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Abstract

Macrophages sense pathogens and orchestrate specific immune
responses. Stimulus specificity is thought to be achieved through
combinatorial and dynamical coding by signaling pathways. While
NFκB dynamics are known to encode stimulus information, dyna-
mical coding in other signaling pathways and their combinatorial
coordination remain unclear. Here, we established live-cell micro-
scopy to investigate how NFκB and p38 dynamics interface in sti-
mulated macrophages. Information theory and machine learning
revealed that p38 dynamics distinguish cytokine TNF from
pathogen-associated molecular patterns and high doses from low,
but contributed little to information-rich NFκB dynamics when both
pathways are considered. This suggests that immune response
genes benefit from decoding immune signaling dynamics or com-
binatorics, but not both. We found that the heterogeneity of the
two pathways is surprisingly uncorrelated. Mathematical modeling
revealed potential sources of uncorrelated heterogeneity in the
branched pathway network topology and predicted it to drive gene
expression variability. Indeed, genes dependent on both p38 and
NFκB showed high scRNAseq variability and bimodality. These
results identify combinatorial signaling as a mechanism to restrict
NFκB-AND-p38-responsive inflammatory cytokine expression to
few cells.
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Introduction

Macrophages are ubiquitous sentinel cells of the innate immune
system. They maintain tissue homeostasis and orchestrate local and
systemic immune responses via the secretion of cytokines and
chemokines (Wynn et al, 2013; Sheu and Hoffmann, 2022). They
must balance high sensitivity to pathogens to generate effective
responses against the risk of tissue damage. Indeed, dysregulated
macrophage responses are associated with numerous pathologies
(Murray and Wynn, 2011; Luecke et al, 2021). The stimulus-
specificity of responses is a means to ensure appropriate but not
unnecessary immune activity and is, therefore, a hallmark of
healthy macrophages (Sheu and Hoffmann, 2022). Macrophages
sense pathogen-associated molecular patterns (PAMPs) and host
cytokines through more than a dozen receptors (including toll-like
receptors (TLRs)), which converge on a limited number of immune
response signaling pathways, including the IKK/NFκB and TBK1/
IRF pathways, and the MAPKs, which include p38, JNK, and ERK
(Kawai and Akira, 2011; Ablasser and Hur, 2020; Luecke et al,
2021).

How do these pathways effect stimulus-specific gene expression
programs? Prior studies have provided evidence for both dynamical
and combinatorial coding of stimulus information (Hoffmann,
2016; Sheu et al, 2019; Luecke et al, 2021). Through dynamical
coding, a single signaling pathway can convey information about
distinct stimuli to the nucleus via stimulus-specific dynamics, i.e.,
variations over time, of signaling activity. Target genes can then
distinguish the different dynamic profiles to produce stimulus-
specific responses. For example, the activity dynamics of the
transcription factor NFκB were shown to convey information about
extracellular immune threats to the nucleus via informative
dynamical features, termed “NFκB signaling codons”, such as
speed, amplitude, and duration of signaling (Hoffmann et al, 2002;
Werner et al, 2008; Tay et al, 2010; Turner et al, 2010; Cheong et al,
2011; Lee et al, 2014; Adelaja et al, 2021; Covert et al, 2005; Werner
et al, 2005). NFκB target genes and enhancers have been shown to
distinguish the differential deployment of these signaling codons, in
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a gene-specific manner (Lee et al, 2014; Lane et al, 2017; Sen et al,
2020; Cheng et al, 2021; Werner et al, 2005). While the information
content of NFκB dynamics has been thoroughly elucidated, the
information content of dynamical signaling activities of other
innate immune response pathways has not been quantified or
characterized.

Combinatorial coding involves two or more pathways that are
activated in stimulus-specific combinations; this allows immune
response genes to be expressed stimulus-specifically by responding
to specific pathway combinations, often through highly gene-
specific regulatory mechanisms (Hoffmann, 2016; Sheu et al, 2019;
Luecke et al, 2021; Tong et al, 2016; Sen et al, 2020). Biochemical
studies that average cell variable activities have established that
PRRs and cytokine receptors activate different subsets of the key
immune response signaling pathways, e.g., NFκB+ JNK in
response to the host cytokine TNF (tumor necrosis factor),
NFκB+ JNK+p38 in response to MyD88-activating PAMPs, and
NFκB+ JNK+ IRF in response to TRIF-activating PAMPs (Amit
et al, 2009; Cheng et al, 2017; Luecke et al, 2021). In single
RAW264.7 cells, a macrophage-like immortal cell line, combina-
torial activation of JNK and NFκB activity was shown to allow
distinction of bacterially-infected cells and uninfected bystander
cells as well as exposure dose (Lane et al, 2019). MAPK p38 was
also reported to require higher doses of TLR4-ligand for activation
than NFκB, suggesting that it may contribute to ligand dose
distinction (Gottschalk et al, 2016; Regot et al, 2014). However, how
MAPK p38 is regulated dynamically in primary macrophages,
whether the dynamics contain information, and how they are
coordinated with NFκB dynamics to encode information about the
dose and molecular identity of the stimulus remains unclear.

Prior biochemical studies of population averages indicate that
MAPK p38 is a good candidate for both dynamical and
combinatorial coding with NFκB. Studies of signaling mechanisms
have reported two distinct signaling pathways activating MAPK
p38. Whereas p38 activation by TNF relies almost entirely on
MKK3/6 downstream of IKK and Tpl2, the PAMP LPS (lipopo-
lysaccharide) can alternatively activate p38 via MKK4 downstream
of TAK1 (Pattison et al, 2016), suggesting the possibility that
different activation dynamics may result. Further, studies of gene
regulatory mechanisms showed that the combination of NFκB and
MAPK p38 controls important immune response genes, such as
inflammatory cytokines (Cheng et al, 2017). In addition to
activating transcription factors such as CREB (Park et al, 2005;
Arthur and Ley, 2013), MAPK p38 is an important regulator of
post-transcriptional and post-translational regulation of pro-
inflammatory cytokines by controlling mRNA processing and
half-life, pro-protein processing, and secretion (Caldwell et al, 2014;
Mahtani et al, 2001; Luecke et al, 2021; Andersson and Sundler,
2006; Xu and Derynck, 2010; Scott et al, 2011). Through these
mechanisms, p38 activity has been described to form a “sequential
AND gate” with transcription-activating NFκB (Cheng et al, 2017),
meaning that although they act on sequential biochemical steps,
both their activities are required for proper production of cytokines
regulated in this manner. This suggests a role for NFκB-p38
combinatorial coding to ensure the stimulus-specificity of gene
expression.

While there is good evidence that NFκB-p38 combinatorial
coding plays a role in the stimulus-specificity of macrophage
responses, how it relates to the dynamical coding within either

pathway is not known. Quantifying coding capacities in NFκB-p38
combinatorial signaling requires examination at the single-cell
level, given the substantial cell-cell-heterogeneity within innate
immune responses. Stimulus-specificity may be quantified using
machine learning classification or information-theoretic analyses
developed in signal theory, which determines how well observed
signaling features are correlated with the stimulus (Rhee et al, 2012;
Mitchell and Hoffmann, 2018; Shannon, 1948).

To undertake single-cell quantitative studies of dynamical and
combinatorial coding through p38 and NFκB in primary macro-
phages, we leveraged two recently developed technologies: First, we
employed kinase translocation reporters (KTRs), which are
engineered proteins that contain a fluorescent protein coupled to
the substrate recognition motif of the kinase of interest and
phosphorylation-dependent nuclear localization and export signals
(Kudo et al, 2018; Regot et al, 2014). Phosphorylation of the KTR
typically increases nuclear export and decreases nuclear import.
This allows monitoring of the dynamic activity, both activation and
deactivation, of the kinase in real time using live cell microscopy.
Second, we employed the HoxB4-transduced myeloid precursor
system (hMPs) (Ruedl et al, 2008) to generate primary hMP-
derived macrophages (hMPDMs) using M-CSF. These closely
resemble primary bone marrow-derived macrophages (BMDMs) in
terms of PAMP-responsive transcriptomic responses and NFκB
signaling dynamics (Sheu et al, 2023; Singh et al, 2024). Since the
precursors can be maintained in culture, they can be genetically
engineered with the aforementioned KTRs before differentiation
into macrophages.

We report here that p38 activity shows stimulus- and dose-
specific dynamics that contain less information than those of NFκB
but allow precise distinction of TNF from PAMPs. However, in
combination with the information-rich NFκB dynamic features,
p38 dynamics contribute, contrary to expectation, only little to
ligand- or dose-distinction, despite the differential dose-response
behavior of the two pathways. This suggests that immune response
genes gain stimulus-specificity when evolving the ability for
decoding NFκB dynamics or decoding NFκB&p38 combinatorics,
but gain little further from evolving both. Due to noisy signaling
inherent to the branched pathway architecture, p38 and NFκB
signaling dynamics were found to be poorly correlated and
heterogeneous. Our results suggest that AND gate gene regulatory
mechanisms have a role in generating cell-variable, even bimodal
expression responses of its target genes.

Results

Generation of dual reporter macrophages for live cell
imaging of NFκB and p38 MAPK activities

To study the single cell activity dynamics of NFκB and p38 MAPK
simultaneously in macrophages using live cell imaging, we
generated dual reporter cells expressing fluorescently labeled RELA
and a p38-specific fluorescent kinase translocation reporter (KTR)
(Fig. 1A). Using bone marrow from a previously established knock-
in mouse line, which expresses mVenus-RelA from the endogenous
Rela locus (Adelaja et al, 2021) (thus avoiding potentially
artefactual NFκB dynamics caused by overexpression-based
reporter systems (Barken et al, 2005)), we generated hMPs (Ruedl
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et al, 2008). These cells can be differentiated into hMP-derived
macrophages (hMPDMs) that very closely resemble primary bone
marrow-derived macrophages (BMDMs) in terms of PAMP-
responsive transcriptomic responses and NFκB signaling dynamics
(Sheu et al, 2023; Singh et al, 2024). A p38-specific KTR coupled to
mCerulean (Regot et al, 2014) was then introduced into the hMPs
by lentiviral transduction using a vector which ensures silencing-
resistant expression of the transgene following differentiation
(Müller-Kuller et al, 2015). Cells that were mVenus+ (100% of
single cell gate) and mCerulean+ (17% of single cell gate) were
collected by fluorescence-activated cell sorting (Fig. EV1A,B).

Given that KTRs are substrates of kinase activity but not
signaling effectors, their ectopic expression is not expected to alter
the signaling system parameters significantly. However, the dose
responses of substrate phosphorylation can be sensitive to the
introduction of additional kinase substrates (Rowland et al, 2012).
We characterized the dual reporter cells by comparing phosphor-
ylation of the endogenous p38-substrate MK2 and its downstream
target CREB in the dual reporter hMPDMs and mVenus-Rela
hMDPMs upon stimulation with three LPS doses over 2 h by
Western Blotting and did not observe any appreciable differences
(Figs. 1B and EV1C). We also confirmed that activation of p38,
measured by phosphorylation, and of the NFκB pathway, measured
as IκBα degradation, was unaffected (Figs. 1B and EV1C).

To test the expression, function, and specificity of the p38
reporter in differentiated hMPDMs, we imaged p38-KTR-
expressing hMPDMs over 8 h with and without LPS stimulation.
Before stimulation, the fluorescence intensity of the KTR was
higher in the nucleus than in the cytoplasm; this ratio was
heterogeneous between cells, as expected (Regot et al, 2014). While
very little translocation of the KTR was observed upon mock
stimulation, LPS stimulation induced translocation of a portion of
nuclear KTR from the nucleus to the cytoplasm, visible at 30 min
and increasing to 1 h (Fig. 1C). By 6 h post stimulation, the nuclear
fluorescence intensity of the KTR had increased again, although not
to baseline levels. Pre-incubation with a pharmacological p38
inhibitor decreased the observed translocation (Fig. 1C).

Adaptation of a previously established automated image analysis
pipeline (Adelaja et al, 2021) allowed for quantification of the C/N
ratio of p38-KTR fluorescence in hundreds of cells per stimulation
condition over 8 h (Fig. 1D). Since the C/N ratio is used, intrinsic
variability in reporter expression is controlled for (Regot et al,
2014). 30–60 min of baseline fluorescence was measured before
in situ stimulation, allowing a per-cell baseline correction of the
trajectories. The quantified trajectories confirmed the lack of
translocation seen upon mock stimulation, the translocation out
of and back into the nucleus upon LPS stimulation, representative
of p38 activation and deactivation, and the strong decrease in
translocation strength in the presence of p38 inhibitor, confirming
the specificity of the KTR (Fig. 1D). The activity of p38 measured
using this reporter showed heterogeneity in single cells responding
to stimulation in characteristics such as speed, amplitude, and
duration of signaling.

As different assays for MAPK activity are known to have different
sensitivities, especially at low doses (Gillies et al, 2017), we compared
mean (pseudo-bulk) p38 activity reported by KTR microscopy in
response to three doses of the PAMPs LPS (lipopolysaccharide, binds
TLR4, signals via MyD88 and TRIF adapters to NFκB, MAPK, and IRF
pathways), P3C4 (Pam3CysSerLys4, binds TLR2/1, signals via MyD88
to NFκB and MAPK pathways), and CpG (CpG oligodeoxynucleotide,
binds TLR9, signals via MyD88 to NFκB andMAPK pathways) and the
host cytokine TNF (tumor necrosis factor, binds TNF receptor 1/2,
signals via TRADD adapter to NFκB and MAPK pathways) over 4 h to
bulkphospho-p38 levels byWesternBlotting (WB)(Figs. 1EandEV1D).
The KTR measurement recapitulated many features of stimulus- and
dose-specific p38 activity also observed by WB, such as fast activation
and deactivation dynamics, the stimulus-specificity of peak amplitudes
and of activation and deactivation speed, as well as the dose-specificity
of activation strength and speed. Specifically, the dose response and
dynamics of CpG matched well between the two assays, with a slightly
more pronounced deactivation observed by WB. The P3C4 dose
response matched well for the relative peak amplitudes, although the
timing of the peaks was slightly delayed using the KTR at lower doses.
At low doses of LPS and TNF, the KTR measurements appeared to

Figure 1. Experimental system for quantifying p38 and NFκB activity dynamics in murine macrophages.

(A) Schematic of approach to generate NFκB Rela and p38 MAPK activity dual fluorescence reporter macrophages by lentiviral transduction of hMPs. (B) Signaling
responses to three LPS doses over 2 h in mVenus-Rela p38-KTR-mCerulean hMPDMs compared to parent cell line by Western Blotting for phospho-p38, phospho-MK2,
phospho-CREB, and IκBα protein levels. Band intensities were background corrected, normalized to tubulin control, and normalized across multiple membranes using an
internal control sample. Data from one experiment are depicted (Western Blot membrane shown in Fig. EV1C). (C) Fluorescence microscopy images of p38-KTR
localization in hMPDMs upon stimulation with 100 ng/ml LPS over 6 h with and without p38 inhibitor pre-treatment, as well as nuclear dye (SiR-DNA) fluorescence and
DIC image at baseline. Scale bar: 20 µm. (D) p38 activity dynamics in response to 100 ng/ml LPS with and without p38 inhibitor measured over 8 h by fluorescence
microscopy, expressed as baseline-corrected p38-KTR fluorescence cytoplasmic/nuclear ratio, quantified by automated image analysis. Each row of the heatmap
represents the p38 signaling trajectory of one cell. Trajectories are sorted by maximum amplitude. Example trajectories are shown below. Data from one experiment are
depicted. (E) Comparison of p38 activity over 4 h in hMPDMs measured by p38-KTR microscopy (mean of trajectories) and by bulk phospho-p38 levels measured by
Western Blotting in response to indicated doses of P3C4, CpG, LPS, or TNF. Western Blotting quantification: band intensities were background corrected, normalized to
tubulin control, normalized across multiple membranes using an internal control sample, and baseline-deducted; depicting data from a single experiment (Western Blot
membrane shown in Fig. EV1D). For microscopy, the mean of means of trajectories from two biological replicates is shown (Total # of cells: 923, 1171, 970, and 1055 cells
for P3C4, CpG, LPS, and TNF). (F) Comparison of p38 activity over 1 h in hMPDMs measured by p38-KTR microscopy (mean of trajectories, as in Panel E) and as
intracellular p-p38 levels by flow cytometry in response to indicated doses of P3C4, CpG, LPS, or TNF. MFIs were baseline-deducted. Data from one flow cytometry
experiment is shown. (G) Comparison of the fractions of cells with p38 activity in the hMPDM population as measured by p38-KTR microscopy or by intracellular p-p38
flow cytometry upon stimulation with P3C4, CpG, LPS, or TNF. Microscopy: A cell is considered p38 active if its KTR measurement passes a threshold of 3x STDV of
baseline for 3 consecutive timepoints within 1 h of stimulation. Data from two pooled biological replicates are used. Flow cytometry: The fluorescence signal of an
unstimulated, unstained sample is used to define a cutoff between p-p38+ and p-p38− cells (Fig. EV1F). For each dose, the fraction of cells passing the threshold at 30min
post stimulation (Fig. EV1G) is plotted. Data from one experiment are displayed. DIC differential interference contrast, p38i p38 inhibitor, MFI mean fluorescence
intensity. Source data are available online for this figure.
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yield less signal than the WB measurements, reflecting different
characteristics of these measurement modalities. Similar results were
obtained when comparing levels of the phosphorylated p38-substrate
MK2 to p38-KTR microscopy results (Fig. EV1D,E).

To gain further confidence that p38-KTR appropriately
represents p38 activity dynamics and heterogeneity, we compared
p38 phosphorylation measured by flow cytometry to KTR
measurements. The mean fluorescence intensity (MFI) within the
first hour after stimulation recapitulated many aspects of the
dynamics and dose responses observed for mean (pseudo-bulk) p38
activity reported by KTR microscopy, such as the timing, width,
and relative amplitudes of peak activation, especially for CpG and
LPS (Fig. 1F). In response to low-dose P3C4 and TNF, the KTR
measurements showed more and less signal, respectively, than the
flow cytometry, potentially within range of experimental variability
(Fig. 1F). Importantly, at the single cell level, the fraction of p38-
activated cells among all cells showed similar dose responses for
P3C4, CpG, and LPS when measured by p-p38 flow cytometry and
p38-KTR microscopy (Figs. 1G and EV1F,G), confirming that p38-
KTR does not have a systematically lower sensitivity to low
stimulus doses compared to p-p38 flow cytometry. However, for
TNF, the p38-KTR measurements resulted in a lower fraction of
activated cells, especially at lower doses, compared to flow
cytometry measurements, suggesting a lower sensitivity of the
KTR for low-dose TNF-induced p38 activity (Fig. 1G). The short
duration or transience of TNF-mediated p38 activity may play a
role. In summary, p38-KTR is a suitable reporter to use in
combination with mVenus-RelA in hMPDMs to study the
combinatorial signaling of p38 and NFκB in macrophages on a
single-cell level.

Stimulus-specificity of p38 responses: PAMPs can be
distinguished from TNF

While it is known that NFκB signaling dynamics are highly
stimulus-specific (Adelaja et al, 2021; Luecke et al, 2021), the
stimulus-specific information contained in p38 signaling has not
yet been determined. Therefore, before studying combinatorial
encoding by NFκB and p38, we first compared p38 activity
dynamics alone in response to stimulation with high doses of three
different PAMPs (P3C4, CpG, and LPS) and with the host cytokine
TNF using live cell microscopy of p38-KTR hMPDMs. After
automated image analysis and stringent quality filtering of

trajectories (Table EV1), heatmaps displaying p38 activity trajec-
tories of 923–1171 cells obtained in two biological replicates and
example trajectories revealed stimulus-specificity of p38 activity
(Fig. 2A). The stimulus-induced p38 dynamics differed, for
example, in their amplitudes (with P3C4 and LPS having higher,
CpG moderate, and TNF lower amplitudes), speed of activation
(with TNF activating p38 very quickly and CpG more slowly), the
strength of deactivation (with TNF having a very narrow first peak
with a steep decline, P3C4 a moderately broad first peak, LPS a slow
decline of activity, and CpG very heterogeneous width of the first
peak), and duration (with LPS having extended activity times).
Heterogeneity of e.g., speed, amplitude, and duration of signal
between individual cells stimulated with the same ligand was
observed for all ligands (Fig. 2A).

To quantitate the information content of the p38 dynamics, we
decomposed the single cell time-series data into 228 dynamic
features (Table EV2), including features describing the speed of
activation and deactivation, amplitude, oscillatory character,
duration, early vs. late activity, and total activity (Fig. 2B). We
then determined the mutual information (MI) between the high-
dose P3C4, CpG, LPS, TNF and mock stimulations and these
dynamic features of p38 activity (a measure of correlation reported
in bits, where 1 bit indicates perfect correlation when two
conditions are contrasted), and found it to be 1.12 bits (Fig. 2C).
This indicates that p38 dynamics distinguish these five stimulus
conditions (maximum MI for five conditions being 2.32 bits) to
some degree, though imperfectly.

To better understand how these stimuli are distinguishable by
p38 activity, we used machine learning to classify the sources of p38
activities, meaning we trained machine learning models to predict
the stimulus identity based on the single-cell p38 dynamic
activities. First, we trained a Long Short-Term Memory (LSTM)
recurrent neural network (RNN) to classify p38 time-series data
(using vectors consisting of the 95 trajectory timepoints as input)
from the four stimulations (Fig. 2D). The LSTM architecture type
of RNN was chosen because it is well suited to directly learn about
information in sequences from time-series data. Rather than
treating the timepoints as discrete features, it considers the output
of prior timepoints in the calculation of the current timepoint’s
output. Furthermore, the LSTM is an improvement on the standard
RNN that can better handle longer sequences (Hochreiter and
Schmidhuber, 1997; Van Houdt et al, 2020; Yu et al, 2019). We
performed fivefold cross-validation to evaluate model performance.

Figure 2. MAPK p38 activity dynamics distinguish TNF from PAMPs with high accuracy.

(A) MAPK p38 activity dynamics in response to 100 ng/ml P3C4, 1000 nM CpG, 100 ng/ml LPS, and 100 ng/ml TNF stimulation over app. eight hours were measured by
fluorescence microscopy of reporter hMPDMs. Each row of the heatmap represents the p38 signaling trajectory of one cell. Trajectories are sorted by maximum amplitude.
Example trajectories are shown below. Data from two pooled biological replicates are depicted. Total # of cells: 923, 1171, 970, and 1055 cells for P3C4, CpG, LPS, and TNF.
(B) Schematic of 12 (out of 228) dynamic features derived from p38 activity trajectories used for quantitative analysis. (C) Mutual information between mock and high-
dose P3C4, CpG, LPS, and TNF stimulations and dynamic features of p38 activity. Data from two pooled biological replicates are used. (D) Schematic of neural network
machine learning classifier to test distinguishability of stimuli using p38 signaling time-series. (E) F1 scores by class of neural network classification of p38 time-series in
response to the high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological replicates are used. (F) Schematic of decision tree ensemble machine
learning classifier to test distinguishability of stimuli using p38 signaling dynamic features. (G) F1 scores by class of decision tree ensemble classification of p38 dynamic
features in response to the high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological replicates are used. (H, I) Confusion matrices of neural
network classification of p38 time-series (H) or decision tree ensemble classification of p38 dynamic features (I) in response to high-dose P3C4, CpG, LPS, and TNF
stimulations. Data from two pooled biological replicates are used. (J) Violin plots of selected p38 dynamic features in response to the high-dose P3C4, CpG, LPS, and TNF
stimulations. Data from two pooled biological replicates are depicted. Total # of cells: 923, 1171, 970, and 1055 cells for P3C4, CpG, LPS, and TNF. (K) Mutual information
between mock and high-dose stimulation with P3C4, CpG, LPS, or TNF and dynamic features of p38 activity. Data from two pooled biological replicates are used.
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The by-class F1 scores (harmonic mean of precision and sensitivity
of the classification) revealed an especially high performance of the
model for TNF (F1 score: 0.86), while CpG, P3C4, and LPS had
similar F1 scores between 0.46 and 0.56, with CpG performing
worst and LPS performing best among the three (Fig. 2E).

We then characterized p38 dynamical trajectories in terms of
dynamical features, using 228 dynamic features to abstract p38
dynamical trajectories from the four stimulation conditions and
used the resulting values as input to a decision tree ensemble
classifier, which for these types of classification problems often
strike a good balance with regards to performance, avoidance of
overfitting, and feasibility of implementation (Adelaja et al, 2021).
We similarly evaluated this classification using 5-fold cross-
validation (Fig. 2F). The by-class F1 scores obtained using this
feature-based classifier confirmed that TNF stimulation was
particularly distinguishable with an F1 score of 0.89 and that
CpG, P3C4, and LPS were more difficult to distinguish with
F1 scores between 0.54 and 0.63 (Fig. 2G).

The confusion matrices derived from the 5-fold cross-valida-
tions of the two classifiers (which shows how the data in each
category was classified) confirmed that TNF-derived p38 activity
was classified with high sensitivity (87/92%) and rarely misclassified
as another stimulus (Fig. 2H,I). P3C4- and LPS-triggered p38
activities were classified with sensitivities of 56/57% and 57%/62%,
respectively, and were both most commonly misclassified as CpG.
CpG had the lowest sensitivity of 44/54%.

The similarity in results between these two distinct classification
approaches, the LSTM classification of time-series data and the
decision tree classifier of dynamic features extracted from the time
series, provide confidence in these findings and confirmed that the
extracted dynamic features captured aspects of p38 dynamics
relevant to the distinguishability of p38-inducing stimuli (Fig. 2E,H
vs. 2G,I). The slightly better performance of the feature-based
classifier (overall model accuracy: 67%) over the time-series
classifier (overall model accuracy: 61%) may reflect the fact that
several dynamic features are based on multiple timepoints and may
thus neutralize technical noise, although other differences between
these very distinct machine learning models may contribute also.

A key finding of these classification analyses is that p38
activation dynamics distinguish the host cytokine TNF from the
bacterial and viral PAMPs tested. A closer look at some of the
dynamic features revealed that TNF-induced p38 activity is
characterized by quick activation speed and low amplitude of the
first peak, duration, and total activity (Fig. 2J). One consequence of
such low activity might be that TNF is less reliably distinguished
from mock stimulation; indeed, we found that 0.53 bits of mutual
information separate TNF from the mock condition, while 0.69,
0.77, and 0.85 bits of mutual information separate CpG, LPS, and
P3C4 from mock stimulation, respectively (Fig. 2K), though the
precise quantitation will be affected by the response speed of the
reporter or physiological kinase substrate.

In concordance, when classifying dynamics features from all
four stimuli and mock stimulation, compared to the classification
of the four stimuli only, the F1 score of the TNF class decreased
most (from 0.89 to 0.8) (Fig. EV2A vs. Fig. 2G). The confusion
matrix demonstrates that TNF is most often misclassified as mock
stimulation and vice-versa (Fig. EV2B). The second most common
misclassification for mock stimulation is CpG (Fig. EV2B) and its
F1 score decreases from 0.54 to 0.48, while the F1 scores of P3C4

and LPS are less affected by the inclusion of mock stimulation in
the classifier (Fig. EV2A vs. Fig. 2G).

MAPK p38 reinforces NFκB distinctions of ligand identity

Next, we sought to investigate how p38 signaling combines with
NFκB signaling, as both pathways are often activated by the same
ligands. We used the dual reporter hMDPMs to measure PAMP-
and TNF-induced NFκB and p38 dynamics in the same cells
(Fig. 3A) and found that NFκB and p38 dynamics were remarkably
distinct from each other in single cells. NFκB dynamics showed the
previously reported stimulus-specificity, with respect to the speed
of response, amplitude, duration, and oscillatory content (Adelaja
et al, 2021). For example, TNF-induced NFκB activities were often
strongly oscillatory, while bacterial PAMPs elicited primarily non-
oscillatory dynamics.

We first asked whether stimulus-specific p38 signaling con-
tributes to stimulus-specific NFκB signaling to improve the cell’s
ability to distinguish different stimuli. To this end, we first trained
the machine learning classifiers using either time-series or dynamic
features of NFκB from all four stimulus conditions. Confusion
matrices of the classifications showed that while NFκB activity
allowed for consistently superior classification accuracy of the
PAMP classes compared to p38, identification of TNF was similarly
high (slightly higher using time-series, slightly lower using dynamic
features) (Fig. 3B,C). We then trained machine learning models
with the combined activities NFκB and p38 and found slight
improvements in the accuracy of most classifications, with TNF
identification again standing out as particularly accurate (Fig. 3B,C).
Correspondingly, the overall classification accuracies, which were
61 and 67% for p38 time-series and p38 feature-based classification,
respectively, and 74 and 70% when classifying NFκB time-series
data and dynamic features, respectively, increased to 79 and 74%
when classifying their combined activity, suggesting that p38
contributes to stimulus distinguishability provided by NFκB
(Fig. 3D,E). As a control, we trained classifiers using p38 or NFκB
activities in combination with incorrectly matched NFκB or p38
activities, respectively, from cells randomly selected from all
stimulations (“shuffled”). Using such ‘shuffled’ NFκB+ p38 inputs,
neither time-series and nor feature-based classifiers yielded higher
overall model accuracies (Fig. 3D,E) or improved patterns of
confusion between stimuli (Fig. EV2C,D) compared to using the
corresponding single-pathway inputs.

Focusing on the distinguishability of TNF from PAMPs, the by-
class F1 scores confirmed that p38 and NFκB both allow for the
identification of TNF-induced activity with high sensitivity and
precision (F1 scores: 0.85–0.89), with neither providing consistently
superior classification in the two classification methods (Fig. 3F,G).
Combined p38 + NFκB activity increased TNF’s F1 score slightly to
0.94/ 0.91 for time-series and feature-based classifier, respectively.
Shuffling either NFκB or p38 activities provided confirmation that
the small increase is due to properly matched combined activities
(Fig. 3F,G). Thus, both signaling pathways independently distin-
guish host cytokine TNF from PAMPs and combining their
activities improve the reliability only modestly.

We then asked whether their combined activity improves the
distinction of TNF from mock. Mutual information calculations
revealed that 0.86 bits separated TNF-induced NFκB activity from
mock. Considering p38 in combination with NFκB provided no
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improvement with these calculations, resulting in 0.83 bits for the
combined activities and in 0.53 bits for p38 alone (Fig. 3H).

In concordance, when training a classifier on both mock and all
four stimuli (Fig. EV2E) or just the four stimuli (Fig. 3C), the
overall accuracies using NFκB features or NFκB+ p38 features
barely increased (0.70/0.74 vs. 0.74/0.77) (Fig. 3E vs. EV2F) and the

F1 scores for the TNF class remained similar (0.85/0.84 vs. 0.91/
0.89) (Fig. 3G vs. EV2G), while in a classifier using p38 features
inclusion of mock stimulation resulted in similar overall accuracies
(0.67 vs 0.66) and decreased the TNF F1 score (0.89 to 0.8)
(Fig. EV2F, G). Overall, our results support the conclusion that
NFκB is primarily responsible for distinguishing host cytokine TNF

Stefanie Luecke et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 898 –932 905



stimulation from mock, but that p38 independently reliably
distinguishes being exposed to TNF from being exposed to PAMPs.

We next asked whether combinatorial signaling by p38 and
NFκB improved the distinction of the three PAMPs. While p38
dynamic features provided 0.83 bits of mutual information for
P3C4, CpG, LPS, and mock, NFκB dynamic features provided 1.1
bits, and the combination provided 1.23 bits (Fig. 3I). Overall
classification accuracy of time-series and feature-based classifiers
was 60%/61% using p38 activity, 70% using NFκB activity, and 75/
73% using the combination of activities (Figs. EV2H and 3J). These
three separate analyses consistently indicated that p38 dynamics
provide limited ability to distinguish PAMPs on their own and
contribute little information in combination with NFκB dynamics.

The by-class F1 scores from time-series and feature-based
classification revealed that, of the three PAMPs, LPS had the
highest F1 scores for p38 only, NFκB only, and p38 + NFκB
classifications, making it the most distinguishable of the three
(Figs. EV2I and 3K). When considering the combined activity
compared to NFκB alone, the classification of CpG and LPS
improved more than that of P3C4, which showed only a minor
increase. Considering the confusion matrices, all stimuli showed a
high degree of confusion using p38 activity alone, with CpG being
misclassified as P3C4 slightly more often than as LPS
(Fig. EV2J and 3L). With combined activities, misclassification of
P3C4 as LPS (or the reverse) was particularly rare. Misclassification
of CpG as LPS was reduced when the combined activities were
considered. The control classifications using shuffled p38 or NFκB
activity performed similarly to single-pathway classifiers with
respect to classification accuracy (Figs. EV2H and 3J), F1 scores
(Figs. EV2I and 3K), and confusion between classes (Figs. EV2J,K).
Visualization of selected dynamic features demonstrates how p38
features may contribute to the distinction of PAMPs: While P3C4-
and CpG-induced NFκB trajectories show very similar distributions
of “maximum derivatives”, these two ligands appear more distinct
in the “maximum derivatives” of their p38 dynamics (Fig. 3M, left).
Similarly, p38 “minimum derivatives” show more distinction
between LPS and P3C4 for p38 than for NFκB (Fig. 3M, center),

and p38 “maximum amplitude” may contribute to the distinction
of LPS and CpG (Fig. 3M, right). In summary, p38 contributes
stimulus-specific signaling to allow for slightly more accurate
identification of difficult-to-distinguish stimuli, such as MyD88-
activating PAMPs, than NFκB activity alone.

MAPK p38 does not improve dose distinction beyond
that achieved by NFκB dynamic features

NFκB dynamic features are known to convey some dose-specificity
(Adelaja et al, 2021). A previous study had reported a differential
dose response of NFκB and MAPK to LipidA (a TLR4-ligand)
stimulation in macrophages, with MAPK’s switch-like dose
response ensuring response distinction between harmless and
harmful PAMP levels (Gottschalk et al, 2016). Thus, we next sought
to determine whether NFκB and p38 dynamics act combinatorially
to distinguish stimulus doses. To this end, we determined p38 and
NFκB activity over 8 h for 713–1259 cells over two biological
replicates for 5 doses of P3C4, CpG, LPS, or TNF (Fig. 4A;
Appendix Fig. S1A–C). The doses spanned a concentration range of
105. The highest dose was chosen to saturate NFκB responses with
respect to the proportion of responding cells and the lowest dose to
provide NFκB activity similar to mock stimulation. Both p38 and
NFκB activity trajectories appeared dose-specific. For example, in
response to increasing P3C4 dose, p38 amplitude and speed of
response increased while the width of the first peak decreased.
NFκB and p38 appeared to have different activation thresholds, e.g.,
with 0.1 ng/ml P3C4 activating almost NFκB in almost all cells, but
p38 in a smaller portion of cells (Fig. 4A).

To quantify the differential activation thresholds, we fit Hill
curves to dose responses of the fraction of cells with p38 or NFκB
activity upon P3C4 stimulation (Fig. 4B) and determined the ligand
concentration that provided the half maximum percentage of NFκB
and p38 responder cells (Fig. 4C). Activation of p38 required a 6.7x
higher P3C4 dose than NFκB activation, confirming a differential
dose response. We hypothesized that the NFκB and p38 differential
dose-response behavior does not apply to all stimuli equally.

Figure 3. MAPK p38 contributes little to NFκB dynamics in the distinction of stimulus ligands.

(A) p38 and NFκB activity dynamics in the same cells in response to 100 ng/ml P3C4, 1000 nM CpG, 100 ng/ml LPS, and 100 ng/ml TNF stimulation over app. eight hours
were measured by fluorescence microscopy of reporter hMPDMs. Each row of the heatmap represents the p38 or NFκB signaling trajectory of one cell. Trajectories are
sorted by the maximum amplitude of p38 activity. Example trajectories are shown below. Data from two pooled biological replicates are depicted. Total # of cells: 923,
1171, 970, and 1055 cells for P3C4, CpG, LPS, and TNF. p38 data is also shown in Fig. 2A. (B) Confusion matrices of neural network classification of NFκB (left) or
NFκB+ p38 (right) time-series in response to high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological replicates are used. (C) Confusion
matrices of decision tree ensemble classification of NFκB (left) or NFκB+ p38 (right) dynamic features in response to high-dose P3C4, CpG, LPS, and TNF stimulations.
Data from two pooled biological replicates are used. (D, E) Overall classification model accuracy of machine learning classifications using p38 only, NFκB only,
NFκB+ p38, NFκB (“shuffled”: incorrectly matched NFκB activities from cells randomly selected from all classes) + p38, NFκB+ p38 (“shuffled”: incorrectly matched p38
activities from cells randomly selected from all classes) time-series (D) or dynamic features (E) in response to high-dose P3C4, CpG, LPS, and TNF stimulations. Data from
two pooled biological replicates are used. (F, G) F1 score for TNF class in machine learning classifications using p38 only, NFκB only, NFκB+ p38, NFκB (“shuffled”:
incorrectly matched NFκB activities from cells randomly selected from all classes) + p38, NFκB+ p38 (“shuffled”: incorrectly matched p38 activities from cells randomly
selected from all classes) time-series (F) or dynamic features (G) in response to high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological
replicates are used. (H) Mutual information (MI) between mock and high-dose stimulation with TNF and dynamic features of p38, NFκB, or p38 + NFκB activity. Data from
two pooled biological replicates are used. (I) Mutual information between mock and high-dose P3C4, CpG, and LPS stimulations and dynamic features of p38, NFκB, or p38
+ NFκB activity. Data from two pooled biological replicates are used. (J, K) Overall classification accuracy (J) and F1 scores for individual classes (K) of machine learning
classifications using p38 only, NFκB only, NFκB+ p38, NFκB (“shuffled”: incorrectly matched NFκB activities from cells randomly selected from all classes) + p38,
NFκB+ p38 (“shuffled”: incorrectly matched p38 activities from cells randomly selected from all classes) dynamic features in response to high-dose P3C4, CpG, and LPS
stimulations. Data from two pooled biological replicates are used. (L) Confusion matrices for machine learning classifications using p38 only (left), NFκB only (center), and
NFκB+ p38 (right) dynamic features in response to high-dose P3C4, CpG, and LPS stimulations. Data from two pooled biological replicates are used. (M) Selected
dynamic features of NFκB (top) and p38 (bottom) activity in response to P3C4, CpG, and LPS. Data from two pooled biological replicates are used. Total # of cells: 923,
1171, and 970 cells for P3C4, CpG, and LPS.

Molecular Systems Biology Stefanie Luecke et al

906 Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 898 –932 © The Author(s)



Stefanie Luecke et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 898 –932 907



Indeed, we observed stimulus-specific differential dose responses:
The TNF concentration at half maximum activity for p38 was 12.9x
that of NFκB; for LPS, it was 8x, and, for CpG 2.6x. (TNF’s dose
response may be affected by the slightly decreased sensitivity of the
KTR for low TNF doses (0.1 ng/ml) compared to flow cytometry or
Western blot-based measurements (see Fig. 1E–G)). Thus, we
confirmed that the differential dose response between NFκB and
p38 previously reported for LipidA can be observed for other
immune stimuli as well.

Based on the differential dose response, one might hypothesize
that combinatorial signaling between p38 and NFκB would increase
the distinguishability among stimulus doses compared to the dose-
information contained in p38 or NFκB activity individually. To
investigate this, we first trained machine learning classifiers of dose
responses of the four stimuli trained only on “total activity” of p38,
NFκB, or both. This resulted in low classification accuracy for the
p38 activity-based classifiers of the 5 stimulus doses (0.28–0.37) for
all four stimuli and slightly higher classification accuracies using
NFκB activity (0.4–0.47) (Fig. 4D). Using both p38 and NFκB total
activity for classification further increased the classification
accuracy (0.46–0.51). However, when using all dynamic features
instead of only ‘total activity’ to classify stimuli doses (Appendix
Fig. S2), combining p38 and NFκB features did not consistently
result in an increase in classification accuracy across stimuli
compared to NFκB features alone or p38 features alone (0.62–0.75
vs. 0.6–0.74 and 0.47–0.61, respectively) (Fig. 4D). Similarly, in a
mutual information calculation the combined dynamic features of
p38 and NFκB did not provide consistently more dose information
than NFκB alone or p38 alone (1.15–1.51 bits vs. 1.2–1.5 bits and
0.52 to 1.07 bits, respectively) (Fig. 4E).

We next asked whether p38 may contribute combinatorially to
improve the binary distinction of certain adjacent doses. Similar
patterns as in the full dose range classifications were observed in the
binary distinction of adjacent stimulus doses across the dose ranges,
with NFκB and NFκB+ p38 dynamics providing similarly accurate
classification (Fig. 4F). p38 dynamic features alone generally
provided less accurate classification than either NFκB or NFκB+
p38, especially at low and medium doses below or near its
activation threshold, but interestingly approached the accuracy of
NFκB-based classifications at medium-to-high doses (e.g.,10 vs.
100 ng/ml P3C4) (Fig. 4F). This suggests that p38 can indepen-
dently provide dose-specific information at higher doses.

Since previous work suggested that p38’s role in dose sensing
may be to distinguish harmful from harmless PAMP

concentrations (Gottschalk et al, 2016), we next sought to
determine how well mock stimulation can be distinguished from
individual stimulus doses. Similar to the classification of adjacent
doses, in binary classification of mock stimulation vs individual
stimulus doses, both NFκB and p38 dynamics achieved highly
accurate classifications for doses above their activation threshold,
with NFκB generally performing better than p38, with the size of
the difference in performance being consistent with their stimulus-
specific differential activation thresholds. However, their combined
dynamic features did not increase the classification accuracy
(Appendix Fig. S3).

Thus, while p38 dynamics on their own are dose-specific to a
certain degree and provide accurate identification of medium to
high-dose stimulation, they do not increase the total dose
information available when considering all dynamic features given
the richness of the information contained in NFκB dynamic
features. However, when considering only ‘total activity’, p38 and
NFκB pathways combine to slightly increase the accuracy of dose
identification.

Heterogeneous MAPK p38 and NFκB dynamic features
are poorly correlated across cells

The activation of p38 is mediated by signaling pathways that are
branched off a receptor-proximal signaling module that is shared
with NFκB. We sought to understand whether the heterogeneous
dynamic features of NFκB and p38 are correlated across the
population of single cells. Spearman correlation coefficients of
corresponding p38 and NFκB dynamic features were generally low,
even for high-dose ligands (Fig. 5A). Interestingly, features
determined early in the time course, such as ‘time to half maximum
activity’ showed the highest, but still modest, positive correlations
for LPS, P3C4, and CpG (correlation coefficients of 0.59 to 0.74)
(but weak correlations for TNF, 0.12), while features determined a
little later in the time course, such as ‘maximum amplitude’,
showed very weak or no correlations (−0.08 to 0.11), and features
determined late in the time course, such as “duration” and “total
activity”, showed weakly negative correlations (−0.12 to −0.23)
(Fig. EV3A). Following shuffling the cell identities for the NFκB
trajectories within a stimulation condition, correlation coefficients
were all close to 0 and rarely statistically significant (Fig. EV3B).
This suggests that the weak correlations in the correctly matched
data may represent relevant relationships between the features. We
examined the correlation along the time course of stimulation by

Figure 4. MAPK p38 does not improve dose distinction beyond that achieved by NFκB dynamics.

(A) p38 and NFκB activity dynamics in the same cells in response to 0, 0.01, 0.1, 1, 10, and 100 ng/ml P3C4 stimulation over app. eight hours were measured by
fluorescence microscopy of reporter hMPDMs. Each row of the heatmap represents the p38 or NFκB signaling trajectory of one cell. Trajectories are sorted by the
maximum amplitude of p38 activity. Data from two pooled biological replicates are depicted. Total # of cells: 898, 834, 827, 787, 778, and 923. Data for 100 ng/ml
stimulation is also shown in Figs. 2A, 3A. (B) Dose responses of NFκB and p38 activity, as measured by the fraction of responding cells among all cells, in response to six
doses of P3C4 (0, 0.01–100 ng/ml), CpG (0, 0.1–1000 nM), LPS (0, 0.01–100 ng/ml), or TNF (0, 0.01–100 ng/ml), with Hill curve fits. Data from two pooled biological
replicates are used. (C) Parameters of the Hill fits of dose-response curves (from Fig. 4B) and fold difference between concentrations of half maximum activity for p38 and
NFκB. (D) Overall classification accuracy of decision tree ensemble classifications using p38 only, NFκB only, or NFκB+ p38 total activities only (top) or all dynamic
features (bottom) in response to 5 doses of P3C4 (0.01–100 ng/ml), CpG (0.1–1000 nM), LPS (0.01–100 ng/ml), or TNF (0.01–100 ng/ml). Data from two pooled
biological replicates are used. (E) Mutual information between 6 doses of P3C4 (0, 0.01–100 ng/ml), CpG (0, 0.1–1000 nM), LPS (0, 0.01–100 ng/ml), or TNF (0,
0.01–100 ng/ml) and dynamic features of p38, NFκB, or p38 + NFκB activity. Data from two pooled biological replicates are used. (F) Overall classification accuracies of
decision tree ensemble classifications using p38 only, NFκB only, or NFκB+ p38 dynamic features in response to the respective two indicated adjacent doses of the
indicated stimuli (P3C4, CpG, LPS, or TNF). Data from two pooled biological replicates are used. Source data are available online for this figure.
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calculating the correlation coefficients for half-hour integrals of
stimulus-responsive p38 and NFκB activities. While the integrals
from 0–0.5 h were moderately positively correlated (0.26 to 0.57),
correlation coefficients of the following interval integrals were
smaller or close to 0 (e.g., −0.14 to 0.076 for the 1–1.5 h activity
integral), and then weakly negative (−0.14 to −0.19 for the 3.5–4 h
activity integral) (Figs. 5B and EV3C).

The correlations between all p38 30-min activity integrals with
all NFκB 30-min activity integrals confirmed this dynamical pattern
with some stimulus-specific differences (Fig. 5C). The only
consistent moderately positive correlation across all four stimuli
was the correlation of the 30-min integrals of NFκB and p38
activity between 0–0.5 h (Fig. 5C, see also Fig. 5B), while there
tended to be weak negative correlations almost consistently
between all 30-min integrals from 2–4 h (Fig. 5C). Similarly,
correlations across select p38 and NFκB dynamic features
confirmed that there are largely weak correlations between the
features, which are often weakly negative for features determined
later in the time course (Fig. EV3D). As seen in Fig. 5A, p38 and
NFκB “time to ½ max activity”, representing the speed of the
response, was modestly positively correlated for all stimuli, except
TNF. Other, weaker, positive correlations include p38 “time to ½
max activity” with NFκB “maximum amplitude” and NFκB “total
activity” for P3C4 and LPS and NFκB “frequency” for CpG. NFκB
“time to ½ max activity” is weakly negatively correlated with p38
‘maximum amplitude’ in all four stimuli and with p38 “total
duration” and p38 “total activity”. Especially for P3C4 and LPS, p38
“time to ½ total activity”, “duration” and “total activity” are weakly
negatively correlated with NFκB “max amplitude” as well as NFκB
“total duration” and “total activity” (Fig. EV3D). In summary, the
heterogeneous p38 and NFκB activities in single cells are positively
correlated only very shortly after stimulation with different stimuli,
with most dynamic features showing poor correlation, and later
activities showing weakly negative correlations, suggesting the
presence of negative cross-regulation mechanism(s).

We then quantified the heterogeneity of select p38 and NFκB
dynamic features for high-dose stimulation using the coefficient of
variation (CV), a mean-normalized measure of variability. Compar-
isons of the LPS-induced signal distributions produced by the p38
KTR-reporter and p-p38 flow cytometry showed similar widths,
suggesting that the KTR represents biological p38 heterogeneity well
(Fig. EV3E). Across stimuli, the CV for both p38 and NFκB for most
features was generally below or near 1, with p38 and NFκB generally
having similar CVs. Notable exceptions were “time to ½ max activity”
and “frequency” of TNF stimulation, for which p38’s CVs were close
to 2, thus much higher than for NFκB, which were below 1 (Fig. 5D).
Quantifying the heterogeneity of the dynamic features ‘time to ½ max
activity’, ‘maximum amplitude’, and “total activity” across doses

revealed that the CVs generally decreased with increasing dose and
that p38 and NFκB dynamic features had similar CVs, indicating that
stimulus-responsive dynamics had lower mean-normalized hetero-
geneity than mock-induced dynamics (Fig. EV3F). TNF-induced
dynamics generally had larger differences between p38 and NFκB
across doses than other stimuli (Fig. EV3F). The CV of p38 and NFκB
30-min activity integrals from 0 to 4 h for high-dose stimulations
showed a similar pattern, with p38 activity CVs being similar or
slightly higher than NFκB CVs. The difference between p38 and
NFκB CVs increased towards later timepoints because the increase in
activity CVs generally seen between 0.5 and 1 h to 3.5–4 h was more
pronounced for p38 than for NFκB. TNF-induced activities had the
largest differences between p38 and NFκB CVs, due to larger CVs for
p38 activity integrals, LPS the smallest (Fig. EV3G). Thus, there are
comparable levels of heterogeneity in stimulus-induced p38 and
NFκB dynamic features, but these are poorly correlated in a
heterogenous single cell population.

Mathematically modeling single-cell p38 and NFκB
dynamics suggests sources of heterogeneity

Given the complex heterogeneity patterns in the two pathways, we
sought to investigate whether the known mechanisms of these
signaling pathways might account for the single cell p38 and NFκB
trajectories using a mathematical modeling approach. To this end,
we integrated a newly built model of the p38 activation pathways
via IKK/Tpl2/MKK3/6 and via TAK1/MKK4 (Pattison et al, 2016;
Luecke et al, 2021) with a detailed, established model of stimulus-
induced NFκB activation (Figs. 6A and EV4A) (Adelaja et al, 2021;
Luecke et al, 2023). The p38 module of the model was
parameterized to fit representative p38 activity trajectories after
high-dose P3C4, CpG, LPS, and TNF stimulation. The resulting
model was able to correctly simulate many aspects of the
experimental p38 dynamics of cells chosen for their representative
stimulus-specific dynamics (Fig. 6B, top). The experimentally
measured NFκB dynamics of those representative hMPDMs
showed a good match with the simulated ‘representative cell’
NFκB trajectories (Fig. 6B, bottom).

The parameterized model suggested that the two pathway
branches activating p38 may act with different speeds, with the fast-
activated MKK6 branch mediating the initial phase of p38 activity
and the MKK4 branch, which takes longer to reach its maximal
simulated activation, extending the p38 activity to later timepoints
(Fig. 6C). As a result, the two pathway branches were predicted to
be activated with stimulus-specific dynamics, mediating the
stimulus-specificity of p38.

Cell-to-cell heterogeneity of signaling may often be accounted
for by heterogeneity in a handful of parameters (Cheng et al, 2015;

Figure 5. Single-cell MAPK p38 and NFκB dynamic features are poorly correlated.

(A) Spearman correlation coefficients (CCs) between indicated p38 dynamic features and corresponding NFκB dynamic features upon stimulation of hMPDMs with high-
dose P3C4, CpG, LPS, or TNF. Features are sorted by means of CCs across stimuli. Asterisk indicates statistically significant correlation (p < 0.05) with |CC | > 0.15. Data
from two pooled biological replicates are used. (B) Scatter plots of 30-min p38 activity integrals from 0 to 4 h and corresponding NFκB activity integrals upon stimulation
with high-dose P3C4, CpG, LPS, or TNF. Number indicates the Spearman correlation coefficient. Data from two pooled biological replicates are depicted. (C) Spearman
correlation coefficients (CCs) between p38 activity integrals from 0 to 4 h and all NFκB activity integrals from 0 to 4 h upon stimulation with high-dose P3C4, CpG, LPS, or
TNF. Asterisk indicates a statistically significant correlation (p < 0.05) with |CC | > 0.15. Data from two pooled biological replicates are used. (D) Coefficient of variation of
indicated p38 and NFκB dynamic features upon stimulation with high-dose P3C4, CpG, LPS, or TNF. Data from two pooled biological replicates are used.
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Luecke et al, 2023). To explore whether such assumptions may also
account for the heterogeneity of MAPK signaling, we explored the
response to LPS. To simulate single cell heterogeneity, the total
concentrations of the kinases MKK4, MKK6, and p38 were sampled
from log-normal distributions with mean values matching the
‘representative cell’ model established above (Fig. 6A,D), in
addition to distributing receptor- and NFκB-related parameters.
This indeed resulted in highly heterogeneous simulated single cell
p38 trajectories similar to experimental data (Fig. 6E).

Next, we sought to understand the effects of varying individual
parameters in the p38 module on LPS-induced p38 dynamics using
a parameter sensitivity analysis. In a simulated ‘representative cell’,
increasing or decreasing the total p38 concentration led to a strong
increase or decrease, respectively, in “maximum amplitude” and
“total activity” while the speed of the response (“time to ½ max
activity”) was not affected (Fig. EV4B). Varying the MKK6
concentration affected the “time to ½ max activity”, as the max
amplitude was reached earlier with increasing concentration; the
“maximum amplitude” and “total activity”, although the increase in
these with increasing MKK6 concentration was not as strong as
with p38 and leveled off towards higher concentrations; and the
first phase of p38 activity became more pronounced with increasing
MKK6 concentration (Fig. EV4B). In contrast, increasing the
MKK4 concentration mainly affected the second phase of p38
activity, which became more pronounced and resulted in a modest
increase in “maximum amplitude” and an increase “total activity”
due to a slower decline of activity. A decrease in MKK4
concentration affected the maximum amplitude only slightly, as
the less affected first phase of activity defines the ‘maximum
amplitude’ in those parameter regimes. “Time to ½ max activity”
was delayed only by strong increases of MKK4 activity as these
caused the second, rather than the first phase of activity to
represent the maximum amplitude (Fig. EV4B). Increasing MKK4
and MKK6 at the same time resulted in p38 trajectories increased in
amplitude and with slow decline with the first and second phase of
activity strengthened proportionally. Increasing p38 concentration
in combination with MKK4, MKK6, or both strongly multiplied the
overall amplitude and correspondingly “total activity” of the
response trajectories while maintaining the shape of the response
determined by the other two kinase concentrations (Fig. EV4B). A

similar pattern is observed in the simulation of heterogenous single
cell p38 trajectories when the means of the sampling distributions
of kinase concentrations are changed (Fig. EV4B). Overall, this
parameter sensitivity analysis supports the idea that the MKK6 and
MKK4 pathway branches control the first and second phase of p38
activity, while p38 concentration has powerful control over the
overall amplitude of response.

Examining the heterogeneous responses of NFκB and p38 in
detail, we found that the molecular network heterogeneity
introduced by distributing a few parameters resulted in weak
correlations between p38 and NFκB activity dynamics in the same
simulated cells. Determination of Spearman correlation coefficients
for selected dynamic features confirmed this impression: In an
excellent match with experimental results, simulated p38 and NFκB
activity are moderately positively correlated for “time to ½
maximum activity” (correlation coefficient (CC): 0.63) and not
correlated for ‘maximum amplitude’ (CC: 0.11) (Fig. 6F). Accord-
ingly, half-hour integrals of simulated activity were moderately
positively correlated in the first half-hour (CC: 0.51), but not
correlated for the following two half-hour intervals (CC: 0.11, 0.08)
(Fig. 6F). Our modeling results suggest that the experimentally
observed poor correlation of single cell NFκB and p38 activities is,
in fact, an inherent feature of the branched pathway architecture.
Interestingly, “total activity” and “30-min activity integrals” after
1.5 h, which were weakly negatively correlated in experimental
results, were moderately positively correlated in the simulated data
(Fig. 6F). This suggests the existence of an unknown negative cross-
regulation mechanism between NFκB and p38 that is not
represented in the mathematical model.

To locate the sources of molecular heterogeneity that result in
poor correlation between p38 and NFκB activity, we removed the
noise from the p38 and/or NFκB module by using constant instead
of sampled parameter values and calculated the correlations
between p38 and NFκB dynamic features. Denoising the p38
module had little effect on the correlations (Figs. 6G and EV4C). In
contrast, denoising the NFκB module resulted in a strong increase
in correlations of later dynamic features (“maximum amplitude”
and “total activity”, CCs: 0.80, 0.95) and the 30-min activity
integrals from 0 to 1.5 h (CCs: 0.84–0.87), while the correlation of
“time to ½ max activity” was not affected (Figs. 6G and EV4C).

Figure 6. Integrating a mathematical model of single-cell p38 activation with a model of NFκB dynamics suggests sources of heterogeneity.

(A) Schematic of mathematical model structure. A model of p38 activation via IKK/Tpl2/MKK3/6 and TAK1/MKK4 (blue background) is integrated with established
models of NFκB activation (yellow) downstream of TLR1/2 (orange), TLR9 (green), TLR4 (red), and TNF receptor (light blue) signaling (Adelaja et al, 2021). Within the
p38 module, parameters in red indicate the parameters distributed to simulate heterogeneous single cell trajectories. All model modules except the p38 module are
simplified. The full model schematic can be found in Fig. EV4. (B) Simulation of ‘representative cell’ p38 and NFκB activity trajectories downstream of high-dose P3C4,
CpG, LPS, and TNF stimulation after parameter fitting to representative p38 trajectories overlayed with the experimental p38 and NFκB trajectories from the representative
cells. Example trajectories were scaled to model units as described in Materials and Methods. (C) Simulation of “representative cell” MKK4 and MKK6 activity trajectories
downstream of P3C4, CpG, LPS, and TNF stimulation. (D) Assumed distributions of total MKK4, MKK6, and p38 concentrations and parameter values sampled from those
distributions for simulation of cell-cell-heterogeneity of p38 activity in (E). (E) Simulated LPS-induced p38 and NFκB trajectories in corresponding cells compared to
experimentally determined p38 and NFκB trajectories rescaled to model units as described in Materials and Methods. Cell-cell-heterogeneity is simulated by distributing
starting concentrations of total p38, MKK4, and MKK6 (as in D), in addition to the distribution of receptor- and NFκB-related parameters. Trajectories are sorted by the
maximum amplitude of p38 activity. 500 cells are shown. (F) Spearman correlation coefficients between indicated p38 dynamic features and corresponding NFκB dynamic
feature in simulated (sim.) or experimental (exp.) stimulation with LPS. For experimental data, two pooled biological replicates were used. Values are rounded to two
decimals. (G) Spearman correlation coefficients between indicated p38 dynamic features and corresponding NFκB dynamic feature in simulated LPS stimulation with or
without simulated molecular noise (i.e., using parameter distribution or single parameter) in the p38 and NFκB modules. An average of ten simulations is reported. (H, I)
Coefficient of variation of 30-min activity integrals (H) or indicated dynamic features (I) of p38 and NFκB activity upon simulated LPS stimulation with or without
simulated molecular noise (i.e., using parameter distributions or single parameters) in the p38 and NFκB modules. Results from one simulation are reported. Source data
are available online for this figure.
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Denoising both modules resulted in a further increase in the
correlation coefficients, except “time to ½ max activity”, which
remained unaffected (Figs. 6G and EV4C). This suggests that the
lack of strong correlations between the heterogeneous NFκB and
p38 dynamics may result mainly from molecular heterogeneity in
the IκB-NFκB signaling module.

Analyzing the heterogeneity, measured as coefficient of variation
(CV, a mean-normalized measure of variability), in the 30-min
activity integrals between 0 and 1.5 h of simulated LPS-responsive
p38 and NFκB activity shows CVs below 1, with p38 having higher
CVs than NFκB (Fig. 6H). In experimental results, these integrals
had CVs below 1 which were similar for p38 and NFκB (Fig. EV3G).
We next analyzed the effect of parameter denoising on the
heterogeneity. Denoising either p38 or NFκB modules reduced
the range of NFκB and p38 activity values as expected (Fig. EV4C),
but had only small effects on the CVs (Fig. 6H). Denoising the p38
module resulted only in a small decrease of the CVs of p38 activity
integrals, while denoising the NFκB module resulted in small
decreases of the CVs of early NFκB activity integrals, but an
increase in the 1–1.5 h integral. Similarly, the CV of dynamic
features such as “time to ½ max activity”, “maximum amplitude”,
and “total activity” were higher for p38 and only slightly affected by
the denoising of either module (Fig. 6I). This suggests that
heterogeneity in p38 and NFκB dynamic features can result from
the parameter distributions in the shared upstream modules, while
their lack of correlation is largely due to parameter distributions in
the IκB-NFκB signaling module.

Uncorrelated heterogeneity of MAPK p38 and NFκB
signaling may result in bimodality in the expression of
AND gate target genes

Signaling dynamics of both NFκB and p38 showed poorly
correlated single-cell heterogeneity (Fig. 5). We sought to explore
the functional consequences for the expression of cytokines, which
are known as NFκB and p38 targets. Based on the weak correlations
between p38 and NFκB dynamic features, we hypothesized that
p38, while contributing only little to the stimulus-specificity of the
response, contributes heterogeneity to macrophage gene expression
responses. Therefore, genes controlled by p38 and NFκB were
hypothesized to have more variability in single-cell mRNA levels
than those controlled by NFκB only.

To test the plausibility of this hypothesis, we developed a
mathematical model of stimulus-induced, NFκB&p38 (AND gate)
or NFκB-only controlled gene expression, with NFκB activity
promoting the mRNA transcription rate and p38 activity inhibiting
the mRNA-degradation rate (representative of p38’s role in
inhibition of mRNA-degradation promoting protein TTP (O’Neil
et al, 2018)) (Figs. 7A and EV5A; Table EV3). Using the
experimentally determined p38 and NFκB activities induced by
high-dose stimulation with the four stimuli as inputs, we simulated
the mRNA concentration over 8 h for a gene controlled by NFκB-
only or by NFκB&p38 (Figs. 7B and EV5B). NFκB&p38-controlled
gene expression was stronger than NFκB-only from 1 h onwards for
all four stimuli and had a larger range of mRNA values at many of
the timepoints (Figs. 7B and EV5B). Interestingly, the distributions
of mRNA concentrations appeared more bimodal for NFκB&p38-
controlled gene expression in some cases, e.g., P3C4-induced gene
expression at 1 h, CpG- at 3 h, and TNF at 1 h (Fig. 7B). Thus, the

mathematical gene expression model predicted higher variability,
and potentially bimodality, of NFκB&p38-controlled genes than of
genes controlled by NFκB only.

To test this prediction, we determined mRNA levels in single
cells stimulated with P3C4, CpG, LPS, or TNF for up to 8 h by
targeted scRNAseq for a panel of immune response genes that
include several cytokines. The cytokine genes Il1a and Il1b, which
are categorized to be controlled by p38 and NFκB (see Materials &
Methods), showed stimulus-specific expression time courses with a
wide spread of expression in single cells ranging from undetectable
to maximally detectable expression (Fig. 7C). In contrast, two genes
controlled by NFκB only, Nfkbia and Nfkbie, had much narrower
distributions of expression levels in single cells. Across stimuli, the
Fano factor, a mean-normalized measure of the variance of a
distribution, for Il1a and Il1b expression was consistently higher
than 1 at all timepoints, while the Fano factor for Nfkbia and Nfkbie
was lower or around 1 at timepoints 1, 3, and 8 h (Fig. 7D, left). The
bimodality coefficient, a metric of the degree of bimodality of a
distribution, was near 0.5 or higher for Il1a and Il1b expression at
the 1, and 3 h timepoint for all four stimuli, but consistently below
0.5 at those timepoints for Nfkbia and Nfkbie (Fig. 7D, right).

Considering all genes in the NFκB&p38 vs. NFκB-only gene
regulatory strategy (GRS) (categorized through literature-based
curation of previously published gene assignments obtained
through knockout cell lines and quantitative modeling (Cheng
et al, 2017; Tong et al, 2016; Sen et al, 2020; Wang et al, 2021; Sheu
et al, 2023), Table EV4), the Fano factors of the single cell gene
expression at 8 h were higher on average in the NFκB&p38 GRS for
P3C4 (NFκB: 1.27; NFκB&p38: 1.59, p = 0.011), CpG (NFκB: 1.31;
NFκB&p38: 1.58, p = 0.033), and LPS (NFκB: 1.33; NFκB&p38:
1.59, p = 0.045), with Fano factors of gene expression induced by
TNF, which induces lower p38 activity, having a smaller and
statistically not significant difference in means (NFκB: 1.26;
NFκB&p38: 1.39, p = 0.23) between the two GRS (Fig. 7E). Fano
Factors of gene expression distributions were not statistically
significantly different at 1 h (Fig. 7E). Genes in the NFκB&p38 GRS
had higher bimodality coefficients at 1 h of stimulation with P3C4
(p = 0.031), with CpG stimulation resulting in a difference in
bimodality coefficients at 1 h that was close to statistical
significance (p = 0.058), but not at 8 h (Fig. EV5C).

Categorizing genes by the presence or absence of ARE elements in
their mRNA, which are binding sites for the p38-controlled mRNA
stability regulator TTP (O’Neil et al, 2018), resulted in higher
bimodality coefficients for ARE-containing genes than for genes not
containing ARE at 1 h, with this difference being statistically significant
only in CpG stimulation (p = 0.015) (Fig. EV5D). No statistically
significant differences in Fano Factors were detected in genes with and
without ARE elements at 1 or 8 h (Fig. EV5E). Focusing on genes that
contain ARE elements and have been reported to be p38 regulated,
revealed clear differences in bimodality coefficient at 1 h for P3C4
(p = 0.035), CpG (p = 0.0026), and TNF (p = 0.057) stimulations, but
not for LPS (p = 0.43) (Fig. 7F, top). No such differences were observed
for NFκB-only controlled, ARE-containing genes (Fig. 7F, bottom).
Across stimuli, the single cell 30-min integrated signaling activities of
both p38 and NFκB over 4 h consistently had bimodality coefficients of
below 0.5, with p38 and NFκB activities generally having very similarly
low degrees of bimodality (Fig. EV5F). This suggests that non-bimodal
p38 and NFκB signaling inputs combine to increase the bimodality of
NFκB&p38 AND gate-controlled gene expression.
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Gene ontology analysis of the NFκB&p38 target genes revealed
enrichment for terms related to cytokine and chemokine activity
and receptor binding, indicative of the fact that many inflammatory
cytokines are NFκB&p38-dependent genes (Fig. 7G). Sorting the
gene expression results for all four ligands and both GRS by average
Fano factor revealed that cytokine genes tended to have higher
Fano factors and were usually controlled by the NFκB&p38 GRS,
rather than NFκB only (Fig. 7H). In summary, NFκB&p38-
dependent gene expression, including cytokine genes, shows higher
bimodality (mainly at earlier timepoints) and heterogeneity (mainly
at later timepoints) than NFκB-only dependent gene expression.

Discussion

Here we report how the combined action of MAPK p38 and NFκB
signaling dynamics in the same single cells determine stimulus-
specificity and target gene expression responses. The studies were
enabled by an experimental system that allowed us to endow primary
macrophage cells with fluorescent reporters for both pathways for live
cell microscopy (Fig. 1). Specifically, we examined the often quoted
hypothesis that a combinatorial code of NFκB and MAPK signaling
ensures the stimulus-specificity of immune responses. Using
information-theoretic analysis and machine learning classification,
we showed that p38 dynamics convey some ligand- and dose-specific
information (Figs. 2, 4), but actually contribute little to the
information-rich dynamics of NFκB signaling for distinguishing
ligand identity (Fig. 3) or dose (Fig. 4). We found that the
heterogeneous dynamic features between the two pathways are
poorly correlated in single cells (Fig. 5), a characteristic derived from
molecular noise in the branched pathway architecture and the IκB-
NFκB signaling module (Fig. 6). Thus, a mathematical model of p38-
and NFκB-controlled gene expression suggested a different role of
MAPK p38 in innate immune responses: to contribute variability to
gene expression responses. We confirmed this hypothesis with
scRNAseq, observing higher cell-cell heterogeneity and bimodality
in mRNA expression of p38&NFκB-dependent genes than NFκB-
responsive genes (Fig. 7). Together, this study suggests that one
biological function of p38&NFκB combinatorial control of gene
expression is to amplify signaling noise, resulting in heterogeneous
gene expression responses, and thus limit the number of cells
expressing the target cytokine genes.

This study demonstrates the importance of multiplexing live-cell
reporters to understand combinatorial and dynamical signaling in
stimulus responses of single cells. Here, we combined the
endogenous mVenus-RelA knock-in reporter (Adelaja et al, 2021)
with a non-effector kinase translocation reporter for MAPK p38
(Regot et al, 2014) that was ectopically expressed. To ensure that
our results are reflective of true macrophage functions, we avoided
the use of cell lines that are commonly used in live cell microscopy
studies. Instead, we turned to myeloid precursor cells harvested
from bone marrow whose lifespan was extended with HoxB4, but
that may reconstitute a complete hematopoietic system upon
transplantation (Ruedl et al, 2008). Here we differentiated them
into macrophages whose stimulus-response behavior was largely
indistinguishable from replicate cultures of traditional bone
marrow-derived macrophages (Singh et al, 2024). The extended
lifespan of precursors allowed us to introduce the KTR via a
lentiviral vector that is resistant to epigenomic silencing during
differentiation due to the presence of a ubiquitous chromatin
opening element (UCOE) (Müller-Kuller et al, 2015). We anticipate
that this experimental system will find applicability in studies of
other signaling pathways regulating macrophage responses, be they
MAPK or IRF family members.

We found that p38 activity dynamics alone contain information
regarding the molecular identity of the stimulus, allowing for an
accurate distinction of PAMP-induced signaling from signaling
induced by the host cytokine TNF (Fig. 2). Distinguishing the three
different PAMPs from each other is less accurate based on p38
dynamics alone (Fig. 3). This is not surprising as all three PAMPs
use the same signal transducer MyD88, while TNF activates p38 via
TRAFs and associated ubiquitin chains (Luecke et al, 2021).
Further, p38 dynamics do not perform well in finely graded dose
distinctions, but do distinguish low from high doses in binary
classifications that leverage the thresholded dose response curves
(Fig. 4) (Gottschalk et al, 2016) and may be relevant for
distinguishing harmful vs harmless PAMP exposure. We can think
of two reason for the high-dose threshold: (1) for PAMP-induced
p38 activation, Myddosome oligomerization generates a non-linear
dose response (Cheng et al, 2015) and (2) the MAPK cascade itself
has a thresholded dose response curve (Huang and Ferrell, 1996)
that is regulated by phosphatase activity levels (Altan-Bonnet and
Germain, 2005). In response to TNF we observed a multi-phase
activity, but not oscillations previously reported in IL1β-stimulated

Figure 7. NFκB&p38 AND gate control of immune response genes increases heterogeneity and bimodality of expression.

(A) Schematic of a mathematical model for simulating heterogeneous single cell gene expression controlled by NFκB or NFκB&p38 using experimental NFκB and p38
activity dynamics over 8 h as input and mRNA abundance over time as output; with NFκB enhancing transcription and p38 decreasing degradation of mRNA. (B)
Distributions of simulated single-cell mRNA expression over 8 h when controlled by NFκB only or by NFκB&p38 using the model described in Panel (A). (C) Single cell gene
expression distributions (log2(normalized counts+1)) of known NFκB&p38 or NFκB-only target genes in hMDPMs upon stimulation with 100 ng/ml P3C4, 100 nM CpG,
100 ng/ml LPS, or 10 ng/ml TNF over 8 h, measured by BD Rhapsody. Data from one experiment are depicted. Number of cells analyzed at each timepoint: Unstimulated:
1415 cells; P3C4: 835, 1840, 1251, 1153 cells; CpG: 992, 1229, 2235, 1236 cells; LPS: 941, 1045, 663, 1338 cells; TNF: 980, 776, 994, 2412 cells. (D) Fano factor (left,
variance/mean) and bimodality coefficient (right) of single cell expression of indicated genes over 8 h (as in C). The dashed lines indicate a Fano factor of 1 (left) and a
bimodality coefficient of 0.5 (right). (E) Fano factor of all immune response genes regulated by NFκB-only (132 genes) or NFκB&p38 (59 genes) upon stimulation with
P3C4, CpG, LPS, or TNF at 1 h and 8 h. Purple line indicates the mean of Fano factors. Statistical significance was determined using a permutation test for differences in
means using 10,000 permutations. (F) Bimodality coefficient of all immune response genes regulated by NFκB&p38 (top, 59 genes total) or NFκB-only (bottom, 132 genes
total) categorized by absence or presence of ARE-element(s) upon stimulation with P3C4, CpG, LPS, or TNF at 1 h. The purple line indicates the mean. Statistical
significance was determined using a permutation test for difference in means using 10000 permutations. (G) Gene ontology results of NFκB-only or NFκB&p38 regulated
genes. Benjamini–Hochberg adjustment was applied to p values. (H) Heatmap of Fano factors of single cell expression of NFκB-only or NFκB&p38 regulated genes upon
stimulation with P3C4, CpG, LPS, or TNF at 8 h, sorted by average Fano factor across the four stimuli. Cytokine vs. non-cytokine identity and NFκB-only vs NFκB&p38
regulation are indicated by a color map. Positions of selected genes of interest are labeled. GRS gene regulatory strategy.
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HeLa cells (Tomida et al, 2015). This multi-phase activity is
unlikely the result of a delayed negative feedback loop but may
result from the branched pathways (MKK3/6 and MKK4)
activating p38 rapidly and delayed-and-sustained (Pattison et al,
2016) (Fig. 6).

We found that NFκB dynamics generally contain more
stimulus-specific information than p38 dynamics (Fig. 3).
Information-rich NFκB dynamics have been noted previously
(Adelaja et al, 2021; Selimkhanov et al, 2014) and are encoded by a
variety of mechanisms, including several nested negative feedback
loops (Basak et al, 2012). Further, when p38 dynamics are
combined with NFκB dynamics, there is only little improvement
in ligand distinction (Fig. 3). Similarly, p38 activity dynamics show
a poorer distinction of stimulus doses than NFκB, and combining
p38 and NFκB dynamic features does not increase the dose
information available in rich NFκB dynamics (Fig. 4). Thus, the
redundancy-synergy index (Timme et al, 2014) indicates that there
is redundancy between p38 and NFκB with regards to the mutual
information of their combined dynamics. However, when only
considering the “total activity” of each signaling activity, p38 does
contribute more substantially to the NFκB-mediated dose classifi-
cation of all four tested stimuli tested (Fig. 4).

What these carefully documented quantifications with
information-theoretic and machine learning classification algo-
rithms suggest is that immune response genes gain stimulus-
specificity if they contain gene regulatory mechanisms that are
capable of decoding the dynamics of signaling—high specificity
from decoding NFκB dynamics, moderate specificity from decoding
p38 dynamics—or if they contain gene regulatory mechanisms that
are capable of decoding NFκB&p38 combinatorics, but they gain
little more from being able to decode both dynamics and
combinatorics. The combinatorial and dynamical signaling codes
are not, in principle, mutually exclusive, but we find here that they
are redundant. This suggests that decoding mechanisms that are
sensitive to both are less likely to be found. Indeed, the sequential
AND gate control previously described (Cheng et al, 2017) and
used in our gene expression simulations (Fig. 7) is largely
insensitive to intricate dynamics.

While p38’s function in immune response genes is tied to NFκB,
its biological functions are, of course, broader with numerous other
substrates, including histone tails, regulators of protein trafficking
and secretion, as well as cell growth and cell cycle and beyond
(Caldwell et al, 2014; Mahtani et al, 2001; Luecke et al, 2021;
Andersson and Sundler, 2006; Xu and Derynck, 2010; Scott et al,
2011). Additionally, regulation of p38 signaling may involve aspects
that are not fully captured by the whole-cell p38-KTR measure-
ments, such as intricate context-specific modulation of subcellular
localization (Maik-Rachline et al, 2020). Similar considerations may
apply to MAPK JNK which was reported to allow macrophages to
distinguish between different threat levels of pathogen exposure
(Lane et al, 2019).

But how is it possible that p38 KTR and NFκB signaling
trajectories appear to be so redundant when ascertained by mutual
information and machine learning classification? These are
population-level metrics, which therefore are affected by the poor
correlation between heterogeneous p38 and NFκB dynamic features
within single cells (Fig. 5). While very early features, such as speed
of activation and early integrated activity show some correlation,
later features, such as amplitude of activation, do not. Mathematical

modeling suggested that this lack of strong correlations to be an
inherent feature of the branched pathways that can result from
variable expression of molecular components in the signaling
modules downstream of pathway branching (Fig. 6). In this model,
noise in the NFκB module, in which the IκBα negative feedback
loop provides highly non-linear transformation of signaling
activity, had the largest effect on the correlations. Commonly
assumed distribution widths for these expression values were
sufficient to recapitulate the rapid decline in correlations within the
time course and removing the noise in the NFκB module restored
strong correlations between p38 and NFκB activities.

In addition, the experimental data showed that late features such
as duration or integral were slightly anti-correlated between the two
pathways. This suggests mechanisms of negative cross-regulation
between the pathways, including limited availability of molecular
mechanisms required by both pathways, resulting in competition,
or more active mechanisms such as an NFκB target gene that
inhibits sustained MAPK p38 activity, or a p38 target that
negatively regulates sustained NFκB signaling. For example, it is
known that p38 phosphorylates TAB1, causing an inhibitory effect
on TAK1 (Cheung et al, 2003), which could diminish NFκB
signaling. Alternatively, the p105/Tpl2 node could mediate negative
cross-regulation, as p105 binds and inhibits Tpl2 activity (Beinke
et al, 2003; Waterfield et al, 2003), and NFκB activity induces p105
expression. Our results should prompt further studies to char-
acterize these cross-regulatory mechanisms quantitatively.

The uncorrelated heterogeneity of NFκB and p38 signaling
suggests a new biological role of AND gate gene expression control.
Since all signaling pathways inherently have some degree of noise, it
makes intuitive sense that when placing a process, such as gene
expression, under the control of multiple pathways, as occurs in
combinatorial signaling, the heterogeneity of the outcome may
increase. Using mathematical models of NFκB- and NFκB&p38-
controlled genes, we further find not only higher variability but also
higher bimodality in mRNA expression as a result of AND gate
control (Fig. 7). Indeed, we show with single cell RNAseq data that
NFκB&p38 AND gate target genes have a greater Fano factor, a
measure of dispersion, and a greater bimodality coefficient than genes
regulated by NFκB alone (Fig. 7). For NFκB&p38 target genes, there
was an especially significant difference in bimodality coefficient when
comparing genes with and without ARE elements, which mediate
p38’s mRNA stabilization effect. In sum, while prior bulk assays of
the population and theoretical modeling of such scenarios empha-
sized the increased stimulus-specificity of AND gate genes (Cheng
et al, 2017; Buchler et al, 2003; Ten et al, 1992) and the role of AND
gates in threshold regulation (Nguyen et al, 2015), the results
presented here suggest that such stimulus-specific expression may be
driven by only a few cells in the population. Based on these results, we
suggest the new hypothesis, that AND gate control of gene expression
may have evolved for those genes that must be expressed only in a
minority of cells.

Why might the organism benefit from particular genes being
expressed noisily? We note that many NFκB&p38 AND gate genes
encode pro-inflammatory cytokines. Furthermore, prior micro-
ELISA assays of single cells revealed a remarkable cell heterogeneity
of TNF secretion that showed little correlation with NFκB activity
(Junkin et al, 2016). This single-cell heterogeneity of cytokine
expression has also been observed in PBMCs on mRNA and protein
level (Pal et al, 2020), and even in clonal T cell population (Bucy
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et al, 1994). It appears to be a hallmark of immune stimulus-induced
gene expression responses that may have the physiological function
of limiting population-level cytokine secretion to avoid harmful
cytokine storms (Talemi and Höfer, 2018). Future studies may
address how altered MAPK AND NFκB combinatorial control of
cytokine expression due to environmental exposure history or
genetic predisposition contributes to inflammatory disease.

Methods

CBX3-p38-KTR-mCerulean3 construct generation

p38-KTR-mCerulean3 insert was amplified by Q5 polymerase PCR
from pENTR-p38-KTR-mCerulean3 (Addgene #59149) (Regot
et al, 2014) using primers containing restriction sites for AgeI
and SalI (Fwd: 5’-gatccaccggtcgccaccATGCGTAAGCCAGATCTC,
Rev: 5’-gttgattgtcgacgcggccgctttacttgtacagctcgtccatgc). After PCR
clean up using Qiagen QuickExtract kit, the insert and the vector
backbone (CBX3-SEW GFP), a lentiviral vector for silencing-
resistant transgene expression (Müller-Kuller et al, 2015), were
restriction digested using AgeI and SalI, which excised the GFP
from the vector backbone. After gel purification, the insert was
ligated into the backbone using T4 ligase and replicated by
transformation of Stbl3 E. coli (Invitrogen, # C737303) and plasmid
purification. Correct insertion and absence of mutations in insert
were verified by sequencing.

Generation of dual reporter macrophages

Mice were housed and handled according to guidelines established by
the UCLA Animal Research Committee under an approved protocol.
UCLA’s current Animal Welfare Assurance identification number is
D16-00124 (A3196-01). HoxB4-transduced myleoid precursors
(hMPs) were generated from male mVenus-RelA (RelaV/V) C57BL/
6 J mice (Adelaja et al, 2021) as described (Singh et al, 2024). hMPs
were maintained in IMDM media (Gibco #12440061) supplemented
with 10% ES cell FBS (Gibco #10439024), 100 IU Penicillin, 100 µg/ml
Streptomycin, 2 mM L-Glutamine, 55 µM 2-mercaptoethanol, 10 ng/
ml IL-6 (Peprotech, #216-16), and 100 ng/ml m-SCF (Peprotech,
#250-03). Cells were cultured at 37 °C in a humidified atmosphere with
5% CO2. mCerulean3-p38-KTR RelaV/V hMPs were generated by
lentiviral transduction of RelaV/V hMPs with CBX3-p38-KTR-
mCerulean3 as follows: HEK cells were PEI-transfected with CBX3-
p38-KTR-mCerulean3, pMDL, pRSV, and pVSV (third generation
lentivirus). Media was changed 24 h after transfection and lentivirus-
containing supernatant was collected 48 h after transfection. Super-
natant was cleared by centrifugation at 300 × g for 5 min and filtering
through 0.45 µm filter. Virus was then concentrated using Amicon
filter (100 µm pore size). RelaV/V hMPs were transduced with
concentrated virus with polybrene (10 µg/ml). Media was changed
24 h after transduction. After passaging, cells that were mVenus+

(100% of single cell gate) and mCerulean+ (17% of single cell gate)
were collected by fluorescence-activated cell sorting, expanded, and
frozen for future culture. HoxB4-transduced myleoid precursor-
derived macrophages (hMPDMs) were differentiated from 0.5 × 106

hMPs in 10ml of IMDMmedia (Gibco 12440061) supplemented with
10% ES cell FBS (Gibco 10439024), 100 IU Penicillin, 100 µg/ml
Streptomycin, 2 mM L-glutamine, 55 µM 2-mercaptoethanol, and 30%

L929-cell supernatant in 15-cm TC-treated dishes for 10 or 11 days,
with media replenishment on Day 3 and replating into experimental
dishes on Day 7.

Cell stimulation

On Day 7 of differentiation, cells were detached using a cell lifter
and replated into experimental culture dishes. For determination of
protein levels in by Western Blotting or flow cytometry, cells were
replated at a density of 20000–22000/cm2 in a six-well format. For
live cell microscopy, cells were plated into eight-well µ-slides (Ibidi
#80826) at 20000–26000 cells/cm2. For single-cell gene expression
measurements, cells were plated into 6-cm plates at a density of
20000/cm2. Cells were stimulated on Day 10 or 11 at the indicated
concentrations with recombinant mouse TNF (aa 80–235) protein
(410-MT-010, R&D Systems), Pam3CSK4 (tlrl-pms, Invivogen),
CpG ODN 1668 (tlrl-1668, Invivogen), LPS (L6529-1MG, Sigma-
Aldrich), or media only control for the indicated times. Inhibition
of p38 was performed by incubation of cell culture with SB203580
(S-3400, LC Laboratories) for 1 h before stimulation. In cell
stimulation experiments, a numbering code for sample tubes was
used such that samples could be processed with decreased
awareness of their identities.

Western blotting

For determination of protein levels in whole-cell lysates, cells were
stimulated as indicated and placed on ice at harvest timepoints,
washed in the plate with cold PBS, lysed directly with β-
mercaptoethanol-containing Laemmli sample buffer (Bio-Rad).
Lysates were incubated at 95 °C for 5 min. Proteins were separated
by SDS–PAGE (Criterion TGX 4–5% gel, Bio-Rad) and transferred
to PVDF membranes using wet transfer. Blocking of membranes
was carried out in 5% bovine serum albumin (BSA) for 1 h at room
temperature (RT), followed by incubation with primary antibodies
at 4 °C for 16 h. Membranes were incubated with appropriate HRP-
conjugated secondary antibodies (Cell Signaling Technology) for
1 h at RT and developed using Super Signal West Femto and Super
Signal West Pico Plus chemiluminescent substrate (Thermo
Scientific). The following primary antibodies were used: α-
phospho-p38 (Thr180/Tyr182) (CST4511, 1:3000), α-phospho-
MK2 (Thr334) (CST3007, 1:1000), α-phospho-CREB (Ser133)
(CST9198, 1:2000), α-IκBα (SC371, 1:2000), and α-tubulin
(T5201, Sigma-Aldrich, 1:5000). Protein levels were quantified by
measuring mean gray value using ImageJ, deducting background
value per lane, and dividing by background-corrected β-tubulin
bands. When applicable, for comparisons of samples on separate
membranes, protein levels were normalized to internal control
stimulation samples included on every membrane.

Flow cytometry

To quantify intracellular p-p38 levels by flow cytometry, hMPDMs
were stimulated as indicated. At harvest timepoint, cells were
placed on ice, washed in the plate with cold PBS, fixed in 1.6%
paraformaldehyde for 10 min at RT, washed with FACS buffer (2%
FBS in PBS with 2 mM sodium orthovanadate), lifted, and placed in
a 96-well conical plate. After two more washes, cells were
permeabilized in ice-cold methanol (100%) for 1 h on ice and
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washed twice. After Fc-blocking for 10 at RT min using α-CD16/32
antibody (BioLegend 101301, 1:100), samples were incubated with
Alexa647-α-p-p38 (BD 612595, 1:5) for 1 h at RT. Flow cytometry
was performed on CytoFLEX flow cytometer (Beckman Coulter).
Data were analyzed using FlowJo v10. To determine the fraction of
cells with activated p38, a cutoff between p-p38 negative and p-p38
positive cells was determined using the fluorescence signal in an
unstained, unstimulated sample (to account for MAPK activation at
baseline) and applied to all samples.

Live-cell fluorescence microscopy

For measurement of signaling dynamics, hMPDMs were subjected
to live cell imaging using a previously established workflow
(Adelaja et al, 2021). Before imaging, 0.1 µM SiR-DNA dye with
5 µM Verapamil (SC007, Spirochrome) was added to the cells for
nuclear staining. Cells were placed on an Axio Observer.Z1
inverted microscope (Zeiss) with live-cell incubation for at least
60 min to equilibrate to environmental conditions. Using auto-
mated image acquisition in Zen 2.3 software, at least 5 positions per
condition (maximum eight conditions per experiment) were
imaged at 1 frame per 5 min using a Plan-Apochromat 20x/0.8
NA M27 air objective. Images were collected sequentially in three
channels, for mCerulean3 fluorescence (filter set: Zeiss 47 HE, ex.:
436/25 nm, beam splitter: 455 nm, em.: 480/40 nm; Colibri.2
445 nm, 90% power; exposure: 300 ms), mVenus fluorescence
(filter set: Zeiss 46 HE, ex.: 500/25 nm, beam splitter: 515 nm, em.:
535/30 nm; Colibri.2 505 nm, 90% power; exposure: 160 ms), for
SiR-DNA fluorescence (filter set: Chroma CY5NX, ex.: 640/30 nm,
beam splitter: 660 nm, em.: 690/50 nm; Colibri.2 590 nm, 100%
power; exposure: 600 ms), and for differential interference contrast
(DIC) (HAL 100 lamp; 2.5 V, exposure: 100 ms). Images were
recorded on a Hamamatsu Orca Flash4.0 CMOS camera with 2 × 2
binning. The number of cells imaged was determined by the cell
density and the total number of positions that could be imaged
within the 5 min framerate. After the collection of baseline images
for 0.5–1 h, the indicated stimulus diluted in conditioned media
was applied using syringe injection into the chamber in situ and
images were acquired for an additional 8 h.

Automated image analysis and feature calculations

Individual channel images were exported in Zen lite 3.3 software.
Single cells were segmented into cytoplasm and nucleus and
tracked across the time course. SiR-DNA fluorescence was used to
segment nuclei. mVenus-RelA median nuclear fluorescence, as well
as p38-KTR-mCerulean nuclear and cytosolic median fluorescence,
using an annulus around the nucleus to represent the cytoplasm,
were quantified using MACKtrack in MATLAB 2015a. MACKtrack
was first published here: (Adelaja et al, 2021) and updated for the
described studies.

To represent NFκB activity trajectories, background-corrected,
baseline-deducted median nuclear mVenus fluorescence was used.
MAPK p38 trajectories were represented by a baseline-deducted
ratio of median cytosolic/nuclear fluorescence. Trajectories were
further corrected for systemic variations in fluorescence over the
microscopy time course using a correction trajectory generated
using eight mock trajectories. Trajectories underwent stringent
quality filtering: cells were filtered out if they did not exist in the

field of view at the experiment start, if they did not exist in the field
of view for the duration of the time course (app. 8 h), if their area
was very small, if their nuclear staining was extremely high, if
nuclear mVenus fluorescence was very dim, if KTR expression was
extremely low or high, and if they had extreme NFκB or p38-KTR
activities. For details, see MACKtrack function filter_nfkb_ktr_ra-
tio. Results of the quality filter for all experimental conditions are
available here: Table EV1. Dynamic features were extracted from
single cell activity trajectories MACKtrack function nfkb_ktr_ra-
tio_metrics using MATLAB 2022a. A description of dynamics
features is available here: Table EV2.

Mutual information calculation

Mutual information (MI) was calculated from p38, NFκB, or p38
and NFκB dynamic features from two pooled biological replicates
from the indicated sets of stimulation conditions. Prior to
calculation, dynamic features containing NaN values were
removed, and the features were z-scored. MI was extrapolated
using jackknife resampling to control for different sample sizes with
12 sample subsets, each containing 65–90% of the total samples
(Adelaja et al, 2021). MI was calculated using a published method
optimized for determining mutual information between discrete
and continuous datasets (Ross, 2014).

Neural network classification of signaling dynamics
based on time series

Model implementation: Time-series data were classified using a
recurrent neural network (RNN) with a Long Short-Term Memory
(LSTM)-based machine learning classifier (Hochreiter and
Schmidhuber, 1997), which was especially suited for use on
time-series data without transformation into dynamic features due
to its ability to learn long-term dependencies in input sequences by
considering timepoints in sequence rather than as independent
features (Van Houdt et al, 2020; Yu et al, 2019). The following
architecture was employed: a stacked LSTM layer with two
recurrent layers with a hidden dimension of 95 (equal to the
number of timepoints), and variable input dimension (1 or 2),
followed by two fully connected linear layers with a hidden
dimension of 512 and the number of output classes respectively.
ReLU nonlinearities were placed between all layers except the final
output layer. All models were trained using the Adam optimizer
with an initial learning rate of 1e-3 and beta values of 0.9 and
0.999, respectively, and a batch size of 64. During training, we
optimized our objective using a weighted categorical cross-entropy
loss to account for class imbalances. All models were trained for a
maximum of 100 epochs, saving the best checkpoint for each
respective model at its lowest validation loss to use for inference.
Model logits were converted to class probabilities using the
softmax operator and final classifications were determined through
the argmax operator.

Training and evaluation: The input data were the NFκB, p38, or
both trajectory data stimulated with the ligand and doses
corresponding to each specific classification problem. Input data
were transformed by a standard scaler (mean 0, variance 1), with
scaling being applied individually across the different signaling
inputs (p38 and NFκB), before re-concatenation for the two-
dimensional case. Trajectories with missing (NaN) values were
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removed. Performance was evaluated through a fivefold cross-
validation, holding the number of cells per class consistent across
all folds. The model performance metrics reported (F1 score,
confusion matrix) combine the results across the fivefolds. Training
and experiments were run using an NVIDIA 2070 RTX with an
approximate training time of 10 min per fold. Model implementa-
tion and training were done through the PyTorch framework
(1.12.1) (Paszke et al, 2019; Pedregosa et al, 2011).

Decision tree classification of signaling dynamics based
on dynamic features

For the classification of p38 and NFκB dynamic features, machine
learning models consisting of ensembles of 30 decision trees were
constructed according to similar considerations as described in
(Adelaja et al, 2021) in Matlab 2022a. Bootstrap aggregation (bag)
was used to construct the decision tree ensembles. Default parameters
were used for model training parameters; “MaxNumSplits” was set to
20. As class labels, the molecular identity (P3C4, CpG, LPS, TNF) or
dose (Dose 1/5–Dose 5/5) of the stimulus were used in accordance
with the specific classification task. As predictors, either all 228 p38, all
228 NFκB, or the combination of all p38 and NFκB dynamic features
(Table EV2) derived from two pooled biological replicates each of the
indicated stimulation conditions were used. As controls, combinations
of p38 and NFκB dynamic features, where either the NFκB or p38 cell
assignments were randomly scrambled across all cells were used as
predictors. The dynamic features were z-scored across all classes before
each model training. In each model, equal cell numbers across all
classes were used by a uniform random selection of cells to reach the
cell number equal to the number of cells in the class with the fewest
cells. 5-fold cross-validation was used to evaluate model performance.
Confusion matrices, overall model accuracies, and by-class F1 scores
(harmonic mean of precision and sensitivity) were used as
performance metrics.

Dose-response analysis using Hill equation fits

For analysis of dose responses, the fraction of cells with p38 and
NFκB activity (‘responder fraction’) from two pooled biological
replicates of stimulations with mock and five doses of indicated
stimuli were plotted over the stimulus concentration. To be
included on the logarithmic axis, mock stimulation was represented
as a 100x lower concentration than the lowest stimulation
condition.

Hill equation fits for the dose response analysis were generated
using fit function in MATLAB 2022a using the following equation:

A ¼ maxA � concHillC

halfA concHillC þ concHillC
þ intersect

where:A is the activity (represented by respective dynamic feature),
conc is the stimulus concentration, maxA is the maximum activity,
halfA_conc is the stimulus concentration at which half maximum
activity is reached, HillC is the Hill coefficient, setting [0.1,10] for
HillC and [min(dose), max(dose)] for halfA_conc as lower and upper
bounds, respectively, as well as [0,1] for maxA and [0,0.9] for
intersect as lower and upper bounds.

Calculations of Spearman correlations coefficients
between p38 and NFκB features

Spearman correlation coefficients between corresponding p38 and
NFκB features were calculated from two pooled replicates of high-
dose ligand stimulations as indicated using corrplot (“Type”:
“Spearman”) function in MATLAB R2022a.

Mathematical modeling of single cell p38 and
NFκB dynamics

Rescaling of experimental data to SI Units: We assumed a nuclear
NFκB concentration range of 0.04 µM to 0.30 µM, in line with prior
models (Basak et al, 2012). Specifically, we scaled the 90th
percentile response to 100 ng/mL LPS (7.62 A.U.) to 0.30 µM
nuclear NFκB. This resulted in an NFκB A.U. to S.I. scaling factor
of 0.0383. For p38, we assumed the pp-p38 concentration to
maximally reach 0.08 µM. The p38 activity is represented by the
baseline-corrected KTR C/N ratio, which reaches a maximal value
of 0.73 in this dataset (the 99th percentile of maximum amplitudes
in 100 ng/ml P3C4-stimulated cells), resulting in a rescaling factor
of 0.1096.

Modeling NFκB and p38 trajectories for a representative cell: To
simulate NFκB and p38 activity in response to innate immune
stimuli in the same cell, we expanded an established mathematical
model of NFκB signaling downstream of P3C4, CpG, LPS, or TNF
(Adelaja et al, 2021; Luecke et al, 2023) by incorporating a p38
module accounting for p38 regulation through two pathway
branches, via IKK and TAK1 (Figs. 6A and EV4A). IKK, via
p105 degradation and Tpl2 activation, instigates MKK3/6 phos-
phorylation, which we simplified into two steps (single and double
phosphorylation) via a Hill equation. This equation factors in
Tpl2’s effects on the vmax and Km parameters. TAK1’s facilitation of
MKK4 phosphorylation was similarly modeled, but with unique
parameters accounting for molecular differences. MKK3/6 and
MKK4 then phosphorylate p38 in two steps. While the parameters
for the receptor and NFκB modules of the representative cell were
derived from previous models (Adelaja et al, 2021), p38 parameters
were ascertained by fitting our model to representative experi-
mental cell responses to four stimuli (100 ng/ml P3C4, 1000 nM
CpG, 100 ng/ml LPS, and 100 ng/ml TNF). Using the model for the
representative cell, we derived the response curves of all species,
including phosphorylated MKK6 and phosphorylated MKK4, to
different stimuli (Pam3CSK, CpG, LPS, and TNF). The model
species and reaction parameters can be found in Dataset EV1. The
differential equations model was computed in MATLAB utilizing
the ode15s function. The simulation process consisted of an initial
phase to achieve a stable state, followed by a phase involving ligand
stimulation, with outcomes visualized in MATLAB.

Simulation of heterogeneous single cell trajectories: To simulate
the single-cell heterogeneous LPS-induced NFκB and p38 activities,
we distributed ten parameters of the model. Within the p38
module, p38, MKK4, and MKK6 starting concentrations were
sampled from a log-normal distribution centered around the
“representative cell” parameters, ensuring 99% of parameters varied
no more than twofold from the representative. TLR4 and NFκB
module parameters were sampled from distributions determined
from NFκB single cell data. For “denoising” simulations,
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heterogeneous single cell trajectories were simulated using single
parameter values (as for the ‘representative cell’ simulations)
instead of sampled parameter distributions for the “denoised”
modules. Model simulations were implemented in MATLAB 2020a
using the ode15s solver.

Mathematical modeling of heterogenous single cell AND
gate-controlled gene expression

We employed a kinetic model for the gene regulatory network
described by the following equation adapted from (Cheng et al,
2017):

d mRNA½ �
dt

¼ ksyn;max
NFκBð Þnnfkb

Kd;NFκB

� �nnfkb þ NFκBð Þnnfkb

� kdeg;max
Kd;p38
� �np38

Kd;p38
� �np38 þ p38ð Þnp38 mRNA½ �

In this formula, NFκB enhances promoter activity, thereby
increasing transcription rates, while p38 stabilizes mRNA, reducing
its degradation. As model inputs, the experimentally determined
heterogeneous single-cell dynamics of NFκB and p38 activity in
response to the highest dose of LPS, TNF, P3C, CpG were used.
They affect the rates of mRNA transcription (NFκB) and
degradation (p38) over an 8-h-time course. The model outputs
the dynamics of mRNA abundance over 8 h. To evaluate gene
expression heterogeneity, we collected predicted single-cell mRNA
abundances at 0.25, 1, 3, and 8 h. The parameters of the model are
listed in Table EV3. Model simulations were implemented in
MATLAB 2020a using the ode15s solver.

Single cell gene expression by BD Rhapsody and analysis

Sample preparation
For single-cell gene expression analysis, hMPDMs were stimulated
as indicated and collected at 15 min, 1, 3, and 8 h post stimulation.
Macrophages were sequenced using the BD Rhapsody scRNAseq
platform as previously described (Sheu et al, 2023). Briefly, to
collect adherent macrophages, cells were washed 1x with cold
PBS, then lifted into suspension by incubating at 37 °C for 5 min
with Accutase (Thermo Fisher Scientific, #A1110501), which
resulted in cell viability of typically >85%. Cells were centrifuged
at 4 °C, 400 × g for 5 min, and resuspended in PBS+ 2% FBS. Cells
were hash-tagged with anti-CD45-hashtags (BD Rhapsody
#633793) and loaded onto the cartridge (BD Rhapsody #633771).
Libraries were prepared according to the manufacturer’s instruc-
tions (BD Rhapsody #633771) and sequenced 2 × 100 on
Novaseq 6000.

scRNAseq data processing
Raw fastq files were processed using the BD Rhapsody™ Targeted
Analysis Pipeline (version v1.0) (Shum et al, 2019) hosted on Seven
Bridges Genomics. Distribution-Based Error Correction (DBEC)-
adjusted UMI counts (molecules per cell) were used in the
downstream analysis. Multiplets, cells with undetermined barcodes,
and cells with less than 80 features were removed from the analysis.
Due to the selected 500 gene panel comprised of largely inducible
genes, the assumption that the total number of RNAs per cell is

constant does not hold. Counts were therefore normalized using
the package ISnorm (Lin et al, 2020), and these normalized counts
were plotted.

Gene expression analysis
Fano factor for each gene was calculated by dividing the gene variance
by its mean, for each stimulus condition or timepoint. Classification of
genes into NFκB-only-regulated or NFκB&p38-regulated was based on
literature-based refinement of previously published gene assignments
obtained through knockout cell lines or quantitative modeling refined
throughout multiple publications (Cheng et al, 2017; Tong et al, 2016;
Sen et al, 2020; Wang et al, 2021; Sheu et al, 2023) (Table EV4). Genes
were categorized as containing or not containing ARE elements using
the ’AREScore’ algorithm (Spasic et al, 2012). Bimodality coefficients
of gene expression were calculated using the R function bimodality_-
coefficient according to (Pfister et al, 2013). Bimodality coefficients
were calculated on all non-zero gene expression values for each gene.
Bimodality coefficients of NFκB and p38 activity integrals were
calculated using the function bimodalitycoeff in MATLAB 2022a
(Zhivomirov, 2024). Gene ontology was performed using the R
package clusterProfiler and searching for enrichment in the “Molecular
Function” ontology database. Adjusted p values were calculated via
Benjamini–Hochberg correction. Gene ontology terms were collapsed
if the genes they contained had more than 90% overlap, and the top
four terms for either NFκB-only genes or NFκB&p38-genes were
displayed.

Data availability

The datasets and computer code produced in this study are
available in the following databases:

- Code for MACKtrack for automated cell segmentation,
tracking, quantification, and dynamic feature calculation:

- Code optimized for this manuscript, including KTR C/N ratio
quantitation: GitHub (github.com/signalingsystemslab/MACKtrack-
for-NFkappaB-and-p38-dynamics).

- Original code: GitHub (github.com/signalingsystemslab/
MACKtrack).

- Experimental single-cell NFκB and p38-KTR trajectories and
dynamic features: Zenodo (https://doi.org/10.5281/zenodo.8274567).

- Code for classification of p38 and NFκB signaling trajectories
using a neural network: GitHub (github.com/signalingsystemslab/
nfkbktr).

- Code for mutual information calculations, for classification of
dynamic features of p38 and NFκB signaling using decision tree
ensembles, for the dose response analysis, and for the feature
correlation analysis: GitHub (github.com/signalingsystemslab/
CombinatorialSignalingMacrophages_p38NFkB).

- Feature-based classification model outputs: Zenodo (https://
doi.org/10.5281/zenodo.8274744).

- Code for mathematical modeling of single-cell p38 and NFκB
trajectories and modeling of single-cell gene expression: GitHub
(github.com/signalingsystemslab/p38_NFkB_single_cell_simulation).

- Input for mathematical modeling of single-cell p38 and NFκB
trajectories and gene expression: Zenodo (https://doi.org/10.5281/
zenodo.11518084).

- scRNA-seq datasets: Gene Expression Omnibus GSE224518
(ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224518).
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Other data are available upon request.
The source data of this paper are collected in the following

database record: biostudies:S-SCDT-10_1038-S44320-024-00047-4.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00047-4.
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Expanded View Figures

Figure EV1. Quality control of the experimental system for quantifying p38 and NFκB activity dynamics in murine macrophages.

(A) Gating strategy for FACS of mVenus-RelA+ p38-KTR-mCerulean+ hMPs. (B) mCerulean and mVenus expression by flow cytometry in WT hMPs, mVenus-Rela hMPs,
and mVenus-Rela hMPs transduced with p38-KTR-mCerulean before FACS. (C) Signaling responses to three LPS doses over 2 h in mVenus-Rela p38-KTR-mCerulean
hMPDMs compared to parent cell line by Western Blotting for phospho-p38, phospho -MK2, phospho-CREB, and IκBα protein levels. Quantification in Fig. 1B. (D) Bulk
p-p38 and p-MK2 protein levels in hMPDMs measured by Western Blotting in response to indicated stimulations over 4 h. Quantification in Figs. 1E and EV1D. (E)
Comparison of p38 activity over 4 h in hMPDMs measured by p38-KTR microscopy (mean of trajectories) and by bulk phospho-MK2 levels measured by Western Blotting
in response to three doses of P3C4, CpG, LPS, or TNF (0.1, 1, 100 ng/ml for P3C4, LPS, TNF; 1, 10, 1000 nM for CpG). Western Blotting quantification: band intensities were
background corrected, normalized to tubulin control, normalized across multiple membranes using an internal control sample, and baseline-deducted; depicting data from
a single experiment (Western Blot membrane shown in Fig. EV1E). For microscopy, the mean of means of trajectories from two biological replicates is shown (in total: 923,
1171, 970, and 1055 cells included in the analysis for P3C4, CpG, LPS, and TNF, respectively; same data as in Fig. 1E). (F) Gating strategy for flow cytometry measurements
of intracellular p-p38 levels in hMPDMs. (G) Example quantification of p-p38+ fraction of cells stimulated with indicated doses of LPS for 30min (blue). The fluorescence
signal of an unstimulated, unstained sample is used to define a cutoff between p-p38+ and p-p38- cells (gray). Data from one experiment are displayed.
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Figure EV2. Machine learning classifications of p38 and NFκB activities in response to four high-dose ligand stimulations or PAMP stimulations using shuffled
activities as negative controls.

(A, B) F1 scores by class and confusion matrix of decision tree ensemble classification of p38 dynamic features in response to mock and high-dose P3C4, CpG, LPS, and
TNF stimulations. Data from two pooled biological replicates are used. (C, D) Confusion matrices of machine learning classification of NFκB (“shuffled”: incorrectly
matched NFκB activities from cells randomly selected from all classes) + p38 (left) or NFκB+ p38 (“shuffled”: incorrectly matched p38 activities from cells randomly
selected from all classes) (right) time-series (C) or dynamic features (D) in response to high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological
replicates are used. (E) Confusion matrices of machine learning classification of decision tree ensemble classification of NFκB only, NFκB+ p38, NFκB (“shuffled”:
incorrectly matched NFκB activities from cells randomly selected from all classes) + p38, or NFκB+ p38 (“shuffled”: incorrectly matched p38 activities from cells
randomly selected from all classes) dynamic features in response to mock and high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological replicates
are used. (F, G) Overall classification accuracy (F) and F1 score for TNF class (G) in machine learning classifications using p38 only, NFκB only, NFκB+ p38, NFκB
(“shuffled”: incorrectly matched NFκB activities from cells randomly selected from all classes) + p38, NFκB+ p38 (“shuffled”: incorrectly matched p38 activities from cells
randomly selected from all classes) dynamic features in response to mock and high-dose P3C4, CpG, LPS, and TNF stimulations. Data from two pooled biological replicates
are used. (H–J) Overall classification accuracy (H), F1 scores for individual classes (I), and confusion matrices (J) for machine learning classifications of time series using
p38 only, NFκB only, NFκB+ p38, NFκB (“shuffled”: incorrectly matched NFκB activities from cells randomly selected from all classes) + p38, or NFκB+ p38 (“shuffled”:
incorrectly matched p38 activities from cells randomly selected from all classes) in response to high-dose P3C4, CpG, and LPS stimulations. Data from two pooled
biological replicates are used. (K) Confusion matrices of machine learning classification of NFκB (shuffled among all cells in all classes) + p38 (left) or NFκB+ p38
(shuffled among all cells in all classes) (right) dynamic features in response to high-dose P3C4, CpG, and LPS stimulations. Data from two pooled biological replicates
are used.
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Figure EV3. MAPK p38 and NFκB dynamic features are poorly correlated.

(A) Scatter plots of correlations of selected p38 vs. NFκB dynamic features (as in Fig. 5A) upon stimulation with high-dose P3C4, CpG, LPS, or TNF. Number indicates the
Spearman correlation coefficient. Data from two pooled biological replicates are depicted. (B) Negative control: Spearman correlation coefficients (CCs) between
indicated p38 dynamic features and corresponding NFκB dynamic feature using NFκB features randomly shuffled with respect to p38 features among cells within a
stimulation condition for stimulation with high-dose P3C4, CpG, LPS, or TNF. The asterisk indicates a statistically significant correlation (p < 0.05) with |CC | > 0.15. Data
from two pooled biological replicates are used. (C) Spearman correlation coefficients (CC) between integrals of p38 activity over 30min from 0 to 4 h and corresponding
NFκB integrals upon stimulation with high-dose P3C4, CpG, LPS, or TNF. The asterisk indicates a statistically significant correlation (p < 0.05) with |CC | > 0.15. Data from
two pooled biological replicates are used. (D) Spearman correlation coefficients (CCs) between indicated p38 dynamic features and all indicated NFκB dynamic features
upon stimulation with high-dose P3C4, CpG, LPS, or TNF. The asterisk indicates a statistically significant correlation (p < 0.05) with |CC | > 0.15. Data from two pooled
biological replicates are used. (E) Comparison of heterogeneity of p38 activity measured by flow cytometry (gray) and p38-KTR microscopy (blue) in unstimulated cells
and upon 30min 100 ng/ml LPS stimulation. For each assay, the mean of the unstimulated sample is deducted from each distribution. The flow cytometry distributions are
scaled using the distance between the peaks of lognormal fits to the unstimulated and the stimulated distributions. Microscopy: Data from two pooled biological replicates
are used. Flow cytometry: Data from a single experiment are displayed. (F) Coefficient of variation of indicated p38 and NFκB dynamic features upon stimulation across
dose range of P3C4, CpG, LPS, or TNF. Data from two pooled biological replicates are used. (G) Coefficient of variation of 30-min p38 and NFκB activity integrals upon
stimulation with high-dose P3C4, CpG, LPS, or TNF. Data from two pooled biological replicates are used.

Stefanie Luecke et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 898 –932 929



Molecular Systems Biology Stefanie Luecke et al

930 Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 898 –932 © The Author(s)



Figure EV4. An integrated mathematical model of MAPK p38 and NFκB activation suggests sources of heterogeneity.

(A) Detailed schematic of mathematical model structure including reaction numbers (see also Dataset EV1). A model of p38 activation via IKK/Tpl2/MKK3/6 and TAK1/
MKK4 (blue background) is integrated with established models of NFκB activation (yellow) downstream of TLR1/2 (orange), TLR9 (green), TLR4 (red), and TNF receptor
(light blue) signaling (Adelaja et al, 2021; Luecke et al, 2023). (B) Parameter sensitivity analysis probes the effect of kinase abundances within the p38 module. Effect of
variations of the abundance of indicated kinase(s) on p38 activity of a representative cell (top), p38 dynamic features in a representative cell (middle), and heterogeneous
p38 activity trajectories in single cells upon simulated LPS stimulation (bottom). (C) Scatter plots of p38 vs. NFκB integrated activity over indicated 30min intervals in
simulated LPS stimulation with or without simulated molecular noise (i.e., using parameter distributions or fixed parameter values) in p38 and NFκB modules.
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Figure EV5. MAPK p38 signaling contributes heterogeneity to macrophage gene expression responses.

(A) Effect of NFκB and p38 activity levels on simulated mRNA transcription and mRNA-degradation, respectively. (B) Simulated mRNA expression under control of NFκB
only or NFκB&p38 over 8 h using experimentally determined NFκB and p38 activity upon high-dose P3C4, CpG, LPS, and TNF stimulation as input to the mathematical
model. (C) Bimodality coefficient of all immune response genes regulated by NFκB-only (132 genes) or NFκB&p38 (59 genes) in single cells upon stimulation with P3C4,
CpG, LPS, or TNF at 1 and 8 h. Purple line indicates mean. Statistical significance was determined using a permutation test for difference in means using 10000
permutations. Data from one experiment are depicted. (D, E) Bimodality coefficient (D) and Fano Factor (E) of all immune response genes in single cells categorized by
absence or presence of ARE-element(s) upon stimulation with P3C4, CpG, LPS, or TNF at 1 and 8 h. Purple line indicates mean. Statistical significance was determined
using a permutation test for difference in means using 10000 permutations. Data from one experiment are depicted. (F) Bimodality Coefficients of 30-min p38 and NFκB
activity integrals upon stimulation with high-dose P3C4, CpG, LPS, or TNF determined by dual reporter macrophage imaging. Data from two pooled biological replicates
are used.
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