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RNAmodifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, includ-

ing processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of

which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized

into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and fa-

cilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of

RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA

modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that

aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these

dynamic research avenues sets the stage for future investigations in this field.

Throughout their life cycle, RNAs undergo numerous processing
events. Among these activities are RNA modifications, which
describe changes to the chemical composition of individual nu-
cleotides. Over 150 types of RNA modifications, also referred to
as epitranscriptomic events or marks, have been characterized
to date (Boccaletto et al. 2022). RNA modifications can regulate
a broad range of biological processes, including those mounted
by the host immune system. Here, we broadly classify the effects
of immune-related epitranscriptomic events into the following
categories: regulation of immunogenic RNAs, regulation of genes
involved in innate immune response, and facilitation of adaptive
immunity. Given extensive evidence for their immune rele-
vance, we focus on reviewing the contributions of the following
internal (non-cap) host RNAmodifications:N6-methyladenosine
(m6A), 5-methylcytosine (m5C), adenosine deamination to ino-
sine (A-to-I editing), cytosine deamination to uracil (C-to-U edit-
ing), and pseudouridine (Ψ) (Fig. 1). We also summarize salient
methods for genome-wide characterization of RNA modifica-
tions and their immunogenic substrates. This is followed by a dis-
cussion of how manipulation of RNA modifications has been
leveraged in cancer immunotherapies. An exhaustive account
of all studies related to epitranscriptomics or immunity is outside
the scope of this review; however, our goal is to provide a land-
scape view of research being conducted at the intersection of
these exciting fields.

The cast of immune-related RNA modifications

Most known RNA modifications involve the alteration of residues
that simply “decorate” the nucleoside (e.g., the addition ofmethyl
groups). This category of epitranscriptomic marks includes m6A
and m5C, which refer to the methylation of the sixth nitrogen
atom of adenine and the fifth carbon atom of cytosine, respective-
ly (Fig. 1A,B). m6A modifications are deposited by a methyltrans-

ferase complex that includes a heterodimer (Liu et al. 2014)
composed of the writer proteins METTL3 (Bokar et al. 1997) and
METTL14. The METTL3–METTL14 complex is tethered to target
sites by the WT1 associated protein (WTAP) (Ping et al. 2014).
Although all three proteins are required form6Amethyltransferase
activity, METTL3 is the primary nuclear methyltransferase that
adds m6A during transcription (Wang et al. 2016). Additional ac-
cessory proteins are also involvedwithmethyltransferase complex
activity, including VIRMA (Yue et al. 2018), RBM15-RBM15B (Patil
et al. 2016), and ZC3H13 (Wen et al. 2018). On the other hand,
m5C is catalyzed by the DNA methyltransferase homolog
DNMT2 (also known as TRDMT1) and the NOP2/Sun (NSUN)
methyltransferase family (Reid et al. 1999; Goll et al. 2006).
Although RNA m5C methyltransferases were first studied in the
context of tRNAs and rRNAs, they were later shown to target
mRNAs and other noncoding RNAs (Squires et al. 2012).

A handful of RNAmodifications—often referred to as RNA ed-
iting—can change the identity of the RNA nucleoside itself (i.e., a
conversion from the four basic nucleosides: adenosine, cytosine,
guanosine, or uridine). Two prominent types are A-to-I and C-to-
URNA editing (Fig. 1C,D), which describe deamination events per-
formed by members of the ADAR (Bass et al. 1997) and APOBEC
(Wedekind et al. 2003) protein families, respectively. The ADAR
family consists of ADAR (also known as ADAR1, encoded by the
ADAR gene), ADARB1 (also known as ADAR2, encoded by the
ADARB1 gene), and the catalytically inactive ADARB2 (also known
as ADAR3, encoded by the ADARB2 gene) (Cho et al. 2003). ADAR
consists of two major isoforms: the constitutively expressed iso-
form ADAR-p110 and the interferon-induced isoform ADAR-
p150 (Patterson and Samuel 1995). Although the shorter p110 iso-
form is predominantly nuclear, the longer p150 isoform can
be found in both the nucleus and cytoplasm (Poulsen et al.
2001). Nonetheless, both isoforms have exhibited the ability to
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shuttle between these two compartments (Strehblow et al. 2002;
Fritz et al. 2009). Although A-to-I editing enzymes target RNAs,
some members of the APOBEC family exclusively deaminate
DNA. However, APOBEC1 (Teng et al. 1993), APOBEC3A (A3A)
(Sharma et al. 2015), and APOBEC3G (A3G) (Sharma et al. 2016)
have been shown to perform RNA editing. C-to-U editing is far
less prevalent than A-to-I editing in humans; although millions
of A-to-I editing sites have been identified in the human genome
(Bazak et al. 2014; Mansi et al. 2021), most studies have not iden-
tified more than a few hundred C-to-U editing sites (Rosenberg
et al. 2011; Sharma et al. 2015; Sharma et al. 2019; Alqassim
et al. 2021).

Pseudouridine (Ψ) is an isomer of uridine that is formed via
the activity of pseudouridine synthases (Fig. 1E). Currently, 13
pseudouridine synthases have been identified in eukaryotes
(Borchardt et al. 2020). These enzymes are classified into six fam-
ilies: RsuA, RluA, TruA, TruB, TruD, and PUS10 (Hamma and
Ferré-D’Amaré 2006; Borchardt et al. 2020), although RsuA-type
synthases have only been found in bacteria (Rintala-Dempsey
and Kothe 2017). Previous efforts have revealed various character-
istics of different pseudouridine synthases. For example, PUS1,
PUS7, and RPUSD4 have been shown to regulate splicing and 3′

end processing (Martinez et al. 2022), whereas TRUB1 has been
shown to confer higher pseudouridylation levels relative to other
synthases (Dai et al. 2023; Zhang et al. 2023). Notably, pseudour-
idine has been shown to increasemRNA stability based on reporter
assays (Karikó et al. 2008). However, reports of the effects of pseu-
douridine within in vivo systems have drawn mixed conclusions,
including increasing (Schwartz et al. 2014; Dai et al. 2023), de-
creasing (Nakamoto et al. 2017), and having no effect on mRNA
stability (Zhang et al. 2023).

Genome-wide identification of RNA modifications

A-to-I and C-to-U RNA editing events can be identified in RNA-
seq data based on mismatches to the reference genome, although
careful consideration is required to exclude false positives that
stem from SNPs or sequencing errors (Bahn et al. 2012;
Ramaswami et al. 2012; Lee et al. 2013; Porath et al. 2014), espe-
cially within coding regions (Gabay et al. 2022). Because inosines
resulting from A-to-I editing are converted to guanosines by re-
verse transcription, A-to-G mismatches can be indicative of A-
to-I editing. Using general linear models, the GIREMI and L-
GIREMI methods leverage lack of allelic linkage as a feature to
distinguish editing sites from SNPs (Zhang and Xiao 2015; Liu
et al. 2023b). Although a pair of SNPs in the same read is expect-
ed to exhibit allelic linkage owing to originating from the same
haplotype, an editing site and a SNP are more likely to exhibit
variable allelic linkage. This is because in most cases (i.e., in the
absence of allele-specific editing), RNA editing occurs post-tran-
scriptionally to either allele in a stochastic manner. Aside from
these computational methods, specialized experimental proto-
cols have also been developed for inosine detection. One of these
methods is inosine chemical erasing (ICE)-seq, which performs
ICE using cyanoethylation combined with reverse transcription
to identify inosines based on a decrease in G signals in a se-
quence chromatogram of cDNA (Suzuki et al. 2015). Another
method is EndoVIPER-seq, which uses immunoprecipitation
(IP) with an inosine-binding enzyme endonuclease V (EndoV)
to enrich for edited transcripts before sequencing (Knutson and
Heemstra 2020). Despite these alternatives, most studies opt for
RNA-seq when performing editing analysis owing to its broader
accessibility.
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Figure 1. RNAmodifications and their corresponding writer/editing enzymes: (A)N6-methyladenosine (m6A) deposited by amethyltransferase complex
that includes the METTL3–METTL14 heterodimer, (B) 5-methylcytosine (m5C) deposited by the DNA methyltransferase homolog DNMT2 and methyl-
transferases from the NSUN family, (C ) deamination of adenosine to inosine by ADAR enzymes, (D) deamination of cytosine to uracil by APOBEC proteins,
and (E) conversion of uridine to pseudouridine (Ψ) by pseudouridine synthase enzymes. When applicable, the generic writer/editing enzyme name is de-
picted alongside the list of specific protein names. Pseudouridine synthases are grouped by family. Created with BioRender (https://www.biorender.com).
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On the other hand, RNA modifications that do not entail
changes to the actual nucleotides cannot be detected solely based
on RNA–DNAmismatches in standard RNA-seq data. m6A modifi-
cations are commonly identified through IP-based techniques.
These include MeRIP-seq (Meyer et al. 2012) and m6A-seq
(Dominissini et al. 2012), both of which can be used to identify
modified sites at a relatively low resolution of ∼100–200 nucleo-
tides (nt) using IP-based techniques. Single-nucleotide resolution
methods that use cross-linking-based technologies such as m6A-
CLIP (Ke et al. 2015), miCLIP (Linder et al. 2015), and PA-m6A-
seq (Chen et al. 2015)were developed a few years later. In addition,
m6A-LAIC-seq was developed to enable isoform-level characteriza-
tion of methylated transcripts (Molinie et al. 2016). These meth-
ods were followed by single-nucleotide resolution antibody-free
approaches, including m6A-REF-seq (Zhang et al. 2019) and
MAZTER-seq (Garcia-Campos et al. 2019), both of which enable
m6A detection using the MazF endoribonuclease. Other anti-
body-free methods include DART-seq (in which m6A residues are
found adjacent to induced C-to-U mismatches) (Meyer 2019),
m6A-SEAL-seq (which involves FTO-assisted m6A selective chemi-
cal labeling) (Wang et al. 2020c), and m6A-label-seq (in which
m6A sites are metabolically modified with N6-allyladenosine)
(Shu et al. 2020). More recent methods enable m6A quantification
at single-base resolution. Although m6A-SAC-seq (Hu et al. 2022)
and eTAM-seq (Xiao et al. 2023) use regression-based methods to
predict m6A levels, GLORI (Liu et al. 2023a; Shen et al. 2024) en-
ables absolute m6A quantification.

Although early m6A detection methods featured IP-based
techniques, m5Cmodifications were first identified using bisulfite
sequencing (Schaefer et al. 2009; Squires et al. 2012), in which cy-
tosine (but not m5C) is chemically converted to uracil. Later in the
early 2010s, RNA immunoprecipitation (RIP) approaches followed
by deep sequencing—such as m5C-miCLIP (Hussain et al. 2013b)
and 5-Aza-IP (Khoddami and Cairns 2013)—were introduced for
m5C identification. These methods were followed by TAWO-seq
(Yuan et al. 2019), which enables bisulfite-free and base-resolution
identification of m5C based on peroxotungstate oxidation.
Recently, metabolic propargyl labeling and sequencing (MePMe-
seq) has been shown to facilitate the simultaneous identification
of m6A andm5C sites at single-nucleotide resolution based on dis-
tinct termination profiles (Hartstock et al. 2023). Although bisul-
fite-based approaches are still regarded by some researchers as
the gold standard detection method (Hussain et al. 2013a; Ma
et al. 2022), the high variability in the number of m5C sites detect-
ed across these studies highlights the importance of developing
stringent computational pipelines for removing false positives
(Huang et al. 2019).

Several transcriptome-wide pseudouridine-detection meth-
ods have been published since the mid-2010s (Schwartz
et al. 2014; Carlile et al. 2015; Li et al. 2015). These methods
rely upon a N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide
metho-p-toluenesulfonate (CMC) reaction with pseudouridines,
which results in a stop signature during reverse transcription
(Sun et al. 2023). More recently, bisulfite-based approaches adapt-
ed from improvedm5C detection protocols (Khoddami et al. 2019)
have been developed. These detection methods, which include
BID-seq (Dai et al. 2023) and PRAISE (Zhang et al. 2023), are capa-
ble of quantitatively estimating the modification level of each site
based on nucleotide deletion signatures.

In addition to these antibody and chemical-based detection
methods, nanopore direct sequencing of full-length native RNA
molecules is increasingly receiving attention as a modality for

modification detection. Nanopore direct RNA sequencing features
a helicase motor that facilitates the movement of an individual
RNA strand through a protein nanopore, generating amonovalent
ionic current signature that is used by base-calling algorithms to
predict the corresponding nucleotide sequence (Garalde et al.
2018; Jain et al. 2022). Strategies for identifying RNA modifica-
tions in this type of data either involve the detection of modifica-
tion-induced base-calling errors or involve prediction of modified
sites through analysis of the raw signal itself (Furlan et al. 2021; Le-
ger et al. 2021). Many detection algorithms use training data con-
sisting of sequences with the modification of interest alongside
sequences lacking such modifications. An example includes data
sets in which a writer enzyme has been knocked down. Most of
these methods have been applied to identify m6A. Signal intensi-
ty-based methods for m6A include Nanocompore (Leger et al.
2021), xPore (Pratanwanich et al. 2021), Nanom6A (Gao et al.
2021b), MINES (Lorenz et al. 2020), and m6Anet (Hendra et al.
2022). On the other hand, base-calling methods include EpiNano
(Liu et al. 2019b), DiffErr (Parker et al. 2020), DRUMMER (Price
et al. 2020), and ELIGOS (Jenjaroenpun et al. 2021). Recently,
NanoSPA (Huang et al. 2024) was developed to simultaneously
profile bothm6A and pseudouridine in the transcriptome by lever-
aging m6A-SAC-seq (Hu et al. 2022) and the group’s previously
published model, NanoPsu (Huang et al. 2021), respectively.
NanoPsu and other methods (Begik et al. 2021; Tavakoli et al.
2023) are base-calling error-based approaches, although methods
trained on features extracted from nanopore sequencing data
raw signal have also been developed (Hassan et al. 2022). Nano-
pore-based methods for A-to-I editing site detection also exist, in-
cluding DeepEdit (Chen et al. 2023) and Dinopore (Nguyen et al.
2022). Currently, m5C sites has not been explored transcrip-
tome-wide to the same extent as other modifications, although
they have been detected in synthetic oligonucleotides usingNano-
compore (Leger et al. 2021). Additionally, CHEUIwas developed to
perform simultaneous prediction ofm6A andm5C using nanopore
direct RNA sequencing data (Acera Mateos et al. 2022). With the
slew of methods being developed to uncover RNA modifications
in nanopore data, we anticipate the imminent growth of this list
of tools.

RNA modifications and innate immunity

Modulation of transcript immunogenicity

Pattern recognition receptors (PRRs) initiate antiviral responses
upon recognition of pathogen-associated molecular patterns
(PAMPs). Nucleic acids, including RNAs, are among the PAMPs
that can activate these pathways. The presence or absence of
RNA modifications can determine whether this sensing, and sub-
sequent antiviral activation, is initiated. In other words, epitran-
scriptomic marks can modulate the immunogenicity of their
host transcripts. Previous investigations have shown that double-
stranded RNAs (dsRNAs), circular RNAs (circRNAs), and long non-
coding RNAs (lncRNAs) are subject to such regulation.

Perhaps the most well-known class of endogenous immuno-
genic RNAs is dsRNAs (Chen andHur 2022), particularly those that
are subject to A-to-I editing (Fig. 2A). The immunogenicity of
dsRNAs arises from their structural similarity to dsRNAs, which
are often produced upon viral infection (Weber et al. 2006).
Indeed, mounting evidence suggests that a major function of
ADAR editing is to modulate immune response (Heraud-Farlow
et al. 2017; Eisenberg and Levanon 2018). Following observations
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that double knockout withMavs (Mannion et al. 2014) rescues the
embryonic lethality of Adar mutant mice (Hartner et al. 2004,
2009; Wang et al. 2004), the absence of ADAR editing activity
(Liddicoat et al. 2015; Pestal et al. 2015) was shown to activate
the upstream cytosolic dsRNA sensor IFIH1 (also known as
MDA5), subsequently triggering interferon response. ADAR edit-
ing can destabilize immunogenic dsRNAs by introducing mis-
matches into perfectly paired duplex regions (Liddicoat et al.
2015), thus preventingMDA5 sensing. Specifically, the IFN induc-
ible (Patterson and Samuel 1995) p150-isoform of ADAR is respon-
sible for regulating MDA5-mediated recognition of dsRNAs (Pestal
et al. 2015). ADAR-p150’s status as both an interferon stimulated
gene (ISG) and an ISG regulator through its modulation of immu-
nogenic dsRNAs highlights the importance of its expression in an-
tiviral response (Ward et al. 2011). Recently, several groups have
shown that the Zα domain that is specific to the p150 isoform
also plays an important role in inflammatory signaling.
Specifically, ADAR-p150 inhibits Z-RNA Alu–Alu duplexes that
would otherwise activate the left-handed Z-nucleic acid sensor
ZBP1, which elicits caspase-8-dependent apoptosis andMLKL-me-

diated necroptosis (de Reuver et al. 2022; Hubbard et al. 2022; Jiao
et al. 2022). Other than allowing cells to avoid activation ofMDA5-
and ZBP1-dependent inflammatory pathways, ADARhas also been
shown to prevent translational shutdown induced by another
dsRNA sensor: EIF2AK2 (also known as Protein Kinase R [PKR])
(Chung et al. 2018). Upon dsRNA activation, PKR globally repress-
es cellular translation by phosphorylating eukaryotic initiation
factor 2 (EIF2A) (Dar et al. 2005). Notably, a more recent investiga-
tion reported that ADAR-p150 binding—rather than editing activ-
ity—protects cells from hyperactivation of PKR (Hu et al. 2023),
although the investigators suggest that editing may still play a
subtle role.

Like A-to-I editing, the presence of m6A may also prevent the
formation of endogenous dsRNAs. Compared with control cells,
METTL3-depleted murine fetal liver cells were found to exhibit in-
creased staining with the dsRNA-specific antibody J2 (Gao et al.
2020). Given that the oligoadenylate synthetase (Oas) family of
dsRNA sensors and ISGs exhibited up-regulated expression upon
METTL3-depletion, the investigators suggest that these dsRNAs are
likely to mediate innate immune response upon m6A depletion.
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Figure 2. Effects of RNA modifications on innate and adaptive immunity (see text for references). RNA modifications impart various effects on innate
immune pathways. (A) A-to-I editing of dsRNA regions by ADAR prevents IFIH1 (also known as MDA5) sensing and subsequent activation of the type I
IFN signaling pathway. ADAR also binds Z-RNA, thus inhibiting ZBP1 activation. (B) m6A modifications in circRNAs can function as markers of “self,” pre-
venting RIGI sensing. (C) The presence of pseudouridine and m5C can repress TLR signaling. Pseudouridine has also been shown to inhibit 5-triphosphate
mediated RIGI sensing. (D) Depletion of m5C modifications results in increased transcription of Pol III transcripts, including RPPH1. RPPH1 itself facilitates
transcription of 7SL RNAs, which are RIGI ligands. RNA modifications play roles in adaptive immunity: (E) Deletion of ADAR results in excessive ISG expres-
sion, thus impairing T cell receptor (TCR) signaling. (F) Loss of m6A leads to destabilization of Tcf7 transcripts, consequently impairing naïve T cell differ-
entiation into T follicular helper (Tfh) cells. On the other hand, the absence of m6A stabilizes JAK-STAT signaling inhibitors (SOCS family), leading to
subsequent inhibition of T cell homeostatic proliferation and differentiation. (G) An A-to-I editing site in cyclin I (CCNI R75G) leads to the production
of an altered peptide (CCNI-ED). When presented by tumor cells, this peptide could be recognized by tumor-infiltrating lymphocytes. Created with
BioRender (https://www.biorender.com).
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circRNAs are generated via a back-splicing circularization
mechanism in which a downstream 5′ donor site of an exon is
joined to an upstream 3′ acceptor site (Chen 2016). Multiple layers
of coordination between circRNA production and innate immuni-
ty have been established (Chen et al. 2017; Li et al. 2017b; Liu et al.
2019a). Building upon these investigations, m6A modifications in
endogenous circRNAs have been found to function as a marker of
“self.” These marks allow the immune system to distinguish them
from exogenous circRNAs, which activate immune signaling via
RIGI (Chen et al. 2019). Indeed, the presence of m6A recruits the
YTHDF2 reader protein, which the investigators suggest may in-
hibit the RIGI conformational transformations necessary for
downstream immune gene signaling (Fig. 2B).

As implied by their name, lncRNAs are long (>200-nt) tran-
scripts that are not translated into functional proteins (Statello
et al. 2021). Nonetheless, they can contribute to various important
biological processes. Indeed, J2 pulldown of putatively immuno-
genic dsRNA transcripts in METTL3-depleted murine cells includ-
ed two lncRNAs: Malat1 and Rian (Gao et al. 2020). Notably,
Malat1was previously found to contain destabilizingm6A residues
within its predicted hairpin structures (Liu et al. 2013), although
future studies are needed to determine whether a causal relation-
ship exists.

In addition to A-to-I editing and m6A, other types of RNA
modifications may also regulate innate immunity. Nearly two de-
cades ago, incorporation of modified nucleosides—including
pseudouridine (Ψ),m5C, andm5A—into otherwise immunostimu-
latory RNA transcripts was reported to abrogate TLR signaling (Fig.
2C; Karikó et al. 2005). Pseudouridines were also found to prevent
5-triphosphate-mediated RIGI activation (Hornung et al. 2006),
inhibit dsRNA recognition (Karikó et al. 2011), and enhance trans-
lation by diminishing activation of PKR (Anderson et al. 2010).
Indeed, these findings proved instrumental in the development
of the COVID-19 mRNA vaccines, in which the incorporation of
N1-methyl-pseudouridines reduced RNA immunogenicity and en-
hanced protein production (Karikó et al. 2008; Polack et al. 2020).
Thus, although A-to-I editing and m6A mediate transcript immu-
nogenicity by inducing structural changes, these findings suggest
that the existence of pseudouridine itself dampens immunostimu-
latory potential.

RNA modifications may also modulate the immunogenicity
of endogenous transcripts in a less direct manner. Depletion of
the m5C writer NSUN2 in human A549 cells resulted in up-regula-
tion of various Pol III transcribed ncRNAs, including 7SL RNAs
(Zhang et al. 2022). Notably, 7SL is known to activate the RIGI sen-
sor (Nabet et al. 2017). Although 7SL itself was not a target of
NSUN2-mediated m5C methylation, a m5C site was found within
ribonuclease P RNA component H1 (RPPH1), which is known to
facilitate Pol III transcription of various noncoding RNAs
(Guerrier-Takada et al. 1983; Kleinert et al. 1988; Reiner et al.
2006). The investigators propose that abrogation of m5Cmethyla-
tion increases RPPH1 levels, which subsequently increases tran-
scription of 7SL RNA. In other words, although m5C
modifications may not directly target the RNAs that are sensed
by RIGI, their absence does lead to increased expression of an up-
stream regulator of these immunostimulatory transcripts (Fig. 2D).

Strategies for genome-wide identification of immunogenic

substrates

RNA modifications can regulate the abundance or structure of
transcripts that have the propensity to trigger cytosolic sensors.

However, the landscape of these immunogenic transcripts—in-
cluding how they differ across different biological systems and
contexts—remains to be fully elucidated. Although certain
circRNAs and ncRNAs have exhibited immunogenic potential,
the most widely recognized and potent substrates (owing to their
abundance and resemblance to foreign nucleic acids) are
dsRNAs. For this reason, alongwith the fact that strategies for iden-
tifying circRNAs (Jeck and Sharpless 2014; Szabo and Salzman
2016; Li et al. 2018; Kristensen et al. 2019) and ncRNAs (Duan
et al. 2021; Mattick et al. 2023) have been previously reviewed,
here we focus on methods that can facilitate the identification of
immunogenic dsRNAs. We categorize the discussion of these
methods into two sections: first, strategies for the identification
of dsRNAs in general, and second, strategies for zeroing in on the
immunogenic substrates.

Genome-wide identification of dsRNAs

Several experimental protocols can be used to enable global iden-
tification of dsRNAs. Pulldown-based methods with the dsRNA-
specific antibody J2, including J2 anti-dsRNA IP (Lybecker et al.
2014; Blango and Bass 2016), dsRIP-seq (Gao et al. 2020, 2021a),
and J2 fCLIP-seq (Kim et al. 2018), can be used to enable high-
throughput sequencing of dsRNAs. Assuming that an IP-grade an-
tibody is available, CLIP-based approaches for dsRNA-binding pro-
teins can be leveraged as well. Another set of techniques involves
use of chemicals that preferentially digest (Kertesz et al. 2010;
Underwood et al. 2010) or modify (Lucks et al. 2011; Homan
et al. 2014; Kielpinski and Vinther 2014; Loughrey et al. 2014;
Cheng et al. 2015; Watters et al. 2016) unpaired nucleotides, sub-
sequently generating individual sequence position scores that cor-
respond to their propensity of being base-paired.

Various dsRNA identification strategies can be applied to con-
ventional RNA-seq data sets as well. Because ADAR enzymes re-
quire a double-stranded substrate for editing (Eisenberg and
Levanon 2018), the presence of A-to-I editing within a transcript
indicates that it has the potential to form a dsRNA structure.
Indeed, one method to identify dsRNA candidates on a genome-
wide scale is to identify A-to-I editing enriched regions across the
genome, followed by examination of their RNA secondary struc-
tures using computational folding algorithms (Whipple et al.
2015; Blango and Bass 2016; Reich and Bass 2019). A fundamental
shortcoming of this strategy is that it relies upon known A-to-I ed-
iting sites. Thus, dsRNAs that are depleted of editing sites are likely
to bemissed. To fill this gap,machine-learning approaches capable
of performing editing-independent dsRNA prediction with long-
read RNA-seq can serve as a complementary detection method.
Indeed, one recently developed method is dsRID (Yamamoto
et al. 2023), which predicts dsRNA regions based on features relat-
ed to region skipping in long-read sequencing data. This approach
was motivated by previous observations that highly structured re-
gionsmay induce skipping in RNA-seq reads as a result of intramo-
lecular template switching during reverse transcription (Cocquet
et al. 2006; Houseley and Tollervey 2010; Tardaguila et al. 2018;
Liu et al. 2023b). Aided by machine-learning strategies and RNA
structure-folding methods, dsRID captures long dsRNA structures
in an editing-independent and sample-specific manner.

Genome-wide searches for retrotransposable elements (RTEs)
can also facilitate dsRNA identification. RTEs, which include
endogenous retroviruses (ERVs), long interspersed elements
(LINEs), and short interspersed nuclear elements (SINEs) (Chen
andHur 2022), are DNA sequences that had or still have the ability
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to insert into new genomic locations via an RNA intermediate.
More than 99% of A-to-I editing in humans is found within a
type of RTE known as Alu elements (Kim et al. 2004; Levanon
et al. 2004). Proximal inverted repeat Alu elements (IRAlus) have
the propensity to fold intramolecularly owing to their sequence
similarity, giving rise to dsRNA structures. Because Alu elements
are primate specific, the search for inverted Alus does not apply
to species beyond primates. Rather, a generalized search for invert-
ed duplicated sequences (IDSs) is possible, as was performed to
characterize dsRNA structures across dozens of species (Barak
et al. 2020). Although IDS regions likely form intramolecular
dsRNA structures, dsRNAs can also result from intermolecular
base-pairing in which two separate molecules anneal together to
form a structure. Indeed, RTEs such as ERVs and LINE1 elements
can form intermolecular duplexes (Yang and Kazazian 2006;
Chiappinelli et al. 2015) and have been shown to activate
dsRNA-triggered antiviral signaling pathways (Kassiotis and
Stoye 2016; Zhao et al. 2018). Several high-throughput sequencing
methods for identifying RTEs and quantifying their abundance
have been developed (Jin et al. 2015; Lerat et al. 2017; Jeong
et al. 2018; Valdebenito-Maturana and Riadi 2018) and can be le-
veraged to identify additional dsRNA candidates that are regulated
by RNA modifications. Because not all RTEs may necessarily form
dsRNAs, RNA secondary structure prediction algorithms can be
used to ascertain their dsRNA-forming propensity (Zuker 2003;
Markham and Zuker 2008; Reuter and Mathews 2010; Lorenz
et al. 2011).

Honing in on immunogenic substrates

By virtue of their design, several of the experimental strategies dis-
cussed in the previous section not only facilitate dsRNA identifica-
tion but also lend evidence for their immunogenic potential. CLIP-
based approaches can use dsRNA cytosolic sensors, such as MDA5,
RIGI, and PKR, to identify RNAs bound to activators of antiviral
signaling. Although CLIP experiments of PKR (Kim et al. 2018)
and RIGI (Jiang et al. 2018) have been performed, attempts to per-
formMDA5CLIP have encountered numerous technical challeng-
es (Herzner et al. 2021). As an alternative approach, Ahmad et al.
(2018) used an RNase protection assay coupled with RNA-seq to
identify endogenous ligands for MDA5. These experiments re-
vealed that hybrid-forming IRAlus were primary immunostimula-
tory targets of MDA5.

Immunogenic substrates can also be identified using ap-
proaches other than identifying targets of dsRNA sensors.
Solomon et al. (2017) coupled ADAR knockdown with a high-
throughput structure probing method known as PARS-seq.
Contrary to the prevailing notion that the main role of ADAR ed-
iting is to destabilize duplexes, this study found that ADAR silenc-
ing led to a lower global double-stranded-to-single-stranded RNA
ratio. Although this finding suggests that editing stabilizes RNA
duplexes in most cases, the subset of transcripts that exhibited
the opposite trend (i.e., those that are likely destabilized by editing)
was significantly enriched for potential MDA5 ligands. Indeed,
manyof these transcripts harbored IRAlus that fold into long, near-
ly perfectly paired dsRNAs (Kato et al. 2008). These results present a
pool of immunogenic dsRNA candidates thatmay be an intriguing
starting point for future studies.

Several groups have identified candidate immunogenic
dsRNAs based on regions that are specifically edited by ADAR
p150 (rather than p110) and found that they constituted a limited
portion of all edited regions (Kim et al. 2021; Sun et al. 2022).

Although these results suggest that only a small subset of
dsRNAs are immunogenic, an alternative—and not necessarily
mutually exclusive—model is that all dsRNA targets are subject
to weak editing by ADAR. In other words, immune homeostasis
can be maintained as long as the overall dsRNA abundance level
is under control (Levanon et al. 2024). To better understand the ve-
racity of thesemodels, additional investigations into the landscape
of immunogenic dsRNAs and how ADAR exerts its protective ef-
fects are even more highly warranted.

Regardless of how immunogenic dsRNA candidates are iden-
tified, one straightforward assessment of their immunogenicity is
the correlation of their expression with a measure of interferon re-
sponse, such as the expression of ISGs. For example, the output of
IFN signaling has been previously summarized using an ISG score:
ametric formulated based on the expression profile of 38 signature
genes (Liu et al. 2019c). Alternatively, genetics-based approaches
can be used to identify supporting evidence for dsRNA immunoge-
nicity. Colocalization analysis between genetic variants associated
with A-to-I editing (edQTLs) and risk loci for autoimmune and im-
mune-mediated diseases facilitated the identification of dsRNAs
composed of IRAlus, as well as cis-natural antisense transcripts
(cis-NATs) (Li et al. 2022).Cis-NATs are composed of sense RNA an-
nealed to natural antisense transcripts (NATs) that are transcribed
from their opposite strand, thus forming long, perfectly comple-
mentary dsRNAs (Faghihi and Wahlestedt 2009). Reduced editing
of these dsRNAs was associated with inflammatory disease risk var-
iants, thus supporting their potential immunogenic status (Li et al.
2022).

Althoughmost studies to date have been limited to exploring
ADAR substrates, future work—implementing approaches dis-
cussed above—can further expand the known atlas of immuno-
genic dsRNAs and characterize their roles in different cell types
and cellular conditions. These methods may also be adapted to fa-
cilitate the identification of immunogenic circRNAs and ncRNAs,
which, to our knowledge, has not previously been subject to re-
view. Importantly, cytoplasmic localization is a key factor in deter-
mining substrate immunogenicity. Thus, ascertaining cellular
localization ought to be a critical consideration in any investiga-
tion on immunogenic targets.

Regulation of genes involved in immune system

defenses

In the above sections, we discussed how RNA modifications regu-
late the immunostimulatory potential of their target transcripts.
Another class of immune-relevant RNA modifications is those
that regulate the life cycle of genes with known immune system
relevance, such as ISGs or their upstream signaling molecules.

As revealed by transcriptome-wide investigations, the pres-
ence of RNA modifications can impact transcript stability (Wang
et al. 2014; Brümmer et al. 2017), translational efficiency (Wang
et al. 2015; Choi et al. 2016; Mao et al. 2019), cellular localization
(Roundtree et al. 2017), splicing (Hsiao et al. 2018; Kapoor et al.
2020; Tang et al. 2020), and RNA secondary structure (Liu et al.
2015; Solomon et al. 2017). For m6A andm5C, these regulatory ef-
fects are mediated by reader proteins that either selectively recog-
nize or preferentially bind to these modifications. On the other
hand, the effects of A-to-I and C-to-U editing often occur by virtue
of the resultant nucleotide changes. Thus, global studies on the
regulatory impact of RNA modifications often use knockdown of
reader proteins and/or the editing enzymes themselves (i.e.,
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ADARs, APOBECs, and methyltransferases) before analyses of the
resultant transcriptome. Characterization of modified transcripts
that are bound to the reader/editing protein of interest via IP-based
approaches (Wang et al. 2014, 2015; Bahn et al. 2015; Roundtree
et al. 2017; Yang et al. 2017)may also yield insights about the func-
tion of RNA modifications.

Immunostimulatory treatments have been found to modu-
late the abundance of proteins involved in the deposition of
RNA modifications (Peng et al. 2006; Rubio et al. 2018; Winkler
et al. 2019). These findings suggest that RNA modifications play
an important role in immune response. Indeed, multiple studies
have revealed that genes involved in immune system defenses
are regulated by RNAmodifications. Onemechanism of regulation
is the modulation of mRNA turnover rate. m6A modifications in
particular mediate mRNA decay by recruiting the destabilizing
m6A reader protein YTHDF2 (Wang et al. 2014). In an IFN-I-inde-
pendent pathway of host/viral resistance, m6Amodifications were
found to destabilize OGDH, which encodes metabolic intermedi-
ates that boost viral replication (Liu et al. 2019d). Multiple genes
encoding type I interferon–related genes are subject to m6A-medi-
ated stability regulation as well, including the IFNB1 transcript
(Rubio et al. 2018; Winkler et al. 2019) and Mavs (Qin et al.
2021). Other modifications can also regulate the stability of type
I IFN signaling pathway components. For example, depletion of
the m5C-writer NSUN2 led to increased stability of IRF3, resulting
in amplification of the type I interferon response (Wang et al.
2023). Additionally, a pan-cancer analysis of A-to-I editing in epi-
thelial andmesenchymal tumors presented evidence that RNA ed-
iting regulates the abundance of immune-related genes, including
the transcript encoding PKR (Chan et al. 2020). Here, the investi-
gators propose that A-to-I editing modulates the binding affinity
of the RNA-binding protein (RBP) ILF3, which is known to stabilize
its target mRNAs.

RNA modifications can also alter the translational efficiency
of their target genes. Translation of the ISGs IFITM1 and MX1
(McFadden et al. 2021), as well as the serine/threonine kinase
gene RIOK3 (Gokhale et al. 2020), was enhanced by m6A. RNA
modifications can also indirectlymodulate translational efficiency
by regulating transcript localization. Indeed, demethylation of the
antiviral transcripts Mavs, Traf3, and Traf6 was found to induce
nuclear retention and prevent subsequent protein translation
(Zheng et al. 2017). As evidenced by the improved translational ef-
ficiency of pseudouridine-containing transcripts that were synthe-
sized in vitro, pseudouridine may also boost the translational
efficiency of their host transcripts (Karikó et al. 2008). Using a
nanopore native RNA sequencing method for pseudouridine pre-
diction (NanoPsu), interferon pathway and antiviral response
genes were found to exhibit the highest increase in pseudouridine
modification probability (referring to either increased number of
sites and/or increased modification fraction) upon IFNG or
IFNB1 treatment in HeLa cells (Huang et al. 2021). The investiga-
tors suggest that pseudouridine enhances the translation of these
ISG transcripts upon immunostimulatory treatment. Future stud-
ies are needed to determine othermechanisms inwhich pseudour-
idine may regulate immune-relevant transcripts.

RNA modifications and adaptive immunity

Unlike type I IFN production and signaling, which can be mount-
ed by nearly all cells owing to their ability to produce IFNA1/IFNB1
upon PAMP recognition (McNab et al. 2015), adaptive immunity
relies upon the activities of antigen-specific T cells and antibody-

producing B cells (Marshall et al. 2018). Epitranscriptomic events
have been found to play critical roles in the successful maturation,
activation, and differentiation of these cells. Using a mousemodel
in which ADARwas ablated specifically in CD4+ T cells, Nakahama
et al. (2018) showed that ADAR supported T cellmaturation by pre-
venting excessive MDA5-activated ISG expression (Fig. 2E).
Without the editing activity of ADAR, the excessive ISG expression
impaired T cell receptor (TCR) signaling. In the same vein, deletion
ofMETTL3 fromCD4+ T cells impeded their differentiation into ef-
fector cells by stabilizing m6A-modified mRNAs encoding JAK-
STAT signaling inhibitors in the SOCS family (Fig. 2F; Li et al.
2017a). Inhibition of STAT signaling subsequently inhibited T
cell homeostatic proliferation and differentiation. m6A modifica-
tions were also found to be important for CD4+ T cell differentia-
tion into T follicular helper (Tfh) cells. Loss of METTL3 lead to
destabilization of Tcf7 transcripts, consequently impairing pro-
duction of the TCF7 (also known as TCF-1) protein, a key regulator
of Tfh differentiation (Yao et al. 2021). Depletion of them6Ameth-
yltransferase complex protein WTAP has also been used to eluci-
date the impact of m6A on TCR signaling and T cell survival
(Ito-Kureha et al. 2022). This study revealed that thymocyte
differentiation, activation-induced death of peripheral T cells,
and regulatory T cell function are dependent on WTAP and m6A
methyltransferase functions. For a comprehensive review of past
studies on the regulatory roles of m6A in different immune cells,
we refer readers to Han and Xu (2023).

T cellsmust discriminate between self- and non-self-antigens.
This learning process is largely mediated by medullary thymic ep-
ithelial cells that can express a large fraction of body antigens. In
comparison to other cell types, medullary thymic epithelial cells
display significantly higher levels of RNA processing, including
A-to-I and C-to-U RNA editing, thus expanding the diversity of
their self-antigen repertoire (Danan-Gotthold et al. 2016). The ex-
istence of peptides derived from edited RNA transcripts was later
confirmed via a specialized proteogenomic screening approach
that identified five edited peptides, one of which was derived
from an A-to-I edited site of cyclin I (CCNI R75G) (Fig. 2G).
When presented by tumor cells, this edited peptide was shown
to be recognized by and to elicit a robust T cell effector cytokine
IFNG response by tumor-infiltrating lymphocytes (Zhang et al.
2018). In the same vein, Zhou et al. (2020) identified an edited
neoantigen (arising from an A-to-I editing site in the OSBPL9
gene) that was complexed to MHC I based on high-resolution
mass-spectrometry in an ovarian cancer sample.

m6A has also been found to regulate antigen presentation. In
dendritic cells, transcripts encoding lysosomal proteases are sub-
ject to m6A modifications, which enhance their translation via
YTHDF1 binding. Because lysosomal proteases can destruct inter-
nalized antigens, inhibiting their activity enhances antigen
cross-presentation of wild-type dendritic cells (Han et al. 2019).
Thus, YTHDF1 represents a therapeutic target that could aid in a
more robust antitumor response.

Exploiting epitranscriptomics for cancer

immunotherapies

As a disease characterized by the uncontrollable growth and spread
of abnormal cells, cancer pathology is inextricably tied to aberra-
tions in immune system response. The advent of immunothera-
pies has revolutionized the treatment of cancer, but these
therapeutics are only effective in a subset of patients (Snyder
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et al. 2014; Gao et al. 2016; Zaretsky et al. 2016; Sambi et al. 2019).
Thus, further exploration of how treatment resistance can be over-
come is highly warranted.

Emerging evidence suggests that the manipulation of RNA
modifications can be leveraged to reduce cancer cell viability and
subsequent tumor growth. Here we focus specifically on how
ADAR and METTL3 depletion can function as promising thera-
peutic strategies, given that inhibitors specifically targeting their
activity have been developed and characterized in an immuno-on-
cogenic context. The relevance of both enzymes to cancer etiology
has been amply demonstrated in previous studies. The expression
of the A-to-I editing enzyme ADAR is up-regulated in a myriad of
cancers (Fumagalli et al. 2015; Anadón et al. 2016), likely owing
to amplification of the corresponding chromosomal region
(Knuutila et al. 1998) and as a consequence of inflammatory sig-
naling (Fumagalli et al. 2015). Indeed, the positive correlation be-
tween ADAR and the type I interferon response in cancer cell lines
is primarily explained by the p150 isoform, consistent with its role
as an ISG (Fumagalli et al. 2015). Moreover, a global analysis of A-
to-I editing profiles across 17 cancer types from The Cancer
Genome Atlas (TCGA) revealed that tumors exhibit distinct pro-
files from normal tissues, including numerous clinically relevant
cross-tumor editing events (Han et al. 2015). Other examples in
which increased ADAR editing have promoted cancer progression
have been previously reviewed (Fritzell et al. 2018).

Several studies have shown that ADAR deletion reduces can-
cer cell viability, at least partially through activation of PKR
(Gannon et al. 2018; Bhate et al. 2019; Ishizuka et al. 2019; Liu
et al. 2019c; Kung et al. 2021). Loss of ADAR enhances sensing
of immunogenic ligands, subsequently triggering levels of inflam-
mation and IFN sensitivity sufficient to sensitize tumor cells to im-
munotherapy, and overcomes resistance to checkpoint blockade
(Ishizuka et al. 2019). Combating therapeutic resistance through
ADAR inhibition may be facilitated by drugs such as rebecsinib
(17S-FD-895), an ADAR splice isoform switching inhibitor, which
bindswithin the spliceosome core complex to induce intron reten-
tion in ADAR p150. Rebecsinib was shown to obviate editing-me-
diated leukemia stem cell self-renewal and has already completed
preinvestigational new drug (IND) studies (PIND 153126) (Crews
et al. 2023). Moreover, epigenetic therapies, such as treatment
with the DNA methyltransferase inhibitor (DNMTi) 5-AZA-CdR,
have been shown to enhance the antitumor effects of ADAR deple-
tion by inducing immunogenic dsRNAs derived from Alu retroele-
ments (Mehdipour et al. 2020). Future investigations may explore
the clinical tractability offered by the combination of these two
drugs and other related treatments.

In the same vein, dysregulation ofm6Amodifiers is common-
ly observed across cancer types (Deng et al. 2023) and contributes
substantially to various facets of the disease, including cancer me-
tabolism (Shen et al. 2020;Wang et al. 2020b, 2021), tumormicro-
environment (Wang et al. 2019; Song et al. 2021; Yin et al. 2021),
and immunotherapy response (Wang et al. 2020a). Therapeutic
promise through m6A can be found in two recently developed
METTL3 inhibitors: STM2457 (Yankova et al. 2021) and
STM3006 (Guirguis et al. 2023). METTL3 inhibition with
STM2457 in AT3 TNBC cells (triple-negative breast cancer mouse
cell line) was shown to increase the formation of dsRNAs as well
as MHC-I expression on the tumor cell surfaces. Enhanced T
cell–mediated tumor-cell killing in the presence of STM2457 was
shown to be dependent on the tumor cells’ ability to sense
dsRNAs. This was demonstrated by the observation that repression
of dsRNA sensor proteins abolished the increased cell surface ex-

pression of MHC-I in METTL3-inhibited cells (Guirguis et al.
2023). STC-15, a METTL3 inhibitor exhibiting comparable poten-
cy to STM3006 but featuring enhanced metabolic stability, is cur-
rently undergoing assessment in a phase I clinical trial for solid
cancers (NCT05584111) (Guirguis et al. 2023).

Conclusions and future outlook

Here, we highlight investigations that have explored the multifac-
eted ways in which epitranscriptomic events contribute toward
immune system responses (Fig. 3). Given the accumulation of
findings regarding their relevance to cellular immunogenicity,
we focused specifically on A-to-I/C-to-U editing, m6A/m5C, and
pseudouridine modifications in this review. Moving forward, sev-
eral considerations are important when executing or evaluating re-
sults from these types of studies. First, it is important to clarify
whether a phenotype of interest (e.g., somemeasure of immune re-
sponse) arises owing to RNA modification per se or rather some
modification-independent feature of the editor/writer enzyme,
such as RNA binding. Mutant proteins with impaired enzymatic
activity (Yang et al. 2017; Tang et al. 2020) can be used to aid in
this endeavor. Additionally, given that identification of RNA
modifications often suffers from noise originating from sequenc-
ing errors, SNPs, and mapping biases, the implementation of ap-
propriate filters and statistical frameworks is imperative to
minimize false-positive identification of sites (Lee et al. 2013;
Huang et al. 2019; McIntyre et al. 2020). Using complementary
detection methods in the same biological systems can also be a
helpful approach to boost sensitivity and specificity.

An ongoing question is the exact identity of immunogenic
RNAs that are targeted by RNA modifications, as well as whether
they vary across different cell types. Although it is likely that
PRRs target distinct groups of immunogenic RNAs based on their
substrate binding preferences, it remains unknown whether they
consistently bind the same groups of transcripts. Previous studies
present populations of immunostimulatory RNA candidates that
can be used as starting points for future investigations. These in-
clude cis-NATs (Li et al. 2022), transcripts exhibiting increased
pseudouridylation upon IFN treatment (Huang et al. 2021), and
genes destabilized by ADAR depletion (Solomon et al. 2017). The
immunogenicity of target transcripts may also depend on biolog-
ical context. Although cross-species transcriptome analysis has re-
vealed purifying selection against the expression of long, nearly
perfect dsRNAs (Barak et al. 2020), factors such as the dsRNA edit-
ing level and genetic variants may contribute to enhanced tran-
script immunogenicity, either by increasing sensor sensitivity
(Ahmad et al. 2018) or by altering dsRNA structure. The cell type
under consideration may also be an important factor. Recently,
ADAR deficiency was found to result in elevated dsRNA levels in
several cell types (hESCs, NPCs, and neurons), but increased type
I IFN levels were observed only in neurons (Dorrity et al. 2023).
Single-cell RNA-seq approaches may help further elucidate the
cell type–specific effects of RNAmodifications and the fate of their
regulatory targets, such as whether immunogenic dsRNAs are se-
creted to activate specific immune cell populations.

The convergence of pathways involving different types of
RNA modifications raises questions regarding their collective bio-
logical impact. This is particularly noteworthy for ADAR editing
and m6A methylation. Both of these modifications occur at aden-
osines on the same nitrogen in amutually exclusivemanner. Once
adenosine is deaminated into inosine, it can no longer be subject
to m6A modification; similarly, m6A is a poor substrate for

Huang et al.

522 Genome Research
www.genome.org



deamination (Véliz et al. 2003). Knockdown of METTL3 and
METTL14 in HEK293T cells resulted in widespread increases in
A-to-I RNA editing, suggesting a genome-wide inverse relationship
between A-to-I editing and m6A modifications (Xiang et al. 2018).
A similar trend of increased A-to-I editing levels was observed in
K562 cells upon knockdown of the pseudouridine synthase 1
(PUS1) (Quinones-Valdez et al. 2019). Future investigations are re-
quired to fully elucidate the cumulative impact of epitranscrip-
tomic events, perhaps aided by novel methods that allow for
simultaneous detection of different types of modifications
(Hartstock et al. 2023).

Investigations into the interplay between RNAmodifications
and host immunity have unearthed a trove of intriguing discover-
ies that show promise in human health contexts. Future imple-
mentations of experimental and computational methods will

continue to illuminate the landscape of RNA modifications and
their pivotal roles in shaping immune functions and phenotypes,
forging new insights into the dynamic relationship between RNA
epitranscriptomics and host defense mechanisms.
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Figure 3. Categories of immune-related epitranscriptomic events and corresponding examples. (A) A-to-I editing by ADAR destabilizes dsRNA structures,
inhibiting sensing byMDA5 and the subsequent activation of the IFN signaling pathway. (B)m6Amodifications of circRNAs facilitate its recognition as “self”
RNA, thus preventing RIGI sensing. (C) Pseudouridine and m5C modifications within immunostimulatory transcripts can inhibit TLR signaling. (D) m5C
influences the abundance of transcripts that, in turn, up-regulate immunogenic substrates, such as 7SL. (E) RNA modifications can influence the stability
and translation rate of genes associated with interferon responses. (F ) m6Amodification of antiviral transcripts affects nuclear export and subsequent trans-
lation. (G) ADAR promotes T cell maturation by mitigating ISG expression, and METTL3 impacts CD4+ T cell differentiation into T follicular helper cells by
destabilization of Tcf7 transcripts. (H) Modifications that result in amino-acid substitutions could lead to the expression of modified peptides, which could
be recognized by T cells when presented on tumor cells. (I) m6A modifications of lysosomal proteases affect antigen cross-presentation of dendritic cells.
Created with BioRender (https://www.biorender.com).
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