs are needed to make accurate inferences 
(Additional file 1: Fig. S1).

Ascertainment of SNVs from metagenomic data in a high-throughput manner, espe-
cially common SNVs with microbiome genotyping technology [42], is becoming an 
increasing priority for the field as metagenomic datasets become more abundant. A 
genotyper for prokaryotes has already been developed and tested on a catalog of over 
100 million SNVs in order to characterize population structure [42]. Such a catalog of 
informative SNVs could be invaluable for source tracking. With source tracking enabling 
us to characterize samples by their relationship to known samples, we have a powerful 
tool to explore samples in new contexts we have yet to discover.
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Conclusions
SNV-FEAST is a novel approach to accurately perform source tracking using metagen-
omic data. By using our algorithm for determining signature SNVs, one can identify rele-
vant SNVs that can be directly provided to FEAST, an existing source tracking approach 
that can successfully estimate sources using species abundance data. We demonstrate 
that SNV-FEAST not only accurately quantifies ground truth proportions in simulations 
but can also recapitulate previous findings in real-world infant datasets. In each test 
scenario, SNV-FEAST and species-FEAST yield different outcomes, with SNV-FEAST 
frequently out-performing species-FEAST. Finally, in applying SNV-FEAST to ocean 
metagenomic data, we uncovered distance-decay relationships between putative sources 
and sinks. With low computational cost, SNV-FEAST is able to leverage the increasing 
availability of shotgun metagenomic data to ask fascinating questions about microbi-
omes in the environment and hosts.

Methods
Data

For simulations and analyses of infant microbiomes in the first year of life, we down-
loaded the raw shotgun metagenomic sequencing reads from public read archives 
under accession number PRJEB6456 [11]. We downloaded the raw sequence reads for 
the NICU analysis from accession number PRJEB323631 [21], and the equivalent for 
the Tara Oceans analyses was downloaded from accession number PRJEB402 [22]. Data 
from the HMP Consortium [43] and Lloyd-Price et al. [20] was downloaded from the 
following URL: https://​aws.​amazon.​com/​datas​ets/​human-​micro​biome-​proje​ct/ [19].

Estimation of species and SNV content of metagenomic samples

We used MIDAS (Metagenomic Intra-Species Diversity Analysis System), version 1.2, 
downloaded on November 21, 2016 [3], to estimate species abundance and SNV content 
per species in each metagenomic shotgun sequencing sample. The database we used to 
apply MIDAS consisted of 31,007 bacterial genomes that are clustered into 5952 spe-
cies. The parameters we used to estimate species abundances and SNVs were described 
in [44]. A species was considered present if there are at least 3 reads mapping to a set 
of single-copy marker genes on average. To call SNVs, we used the default MIDAS set-
tings in order to map reads to a single representative reference genome. The mapping 
was done with Bowtie 2 [45]: global alignment, MAPID ≥ 94.0%, READQ ≥ 20, ALN_
COV ≥ 0.75, and MAPQ ≥ 20, where species with reads mapped to less than 40% of the 
genome were excluded from the SNV calls. We excluded samples with depth lower than 
5 reads, and excluded genetic sites using the default site filters of MIDAS (e.g. ALLELE_
FREQ ≥ 0.01, with the exception of SITE_DEPTH which was set to 3.

Application of FEAST algorithm

FEAST, originally introduced by Shenhav et al. [2], is an R-based method that models 
the mixture proportions for various “source” microbial samples for a given “sink” [2]. 
This method utilizes expectation maximization to estimate the proportions when given 
any sort of count-based feature matrix representing the potential sources and sinks. 

https://aws.amazon.com/datasets/human-microbiome-project/
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The intuition behind the estimation process is that a source with a similar species dis-
tribution to the sink would have a higher contribution estimate to the sink. A species 
with non-zero counts only in source j and the sink would increase the estimated con-
tribution of source j. However, in many cases, the same species are found in multiple 
sources simultaneously. The algorithm does not uniquely assign a species to a source 
but rather simultaneously utilizes all species information to infer the source contribu-
tions. The method was originally tested and evaluated on species and not on more fine 
scale genetic data such as SNVs. The number of different species, on average, ranges in 
number from a few hundred to a few thousand, while the number of possible nucleotide 
sites that vary across different sources can number in millions. For this reason, a SNV-
filtering process is necessary so that the algorithm can run within a reasonable time and 
with reasonable memory requirements.

Application of FEAST to the Bäckhed et al. [11] dataset

For both species and SNV-FEAST, the same set of sources and sinks were fed into 
the FEAST algorithm. In the case study of infants in the first year of life [11], the 
sink consisted of the infant fecal sample at either 4  days, 4  months, or 12  months 
and the potential sources consisted of fecal samples from the true mother, three ran-
domly selected mothers from the same dataset, and also any previous time points for 
the infant.

Species-FEAST utilized all species present in the infant whereas SNV-FEAST 
used signature SNVs from the subset of species that had signature SNVs. Shown 
in Additional file  1: Fig. S4 is the distribution of species included in species and 
SNV-FEAST.

Application of FEAST to the Brooks et al. [21] dataset

For the case study of infants in the NICU [21], the sink consisted of the fecal sample 
of the infant at a given time point and the potential sources consisted of pooled reads 
from the touched surfaces, the sink basin and the floor and isolette top from both the 
infant’s own room as well as a different room. The different room was Infant 12’s room 
for Infants 3 and 6, Infants 6’s room for Infants 12 and 18.

Application of FEAST to the Sunagawa et al. [22] dataset

For the Tara Ocean [22] samples, the sink consisted of the surface water sample from 
the ocean station of interest while the sources consisted of surface water samples from 
every other station from every other ocean in the world. To study the relationship 
between source tracking estimates and geographic distance, we analyzed all oceans as 
either a sink or source against all other possible oceans. To compute geographic distance 
between stations, we applied the Haversine distance to the longitude and latitude of the 
sampling sites provided by [22] using the package “geosphere” [46]. Source tracking esti-
mates were computed as described above using either SNV-FEAST or Species FEAST. 
The regression line for the distance decay analysis was computed using a linear mixed 
model “contribution ~ distance + (1| sink_ocean)”.
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Determining the signature SNV set

Signature SNVs were identified as described in the main text. We provide specific steps 
for determining signature SNVs:

(1)	 Filter sites: only sites of the genome with at least the required number of reads 
mapping to the site are considered. In the case study of infants in the first year of 
life [11] and infants in the NICU [21], the minimum coverage requirement is 10 
across the sink and J sources. For the Tara Ocean [22] samples, the minimum cov-
erage is five reads [22]. Additionally, sites that are biallelic must have more than one 
read mapped to each allele to be considered.

(2)	 Perform per site per source parameter estimates: for each potential source compute 
the estimated allele frequency in the sink θ under two different hypotheses:

Hypothesis 1: Source i with allele frequency pi explains the allele counts in the sink.

Hypothesis 2: A combination of all other sources except i (sources j  =i) explains the 
observed allele count distribution in the sink. The estimate of the sink allele frequency 
is computed using a mixture of the allele frequencies pj from those sources. The mixing 
parameter αj is learned using Sequential Least Squares Programming (scipy.minimize()) 
with the constraint of summing to 1 with bounds of 0 to 1 inclusive:

∑
j  =iαj = 1.

(3)	 Compute per site per source log-likelihoods: Compute the binomial log-likelihood 
under hypotheses 1 and 2, given n reads with the reference allele and m reads with 
the alternative allele in the sink:

(4)	 Compute per site per source log-likelihood ratio:

(5)	 Compute per site summary signature score: The maximum log-likelihood ratio 
per site is the signature score for that SNV, representing how favorably one of the 
sources explains the sink over all other sources

(6)	 Filtering of SNVs using signature score: One signature score for that SNV repre-
sents how favorably one source explains the sink better than all other sources. All 
the scores are ranked across SNVs and SNVs with scores that are greater than two 
standard deviations over the mean signature score within each 200-kbp window of 
the genome are retained as signature SNVs. This window size was chosen for to 
optimize run time and memory requirements.

θ̂ = pi

θ̂ =
∑

j �=i

αjpi

l
(
θ̂

)
= nlog θ̂+mlog

(
1− θ̂

)

l1(θ)− l2(θ)
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Note, if only one source passes minimum coverage filtering, l2(θ) = 0  resulting 
in a very high likelihood ratio as represented by l1(θ) for the one source. These SNVs 
are more likely to pass the signature score filtering. One exception for SNVs that are 
included in the signature SNV set without passing signature score filtering are SNVs 
with an allele that is completely unique to the infant, as these represent SNVs that are 
potentially derived from an unknown source. Signature SNVs are obtained from the 
SNV profile of every species for which there is MIDAS output.

Simulating mother‑to‑infant transmission

The mixture proportions for 28 simulated infants are shown in Table S1. Four possible 
scenarios are simulated using a combination of either low or high number of sources 
and low or high transmission probabilities of species. High transmission of species was 
simulated by drawing separate transmission probabilities for each species in each con-
tributing source based on a beta distribution with a mean equal to the species relative 
abundance and variance equal to 0.1, a value selected to emulate Backhed et al.’s mean 
relative abundance and variance. For the low transmission scenario, transmission prob-
abilities were drawn from a beta distribution with mean 0.1 times the relative abundance 
of that species in the source sample and variance at 0.1. To determine if a species from 
each source was transmitted to a given infant, a binomial draw was performed J times, 
where J = number of sources, and the probability of a mother transmitting the species is 
pj based on the beta-drawn transmission probability. If any of the draws yields value 1, 
that species is transmitted to the infant from all sources. The same simulated data under 
these scenarios is used for both SNV and species source tracking.

The source tracking estimates are compared to the true mixing proportions using 
Spearman correlation. The significance of correlation is calculated using the stat_cor 
function in the “ggpubr” package [47].

Comparison to inStrain

We ran inStrain [6] on the same synthetic samples as described above. InStrain “profile” 
[6] and inStrain “compare” [6] were run for every possible infant-source pair. For exam-
ple, for simulated infant 1, there were 10 putative sources; therefore, inStrain compare 
was run 10 times for each putative source. InStrain reports popANI calculated per scaf-
fold for a given species. To compute a single statistic per species, we computed the aver-
age popANI across scaffolds for a given species. The percent infant microbiome species 
that had strains shared with mother was computed as the number of species in which 
popANI was ≥ 99.999% divided by the total number of species with coverage ≥ 5. Pop-
ANI was only calculated in scaffolds that had ≥ 5 coverage in both samples of the pair.

Comparison with strain tracking approach in Nayfach et al. [3]

We applied the strain tracking approach in Nayfach et al. [3] on the same synthetic com-
munities described above. In Nayfach et al. [3], strain transmissions are tracked by iden-
tifying “marker alleles” which are private to the infant, mother, or infant-mother dyad, 
and absent from the broader population. A strain is considered to be shared if at least 
5% of all marker alleles for a mother-infant dyad are shared. Note that the approach for 
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strain tracking proposed in Nayfach et  al. [3] utilizes SNV information outputted by 
MIDAS, but is not a part of MIDAS.

Each simulated infant had up to 10 sources that were real maternal samples from Bäck-
hed et al. [11]. For each possible pair of infants and maternal sources (10 pairings per infant, 
with 48 infants), we found the set of infant-only marker alleles, mother-only marker alleles, 
and mother-infant dyad marker alleles. As described in Nayfach et al. [3], only sites with 
minimum of 30 reads and only alleles that were supported by at least 10% of the total reads 
aligned to that site were considered. The infant marker allele and mother marker allele 
were defined as alleles that were present only in the focal sample and absent from the back-
ground samples (or below 3 reads = 10% × 30 reads). For the infant, the background con-
sisted of all mothers (including mothers that were used to simulate the infant), real infant 
samples (excluding infants of mothers used to simulate the infant), and 337 samples of 
adults from the USA in the HMP (which includes 180 unique adults) that were obtained 
from the metagenomics repository of HMP under project ID SRP002163 and SRP056641 
[20, 43]. For the mother, the background consisted of all mother and infant samples in addi-
tion to the HMP samples. For computing shared marker alleles, an allele must be present in 
both the mother and infant but absent from the background, which consisted of all mothers 
and the HMP samples.

To compute sharing, two quantities were considered: “total sharing,” defined as % shared 
marker alleles/ (infant marker alleles + mother marker alleles + shared marker alleles) and 
proportion of infant marker alleles that are shared: % shared marker alleles/ (infant marker 
alleles + shared marker alleles). The first quantity compared to FEAST estimates was the 
percentage of infant species in which the “total sharing” was at least 5%. The second quan-
tity compared to FEAST was the pooled proportion of infant marker alleles that are shared 
across all species.
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