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Kinetic theories of state- and generation-dependent cell populations
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We formulate a general, high-dimensional, partial integrodifferential equation (PIDE) kinetic theory describ-
ing the internal state (such as gene expression or protein levels) of cells in a stochastically evolving population.
The resolution of our kinetic theory also allows one to track subpopulations associated with each generation.
Both intrinsic noise of the cell’s internal attribute and randomness in a cell’s division times (demographic
stochasticity) are fundamental to the development of our model. Using our framework, we are able to marginalize
the high-dimensional PIDEs in a number of different ways to derive equations which can be PIDEs themselves)
that describe the dynamics of marginalized or “macroscopic” quantities such as structured population densities,
moments of generation-dependent cellular states, and moments of the total population. We also show how
nonlinear “interaction” terms in lower-dimensional integrodifferential equations can arise from high-dimensional
linear kinetic models that contain rate parameters of a cell (birth and death rates) that depend on variables
associated with other cells, generating couplings in the dynamics. Our analysis provides a general, more complete
mathematical framework that resolves the coevolution of cell populations and cell states. The approach may be
tailored for studying, e.g., gene expression in developing tissues, or other more general particle systems which
exhibit Brownian noise in individual attributes and population-level demographic noise.
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I. INTRODUCTION

Mathematical models have been formulated to describe the
evolution of populations according to a number of individual
attributes such as age, size, and/or added size since birth. Such
structured population models have various applications across
diverse fields. For example, deterministic age-structured mod-
els that incorporate age-dependent birth and death were first
developed by McKendrick [1–4] and have been applied to
human populations [5]. Structured population models have
also been applied to model cell size control [6,7], cellu-
lar division mechanisms [8], and structured cell population
models [9,10].

In a proliferating cell population, individual cell growth
is interrupted by cell division events that generate daughter
cells. Kinetic theory is a natural framework to capture the
link between individual cellular growth and division, within
a proliferating population of cells. Kinetic theories of sim-
ple birth-death. processes that track the chronological age
of each cell have been developed [11–14] that establish a
rigorous mathematical framework to describe how individ-
ual cell aging, growth, and division affect population-level
quantities such as population-averaged cell size. The kinetic
theory PIDE can be marginalized in different ways and re-
duce, in different limits, to masterlike equations or structured
population-like PIDEs, thus unifying deterministic “moment”
equations (the structured population PIDEs) with Markovian
birth-death-like models. Stochastic fluctuations in parameters
such as the cellular growth rate have also been included [15],
but integrating fluctuations of internal variables with random
birth-death events (demographic stochasticity) is challenging
due to the combinatorial complexity and unwieldiness of the
relevant equations.

Besides simple individual-cell dynamical variables such as
cell age or cell size, gene (mRNA) or protein expression levels
are also measured cellular attributes that are important in
cell biology, particularly during development. Since there are
many different species of mRNA or proteins, the expression
pattern is a vector of fluctuating variables.

Although modern computational and statistical techniques
can be used to quantitatively infer single cellular mRNA [16],
protein [17,18], or chlorophyll [19] levels from experimental
data, mathematical models of how expression levels or cell
states evolve is often couched in terms of transport along
Waddington or fitness landscapes [20,21]. The value of the
landscape may represent an “energy” function that is shaped
by different genes, or a proliferation rate that is a function
different gene expression rates. However, how populations of
cells are represented in such high-dimensional “landscapes” is
unclear. Moreover, since cellular division rates and death rates
typically depend in depend on internal stochastic cell vari-
ables such as gene expression levels [22–24], it is important
to model how fluctuating-gene-expression-dependent birth or
death rates feature in the evolution of a population along an
appropriate landscape.

Kinetic models have the capability of precisely describing
both the stochastic dynamics of individual cell states and the
stochastic birth-death processes associated with an evolving
population. Not only is the coupling between individual cell
states and the evolution of the population explicit in a ki-
netic equation, but potential functions governing intracell state
dynamics and proliferation (defining a fitness function) arise
naturally in the kinetic framework.

Previously derived kinetic models such as the timer-sizer
model for cell populations distributed across size [13,25]
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incorporate stochastic differential equations (SDEs) to track
the dynamics individual internal cell states such as size or
mRNA/protein levels. Marginalization of the kinetic equa-
tions results in equations for the correlation functions that
explicitly show how individual cell states are linked to key
macroscopic quantities of the overall population. However,
these kinetic theories could not track lineages or generational
subpopulations of cells nor did they incorporate cell death or
cell division that may also depend on other stochastic vari-
ables associated with the cell.

In this paper, we formally develop a complete kinetic
model that tracks continuous-valued, stochastically evolving
variables (e.g., gene expression, cellular size, mRNA level,
protein level, etc.) and the discrete generation number of
each cell. The mathematical framework we use for delineating
cell of different attribute values across different generations
shares a related structure to one recently used to describe ages
across different cell stages [14]. In our problem, noise in gene
expression is described by a continuous-time stochastic pro-
cess while noise in division events is described by a Markov
jump process. Our model couples these stochastic processes
through an SDE-jump-process hybrid model in which the
division and death rates explicitly depend on fluctuating gene
expression levels [26,27]. All of these quantities are tracked
along different generations. The mathematical framework we
use for delineating cell of different attribute values across
different generations shares a related structure to one recently
used to describe ages across different cell stages [14].

In the next section, we define the kinetic model and show
how potentials that govern the intracellular dynamics and the
population fitness can be motivated. Since the development of
our generation-dependent kinetic equations requires intensive
book-keeping and associated notation to resolve the time-
dependent attributes of each member of the entire population,
many of the steps are detailed in extensive mathematical Ap-
pendices. However, eventually, in Sec. III we marginalize our
high-dimensional kinetic PIDE to derive a number of more
meaningful “reduced” equations that describe the evolution
of key quantities of biological interest. These new results are
summarized and listed in the Summary and Conclusions. We
also carry out a numerical experiment on a simple exam-
ple to show how cellular gene expression levels evolve over
generations and how the macroscopic cellular density (with
respect to gene expression level), when interrupted by cellular
division, can be prevented from returning to the equilibrium
distribution. In the Conclusions, we discuss potential applica-
tions and extensions.

II. KINETIC EQUATION FRAMEWORK

For simplicity, we first assume the internal state of each
cell is characterized by a one-dimensional scalar quantity
X ∈ R. This continuous stochastic variable may represent,
for example, the expression level of a single mRNA tran-
script or protein abundance (or log-abundance). Besides this
continuous variable, associated with each cell is the discrete
generation i ∈ N+ to which it belongs (assuming it is part of
a lineage derived from an ancestor).

We model the evolution of Xi, j (the internal state of the jth
cell in the ith generation) using an SDE of the standard form

FIG. 1. A schematic of our generation-dependent cellular state
evolution model Eq. (1). Here we let Xi, j (t ) refers to the cell size of
the jth cell in the ith generation. Intradivision growth (shown here
to occur between times t0 and t1) is described by the SDE 1 where
gi, j is the cellular size growth rate and σi, j is the amplitude growth
rate fluctuations. When a cell in the ith generation divides at time
t1, it will give birth to two new cells in the (i + 1)th generation. In
the particular case of cell size measured by volume, we expect total
volume to be conserved immediately after division and Xi+1,1(t1) +
Xi+1,2(t1) = Xi, j (t1).

[28,29]

dXi, j (t ) = gi, j (Xi, j, t )dt + σi, j (Xi, j, t )dWi, j, (1)

where gi, j (Xi, j, t )dt is the deterministic convection that de-
pends on both Xi, j and the generation i, and dWi, j are
increments of independent Wiener processes for each i, j.
Thus, the term σi, j (Xi, j, t )dWi, j represents the “intrinsic”
fluctuation in the evolution of Xi, j (t ). Often, one can as-
sume that the convection arises from gradients of a potential
“energy function” �: gi, j (Xi, j, t ) := −∇�(x, t )|x=Xi, j [21].
Although a gradient of �(x, t ) may conveniently describes
a time-dependent force that changes gene expression, non-
conservative driving with metabolically driven fluxes, which
cannot be described by a potential, is also to be expected [30].

We assume that both gi, j and σi, j are Lipschitz continuous
so the solution Xi, j (t ) of Eq. (1) exists and is almost surely
unique given any initial condition Xi, j (0). The evolution of
Xi, j is interrupted by the cell division; an ith generation cell
with internal state Xi, j divides in time dt with total prob-
ability βi(Xi, j )dt . This Markovian birth rate can be further
stratified by internal state of the two resulting daughter cells
immediately after their birth. We denote the differential birth
rate density of producing one daughter with internal state X1

and the other with state X2 as β̃i, j (Xi, j, X1, X2). Integrating
over all possible daughter cell states X1, X2 defines the total
division rate:∫

β̃i, j (Xi, j, X1, X2)dX1dX2 = βi, j (Xi, j ). (2)

A form for β̃ might be

β̃i, j (Xi, j, X1, X2) ∝ e−φ(X1,X2|Xi, j ), (3)

which defines a “free energy” function φ(X1, X2|Xi, j ) for the
rate of a mother cell with attribute value X to divide into
daughters cell with attribute values X1 and X2. If the states
of the daughter cells tend towards being similar in value to
that of their mother cell, then φ(X1, X2|Xi, j ) would exhibit a
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minimum at X1, X2 ≈ X . Although � and φ might be loosely
described in terms of Waddington and fitness landscapes, our
unifying kinetic framework allows them to be unambiguously
described in terms of the intracellular advection gi, j (Xi, j, t )
and proliferation function β̃, respectively.

Figure 1 summarizes our generation-dependent cellular
state evolution model Eq. (1), incorporating cell division and
cell death. In this example, Xi, j (t ) represents the continuous
cell size of the jth cell in the ith generation.

Since the derivation of our kinetic theory requires the use
of a number of variables and indices, we define some simpli-
fying notation. Specifically, each of the ni elements of the bold
vector X i represents the expression level Xi, j of the jth, 1 �
j � ni cell in the ith-generation subpopulation. These vectors
X i for the subpopulations across generations 1 � i � k can be

collected as a matrix defined as X n := (X 1, . . . , X k ), where
n := (n1, . . . , nk ) is a vector representing the total number
of cells in each generation 1 � i � k. Each value ni evolves
stochastically defined by random birth and death events. Be-
low is a table of the various definitions and overall notation
used throughout this paper.

Next, define pn(X n, t |X (0)n(0), 0) as the probability den-
sity function that the population has n cells with internal
states X n given the initial condition that the system has n(0)
cells with internal state values X (0)n(0) at t = 0. For nota-
tional simplicity, we name the cell state random variables (at
time t) Xi, j (t ), X i(t ), and X (t )n(t ), and denote their values
by and Xi, j, X i, and X n, respectively. The probability density
pn(X n, t |X (0)n(0), 0) can be defined as the expectation over
trajectories from (X (0)n(0), 0) to (X n, t):

pn
(
X n, t |X (0)n(0), 0

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E
[
δ
(
X (t )n(t ) − X n

)
S
(
t ; X (t )n(t )

)∣∣X (0)n(0), 0; n(0 < s < t ) = n(0)
]
, n = n(0)

+
∫ t

0
E

[
J̃
(
t, τ ; X n, n(0)

)
S
(
τ ; X (τ )n(τ )

)∣∣X (0)n(0), 0; n(0 < s < τ ) = n(0)
]
dτ,

E

[ ∫ t

0
J̃ (t, τ ; X n, n(0))S

(
τ ; X (τ )n(τ )

)
dτ

∣∣∣∣X (0)n(0), 0

]
, n �= n(0),

(4)

where

S(t ; X (t )n(t ) ) ≡ exp
(
−

∫ t

0

k(0)∑
i=1

ni (0)∑
j=1

(
βi, j (Xi, j (s)) + μi, j (Xi, j (s))

)
ds

)

J̃ (t, τ ; X n, n(0)) ≡
k(0)∑
i=1

ni (0)∑
j=1

(
β̃i, j

(
Xi, j (τ ), X1(τ ), X2(τ )

)
pn

(
X n, t − τ

∣∣X (τ )− j
n(0)b,−i

, 0
)

+ μi, j (Xi, j (τ ))pn
(
X n, t − τ

∣∣X (τ )− j
n(0)d,−i

, 0
))

. (5)

Here S(t ; X (t )n(t ) ) is the joint “survival” probability such that no cell death or cell division occurred up to time t ;

E[J̃ (t, τ ; X (t )n(t ), n(0))S(τ ; X (τ )n(τ ) )|X (0)n(0), 0; n(0 < s < τ ) = n(0)] in Eq. (4) can be regarded as the probability such
that when a cell in the initial population dies of divides at τ , the state of final structured cell population is X n. Definitions
of X− j

n(0)b,−i
(s) and X− j

n(0)d,−i
are given in Table I. The term S(t ; X (t )n(t ) ) represents the survival probability up to time t while

J̃ (t, τ ; X (t )n(t ), n(0)) describes the probability flux from a given state X (τ )n(τ ) to the current state X (t )n(t ) due to division or
death at time τ . The first form on the right-hand side of Eq. (4) is the probability that no division or death happens in the system
during time [0, t] and the final internal states of the cell population are X (t )n(t ) while the second form in Eq. (4) denotes the
probability that at least one division or death happened within [0, t] to arrive at the final internal state X (t )n(t ).

We shall show that under certain conditions, pn(X n, t |X (0)n(0), 0) satisfies the partial differential equation

∂ pn

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j pn)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j pn
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
pn

+
k∑

i=2

ni−1+1∑
j=1

∫
β̃i, j

(
Y, Xi,ni−1, Xi,ni

)
pnb,i−1

(
X j

nb,i−1
, t

∣∣X (0)n(0), 0
)

dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi, j (Y )pnd,i

(
X j

nd,i
, t

∣∣X (0)n(0), 0
)

dY. (6)

In Eq. (6), the predivision cell population X j
nb,i−1

and the predeath cell population X j
nd,i

are explicitly defined in Table I. The
mathematical steps and necessary conditions needed to show that pn(X n, t |X (0)n(0), 0) defined in Eq. (4) satisfies Eq. (6) is given
in Appendix A. We impose the normalization condition

∑
n

∫
pn(X n, t |X (0)n(0), 0)dX n = 1 for every X (0)n(0) and average over

an initial distribution of X (0)n(0) (denoted by qn(0)(X (0)n(0), 0)) to define an unconditional probability density

pn(X n, t ) :=
∑
n(0)

∫
X n(0)

pn(X n, t |X (0)n(0), 0)qn(0)(X (0)n(0), 0) dX (0)n(0) (7)

that also satisfies Eq. (6).
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TABLE I. Overview of variables. A list of the main variables and parameters used. The specific labels and definitions of state vectors given
provide the proper bookkeeping of all possible initial and final states upon birth and death.

Symbol Definition and explanation

n(t ) n(t ) := (n1(t ), . . . , nk(t )(t )): time-dependent vector of random numbers of cells in the ith generation, i = 1, . . . , k
n n := (n1, . . . , nk ): vector of integer values ni of the number of cells in generation i = 1, . . . , k
X (t )n(t ) X (t )n(t ) := (X 1(t ), . . . , X k(t )(t )), X i(t ) := (Xi,1(t ), . . . , Xi,ni (t )(t )): time-dependent random variable describing

the state of each cell, e.g., gene expression level Xi,ni (t ) of the nth
i cell in the ith generation

X n X n := (X 1, . . . , X k ), X i := (Xi,1, . . . , Xi,ni ): values of X (t )n(t )

�Xn �Xn := (X1, . . . , Xn), the vector of state values for any collection of n cells
gi, j (Xi, j, t ) Deterministic growth rate of the jth cell in the ith generation
σi, j (Xi, j, t ) Noise in the growth of the jth cell in the ith generation
βi, j (Xi, j ) Division rate of the jth cell in the ith generation
μi, j (Xi, j ) Death rate of the jth cell in the ith generation
β̃i, j (Xi, j, X1, X2) Differential division rate of the jth cell in the ith generation into two cells in the (i + 1)th generation with states X1, X2

X− j
nb,−i

States of the cell population right after the jth cell in the ith generation divides. X− j
nb,−i

differs from X n in that the state
variables for the cells in the (i − 1)th generation is (Xi−1,1, . . . , Xi−1, j−1, Xi−1, j+1, . . . , Xi−1,ni ) and the state
variables for the cells in the ith generation are (Xi,1, . . . , Xi,ni , X1, X2)

X− j
nd,−i

States of the cell population right after the jth cell in the ith generation dies. X− j
nd,−i

differs from X n in that the state
variables for the cells in the (i − 1)th generation are (Xi−1,1, . . . , Xi−1, j−1, Xi−1, j+1, . . . , Xi−1,ni )

X j
nb,i−1

Pre-division cellular population that differs from X n as state variables for (i − 1)th-generation cells are
(Xi−1,1, . . . , Xi−1, j−1,Y, Xi−1, j, . . . ) while state variables for ith-generation cells are (Xi,1, . . . , Xi,ni−2)
(an additional cell with Y in the (i − 1)th generation divides and gives birth to two new daughter cells
Xi,ni−1, Xi,ni in the ith generation)

X j
nd,i

Pre-death cell population states. This differs from X n in that the state variables for the cells in the ith generation
are (Xi,1, . . . , Xi, j−1,Y, Xi, j, . . . ) (an additional cell in the ith generation with Y dies)

X j1, j2
nb,i

Pre-division state which differs from X n in that the state vector associated with the ith generation is (Y, Xi,1, . . . , Xi,ni )
and the state of the (i + 1)th generation does not contain components Xi+1, j1 and Xi+1, j2

Next, we define the symmetric probability density distribution

ρn(X n, t ) :=
k∏

i=1

1

ni!

∑
π

pn(π (X n), t ), (8)

where pn is defined in Eq. (7) and π (X n) is a permutation operator that reorders the sequence of the state variables Xi, j of cells
within each generation, for all generations. For example, for n = (n1) with n1(t ) = 2, we have ρn(X1,1, X1,2, t ) = ρn(X1,2, X1,1, t )
but pn(X1,1, X1,2, t ) might not be equal to pn(X1,2, X1,1, t ). Thus, the summation is taken over all such grouped permutations
(
∏k

i=1 ni! permutations in total). In the special case

gi, j = gi, σi, j = σi, βi, j = βi, β̃i, j = β̃i, μi, j = μi, (9)

i.e., when the rate parameters depend at most on the generation of a cell, ρn(X n, t ) defined in Eq. (8) obeys

∂ρn

∂t
+

k∑
i=1

ni∑
j=1

∂ (giρn)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i ρn
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi(Xi, j ) + μi(Xi, j )

)
ρn

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1� j1 �= j2�ni+1

∫
β̃i

(
Y, Xi+1, j1 , Xi+1, j2

)
ρnb,i

(
X j1, j2

nb,i
, t

)
dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi(Y )ρnd,i

(
X j

nd,i
, t

)
dY, (10)

where X j1, j2
nb,i

differs from X n in that the state vector associated with cells in the ith generation are (Y, Xi,1, . . . , Xi,ni ) and the state
vector for cells in the (i + 1)th generation does not have the components Xi+1, j1 and Xi+1, j2 .
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We note that the complex formulas derived above can be
reduced to a kinetic theory for populations stratified by a
wide range of continuous attributes, intrinsically stochastic
or deterministic. For example, if Xi, j is age a (time since
birth), then Eq. (10) (with σ = 0) becomes a kinetic theory
for age-structured populations with stochastic birth and death
times [11–13]. Further marginalization of independent parti-
cles (cells or individuals) reduces the age-structured kinetic
theory for the expected density of individuals at age a to the
classic McKendrick-von Foerster age-structured PDE [1–3].
Alternatively, as alluded to in the Introduction, if the kinetic
parameters g, β̃, and μ are independent of Xi, j , then Eq. (10)
can be integrated over all X n leading to a birth-death master
equation for P(n, t ) [11,12,31], the probability of having a
population n at time t [cf. Eqs. (31) and (32)]. Thus, our
general kinetic theory framework is foundational to many
types of structured (size, age, etc.) population models that
arise in demography and ecology [32], while also connecting
them to standard memoryless birth-death processes in cer-
tain limits. In fact, our framework extends beyond classical
linear models by providing a framework that can include
interactions among individuals that generate nonlinear terms
in structured-population PDE models [cf. Eq. (47)]. For exam-
ple, cannibalistic interactions between individuals of different
ages or sizes has been recently derived from an age-structured
kinetic model to explain population overcompensation behav-
ior observed in several ecological systems [33].

In many systems, the attribute variable is a mul-
tidimensional vector instead of a scalar, i.e., Xi, j :=
(Xi, j,1, . . . , Xi, j,d ) ∈ Rd may also represent d different gene or
protein expression levels in the jth cell in the ith generation.
This vector may represent, for example, d different gene or
protein expression levels. We assume that the evolution of Xi, j

(each element now implicitly a vector of attributes) follows
the Brownian SDE

dXi, j = gi, j (Xi, j, t )dt + �i, j (Xi, j, t )dW i, j, (11)

where W i, j is a d0-dimensional vector of independent
Wiener processes (d0 � d) for each i, j and the coeffi-
cients gi, j (Xi, j, t ) := (gi, j,1(Xi, j, t ), . . . , gi, j,d (Xi, j, t )) : Rd ×
R+ → Rd ,�i, j : Rh × R+ → Rd×d0 is the diffusion coef-
ficient matrix such that its entries (�i, j (Xi, j, t ))mn, m =
1, . . . , d, n = 1, . . . , d0 are all smooth, uniform Lipschitz
continuous, and uniformly bounded. We can also define the
symmetric probability density distribution ρn(X n, t ) as in
Eqs. (8). Suppose the rate parameters depend at most on the
generation of a cell, i.e.,

gi, j = gi, �i, j = �i, βi, j = βi, β̃i, j = β̃i, μi, j = μi; (12)

then, after applying the multidimensional forward Feynman-
Kac equation case in Ref. [34] we can show that the
differential equation satisfied by such ρn is

∂ρn

∂t
+

k∑
i=1

ni∑
j=1

d∑
�=1

∂ (gi�ρn)

∂Xi, j,�
= 1

2

k∑
i=1

ni∑
j=1

d∑
�1,�2=1

∂2
(∑d0

h=1(�i )�1,h(�i)�2,h ρn
)

(
∂Xi, j,�1∂Xi, j,�2

) −
k∑

i=1

ni∑
j=1

(
βi(Xi, j ) + μi(Xi, j )

)
ρn

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1� j1 �= j2�ni+1

∫
β̃i

(
Y, Xi+1, j1 , Xi+1, j2

)
ρnb,i

(
X j1, j2

nb,i
, t

)
dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi(Y )ρnd,i

(
X j

nd,i
, t

)
dY. (13)

In Appendix C, we also derive kinetic equations for the
population density associated with cells that are also labeled
by their age. The derivation assumes the budding model of
birth where on daughter cell’s age is set to zero immediately
after birth [11,12].

III. MASS-ACTION DIFFERENTIAL EQUATIONS

Henceforth, we will consider the “simpler” single-gene
model which are derived from Eqs. (6), (10), or (13) and
could be effectively simulated. Extending the model to include
d-dimensional attributes can be implemented following the
structure in Eqs. (11) and (13). It is usually very difficult
to numerically determine pn or ρn as defined in Eqs. (6),
(10), or (13) because the variable X n can be very high di-
mensional. However, by proper marginalization of the kinetic
equation (10) we can derive the differential equations that
describe the evolution of certain “macroscopic” and inter-
pretable quantities such as the expected total-population levels
of X . Such macroscopic quantities track a reduced number of

variables, allowing functions over them to be more efficiently
simulated or computed numerically. In this section, we derive
governing equations for specific examples of macroscopic
quantities by marginalizing Eq. (10), which are then solved
numerically to show how quantities such as cellular gene
expression levels can evolve over generations.

A. Evolution of the population density

First, we can track the marginal cell distributions of certain
cells in specified generations by defining the macroscopic
quantity

un(X n, t ) :=
∑
m�n

∞∏
�=1

(m�)n�

∫
Xm\n

ρm(X m, t )dX m\n, (14)

where m � n means that for each component in m :=
(m1, . . . , m�), m� � n� and (m�)n�

:= m�(m� − 1) · · · (m� −
n� + 1) is the falling factorial. The integration is taken over
the remaining variables Xm, but excludes the variables of
interest X n which are retained [i.e., un(X n, t ) only tracks
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FIG. 2. (a) The equilibrium cellular density without division [Eq. (17)]. (b) A differential birth rate
∫

β̃i, j (Xi, j,Y, Z )dZ using the form
given in Eq. (18). (c) Using the differential birth rate in (b) and Eq. (17) for normalization, we plot the associated cellular density ūi(x, t = 2)
[Eq. (19)] across different generations. The differentiation process prevents the population from reaching an equilibrium (i � 2) even when the
death rate and division rate are x independent. However, as time increases for a certain generation (such as i = 1) in which no cell has entered,
the structured population in that generation gradually returns to equilibrium.

the joint “density” of cells with states X n at generations n
while ignoring all other cells]. Assuming the relationships in

Eqs. (9) hold, we find that un(X n, t ) satisfies the differential
equation

∂un

∂t
+

k∑
i=1

ni∑
j=1

∂ (giun)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i un
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi(Xi, j ) + μi(Xi, j )

)
un

+
k−1∑
i=1

∑
j1 �= j2

∫
β̃i

(
Y, Xi+1, j1 , Xi+1, j2

)
unb,i

(
X j1, j2

nb,i
, t

)
dY

+
k−1∑
i=1

ni+1∑
j=1

∫ (
β̃i(Y, Xi+1, j, Z ) + β̃i(Y, Z, Xi+1, j )

)
unb,i

(
X 1

nb,i, j
, t

)
dY dZ. (15)

In the above equation, X 1
nb,i, j indicates that, compared to

X n, the ith generation has an extra variable Y in the begin-
ning but the (i + 1)st generation is missing the variale Xi+1, j .
From Eq. (15), the set of macroscopic quantities {un} satisfies
“sequential” closed-form equations in that the PIDE satisfied
by un depends only on unb,i (X

j1, j2
nb,i

, t ) and unb,i (X
1
nb,i, j

, t ). In
the specific case in which only the population density in
the structured, ith-generation one-dimensional variable Xi,1
is tracked, we define ni := (0, . . . , 0, 1) ∈ N i and solve for
uni (X ni , t ). The quantity {uni (X ni , t )}∞i=1 indicates how the
cellular population density evolves across generations through
division and differentiation. Below, we present two exam-
ples of generation-specific structured population densities
uni (X ni , t ) as defined in Eq. (15).

Example 1. Consider the specific example studied in
Ref. [29] where the coefficients in Eq. (15) take the form

gi(Xi, j, t ) = −Xi, j, σ 2
i (Xi, j, t ) = exp

(−X 2
i, j

)
. (16)

Here we assume the quantity (e.g., gene expression level) to
be standardized so that Xi, j ∈ R and a negative feedback cap-
tured by a convection rate proportional to −Xi, j represents a
negative feedback. In this case, if the cells do not divide or die
(i.e., then the entire population stays in the first generation),
and their attributes converge to an equilibrium distribution

u∗
n1

(X1,1 = x, t → ∞) = exp
[
2x2 − 1

2 e2x2]
Z

, (17)

where Z = ∫ ∞
−∞ exp[2x2 − 1

2 e2x2
]dx is the normalization con-

stant and u∗
n1

(X1,1 = x, t → ∞) represents the population-
marginalized density in the absence of birth and death. The
equilibrium density is shown in Fig. 2(a).

To include birth and death, we choose rates of the form

βi, j = 1

2
, μi, j = i − 1

2i
,

β̃i, j (Xi, j,Y, Z ) = β̃i, j (Xi, j, Z,Y ),∫
β̃i, j (Xi, j,Y, Z )dZ ≡ 1

2
√

2π
e− (Y −Xi, j )2

2 (18)

and set the initial condition to be uni (X ni,1, 0) = 0.2δi,1,
where δi, j = 1 if i = j and δi, j = 0 otherwise is the Kro-
necker δ function. The differential division rate β̃ is shown in
Fig. 2(b).

Using these parameters and initial conditions, we use a
finite volume method to numerically solve Eq. (15) satis-
fied by uni . We used spatial and temporal mesh sizes x =
0.05,t = 0.0025 on a spatial domain D = [−2.5, 2.5] and
imposed a Neumann boundary condition: ∂xu(x, t )|x∈∂D = 0.
To illustrate the results, we plot the scaled [using Eq. (17)]
generation-dependent cellular density,

ūi(x, t ) ≡
(

1

u∗
n1

(x, t → ∞)

)
uni (X ni , t )∫ ∞

−∞ uni (X ni , t )dXi,1
(19)
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FIG. 3. Cell size densities uni (X i,1 = x, t ) within each generation i at various times t : (a) t = 0.1, (b) t = 1, (c) t = 2, and (d) t = 5. The
numerical results of this sizer division mechanism indicate that the size distribution (across all generations) reaches a steady state while the
mean and variance of the distribution over generation number increases linearly with time.

across the first 10 generations at t = 2 when x ∈ [−1, 1].
Figure 2(c) shows that division events, which bring newborn
cells into later generations i � 2, prevent structured cellular
density in later generations from reaching the equilibrium.

In the next example, instead of gene expression or mRNA
level, we define Xi, j as cell size or volume. Our reduced
kinetic theory can then be used to quantify how the size-
structured cell population evolves over time.

Example 2. In this example, we consider a “sizer” cell
division model which describes a mechanism whereby a cell
divides upon reaching a certain size [25]. In between divi-
sions, we assume exponential cell growth as described in
Ref. [35], along with a Langevin noise:

gi, j (Xi, j, t ) = g0Xi, j, σ 2
i, j (Xi, j, t ) = σ 2

0 Xi, j . (20)

To determine conditions for cell division, we implement the
sizer mechanism proposed in Ref. [35]: Xd = X0 + η, where
Xd is the cell size at division, X0 is a fixed cell size, and
η is a random variable independent of cell size. Without
loss of generality, we nondimensionalize and set X0 = 1. The
values of the uncertainty η are assumed to follow an ex-
ponential distribution η ∼ Exp(4). In this case, the division
rate is described by βi, j (x) ≡ 4Ix�1, where I is the indicator
function. We set the death rate μi, j = 0.01, assume symmetry
in the differential birth rate β̃i, j (Xi, j,Y, Z ) = β̃i, j (Xi, j, Z,Y ),
and define

∫
β̃i, j (Xi, j,Y, Z )dZ = 0 for Y � 0 or Y > Xi, j . For

0 < Y < Xi, j , we define∫
β̃i, j (Xi, j,Y, Z )dZ = βi, j (Xi, j )

C(Xi, j )
√

32π
e− (Y −Xi, j /2)2

32 ,

C(Xi, j ) := 1√
32π

∫ Xi, j

0
e− (Y −Xi, j /2)2

32 dY, (21)

such that after division, the summation of the sizes of two
daughter cells equals the size of their mother cell. In this ex-
ample, we also track the evolution of uni (X ni , t ), the structured
population density within the ith generation with respect to
size at time t . The initial condition is set to uni (X i,1, 0) =
I1�X�2 · δi,1. Using the above parameters, we use a finite
volume method to numerically solve Eq. (15) for uni . We
employed spatial and temporal mesh sizes x = 0.05,t =
0.001 in a spatial domain D = [0, 5]. We impose the Neu-
mann boundary condition ∂xu(x, t )|x∈∂D = 0 and plot in Fig. 3

the structured population uni (X i,1 = x, t ) at different t . We
see that cell size, under the sizer division mechanism, is well
regulated and very few cells reach a size X � 4 before divi-
sion or death. As time increases, cells divide and their siblings
will enter the next generation. The generation-resolved sizer
model yields a stationary distribution in size x, but mean
generation and variance that increases linearly in time, i.e, the
implicit one-term discrete generation recursion [cf. Eq. (30)]
is consistent with a convection-diffusion process in the
“hydrodynamic” large generation limit.

If the coefficients g, σ, β, β̃ depend only on the internal
state X and time t and not on the cells’ generation, i.e.,

gi, j = g, σi, j = σ, βi, j = β, μi, j = μ, β̃i, j = β̃, (22)

then we can define

ρ̂n( �Xn, t ) :=
∑

∑
ni=n

1

n!

∑
π

pn(π (X n), t ), (23)

where pn is defined in Eq. (7) and the summation over π is
over all possible rearrangements of X n (defined in Table I) of
a generation-resolved cell population n such that the union of
states of all cells in all generations is �Xn (i.e., if we pad X n

into one vector (X1,1, X1,2, . . . , Xk,nk ), then such a vector is a
rearrangement of �Xn, the vector of attributes of all n cells as
defined in Table I).

It can be shown that the differential equation satisfied by
ρ̂n is

∂ρ̂n

∂t
+

n∑
j=1

∂ (gρ̂n)

∂Xj

= 1

2

n∑
j=1

∂2(σ 2ρ̂n)

(∂Xj )2
−

n∑
j=1

(
β(Xj ) + μ(Xj )

)
ρ̂n

+ 1

n

∑
j1 �= j2

∫
β̃
(
Y, Xj1 , Xj2

)
ρ̂n−1

( �X j1, j2
nb

, t
)
dY

+ (n + 1)
∫

μ(Y )ρ̂n+1
( �Xnd , t

)
dY, (24)

where �X j1, j2
nb is the predivision cell states that are different

from �Xn in that it does not have contain the Xj1 , Xj2 terms but
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has an extra Y at the end; �Xnd is the predeath cell states that is
different from �X in that it has an extra Y component. In this
case, we can define the generation-independent marginalized
cell density

un( �Xn, t ) :=
∑
m�n

(m)n

∫
ρ̂m( �Xm, t )d �Xm\ �Xn (25)

which satisfies

∂un( �Xn, t )

∂t
+

n∑
j=1

∂ (gun)

∂Xj

= 1

2

n∑
j=1

∂2(σ 2un)

(∂Xj )2
−

n∑
j=1

(
β(Xj ) + μ(Xj )

)
un

+
∑
j1 �= j2

∫
β̃
(
Y, Xj1 , Xj2

)
un−1

( �X j1, j2
nb

, t
)

dY

+
n∑

j=1

∫ (
β̃(Y, Xj, Z ) + β̃(Y, Z, Xj )

)
un

( �X j
nb

, t
)

dY dZ.

(26)

Here �X j
nb is different from �Xn in that Xj is deleted, but

an extra variable Y is added as the last component. If we
take n = 1, then we can obtain a closed-form PIDE for
describing the cell density with respect to the scalar state

variable X
∂u1(X, t )

∂t
+ ∂ (gu1)

∂X

= 1

2

∂2(σ 2u1)

(∂X )2
− (

β(X ) + μ(X )
)
u1

+
∫ (

β̃(Y, X, Z ) + β̃(Y, Z, X )
)
u1(Y, t ) dY dZ. (27)

Equation (27) is equivalent to the cell sizer model, or a timer-
sizer model of cell division [13] after marginalizing over the
cells’ ages. As an implementation of this model, one can
numerically solve Eq. (26) or Eq. (27) using different inferred
single-cell-level gene expression dynamics as candidates
for g [36].

B. Evolution of cell numbers

In the simplest case where all model parameters are con-
stants, we can marginalize over all cell state variables to
obtain total cell populations. More specifically, if we define
the generation vector i := (i1, . . . , ik ), 0 < i1 < · · · < ik and
the associated orders of moments � := (�1, . . . , �k ), �s > 0,
then we can track the expectation of the product of different
orders of the number of cells in different generations

E

[ k∏
s=1

n�s
is

]
:=

∑
n

k∏
s=1

n�s
is

∫
ρn(X n, t ) dX n. (28)

The differential equation satisfied by E[
∏k

i=1 n�i
i ] can be

shown to be

dE
[∏k

s=1 n�s
is

]
dt

=
k∑

r=1,ir>1

βir−1

(
E

[ k∏
s=1

(
nis − δir−1,is + 2δir ,is

)�s nir−1

]
− E

[ k∏
s=1

n�s
is

nir−1

])

+
k∑

r=1

βir

(
E

[ k∏
s=1

(
nis − δir ,is + 2δir+1,is

)�s nir

]
− E

[ k∏
s=1

n�s
is

nir

])

−
k−1∑
r=1

βir

(
δir+1−ir ,1

(
E

[ k∏
s=1

(
nis − δir ,is + 2δir+1,is

)�s nir

]
− E

[ k∏
s=1

n�s
is

nir

]))

−
∞∑

r=1

μir

(
E

[ k∏
s=1

n�s
is

nir

]
− E

[ k∏
s=1

(
nis − δis,ir

)�s nir

])
, (29)

where δir ,is = 1 if ir = is and δir ,is = 0 otherwise is the Kro-
necker δ function. Here βir and μir are constants that can
depend on the generation number ir . Note that if i = (i) is
one dimensional, and � = (1), then Eq. (29) reduces to the
evolution of the average cell number in the ith generation

dE[ni]

dt
= 2βi−1E[ni−1] − βiE[ni] − μiE[ni]. (30)

Finally, we can consider another special simplifying case
where

P(n, t ) :=
∫

ρn(X n, t )dX n (31)

is the probability that the population contains {n1, n2, . . . , nk

cells in generations 1, . . . , k, respectively, regardless of the
individual’s values of X . It turns out that P(n) satisfies the
series of interdependent master equations

dP(n, t )

dt
=

k∑
i=2

βi−1(ni−1 + 1)P(nb,i−1, t )

−
k∑

i=1

(βi + μi )niP(n, t )

+
∞∑

i=1

μi(ni + 1)P(nd,i, t ), (32)
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when the division rates and the birth rates are constants within
the same generation, i.e., μi, j ≡ μi, βi, j ≡ βi. Equation (32)
is a multigenerational birth-death master equation for the
number of individuals in each generation i which carries the
same structure as birth-death processes for cells grouped by
different attributes other than generation [37]. Note that gen-
erating new members of a successive generation arises only
from birth, while death only decreases the numbers within a
generation.

C. Evolution of “biomass”

Another quantity of specific interest is the biomass (e.g.,
the total amount of protein or mRNA within a subpopulation).
Assuming the relationships in Eqs. (9) hold, the expectation of
the total mass Xi ≡ ∑ni

j=1 Xi, j within cells of the ith generation
can be evaluated from

E[Xi(t )] =
∑

n

∫ ( ni∑
j=1

Xi, j

)
ρn(X n, t )dX n, (33)

where ρn(X n, t ) is defined in Eq. (10).
In general, the differential equation satisfied by Xi(t ) in-

volves higher moment quantities; thus, the model is not
closed. However, given certain constraints on the parameters,
the dynamics for Xi(t ) can be closed, and a solution can
be explicitly computed (analytically or numerically). For ex-
ample, if βi, j (Xi, j ) := βi, μi, j (Xi, j ) := μi are constants, then
gi, j (Xi, j ) := giXi, j is linear, and the quantity X is conserved
across cell division (that is, if the mother cell carries the state
variable X and the two daughter cells acquire state values Y1

and Y2 at birth, Y1 + Y2 = X ), then

dE[Xi(t )]

dt
= (gi − μi − βi )E[Xi(t )] + βi−1E[Xi−1(t )]. (34)

Furthermore, if the growth rate and division rate are in-
dependent of the generation number i, then we can define
expectations over any moment of the total biomass summed

over cells of all generations as

E[X q(t )] =
∑

n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q

ρn(X n, t ) dX n, q > 1.

(35)

Specifically, if μ is a constant and gi(X ) = g0X, σ 2
i, j (X ) =

σ 2
0 X (and X is conserved across cell divisions), then the dif-

ferential equations satisfied by the first and second moments
of the total biomass X (t ) and X 2(t ) are

dE[X (t )]

dt
= (g0 − μ)

∫
xu1(x, t )dx ≡ (g0 − μ)E[X (t )],

dE[X 2(t )]

dt
= (g0 − 2μ)E[X 2(t )] + σ 2E[X (t )]

+ μ

∫
x2u1(x, t )dx. (36)

Only the equation for the mean total biomass E[X (t )] is
closed. Its second moment depends on averages over u1(x, t )
requiring the solution to Eq. (27). General cases for the equa-
tions satisfied by E[X q(t )] for arbitrary q ∈ N+ are discussed
in Appendix B.

D. Tracking dead cells

Thus far, we have assumed that the “biomass” X originates
from live cells. Once cells die, they are no longer counted in
the population and the biomass X associated with them is no
longer included. However, experimentally, the protein and/or
mRNA extracted from a solution of cells may come from both
living and dead cells (at the time of extraction). To describe
these types of measurements, we keep track of cells that have
died and assign them to the 0th generation g0 = β0 = 0. We
denote their states by X 0 := (X0,1, . . . , X0,n0 ). We then define
p̃n(X n, t |X (0)n(0), 0) to include the zero-generation (cells that
have died) population. Using arguments similar to those in
Proposition 2 we can show that under certain conditions p̃n

satisfies the differential equation

∂ p̃n

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j p̃n)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j p̃n
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(βi, j + μi, j ) p̃n

+
k−1∑
i=1

ni−1+1∑
j=1

∫
β̃i, j

(
Y, Xi+1,ni+1−1, Xi+1,ni+1

)
p̃nb,i

(
X n j

b,i
,t

∣∣X (0)n(0), 0
)

dY

+
∞∑

i=1

ni+1∑
j=1

μi, j
(
X0,n0

)
p̃nd̃,i

(
X j

nd̃,i
t
∣∣X (0)n(0), 0

)
, (37)

where nd̃,i differs from in that its 0th component is n0 − 1
but its ith component is ni + 1, and X j

nd̃,i
differs from Xn in

that the internal states of the 0th generation (dead cells) are
(X0,1, . . . , X0,n0−1) and the internal states of the ith genera-
tion are (Xi,1, . . . , Xi, j−1, X0,n0 , Xi, j, . . . , Xi,ni ) (X0,n0 is in the
jth component). Similarly, we can define the unconditional

probability density function p̃∗
n(X n, t ) as defined in Eq. (7) as

well as the symmetrized probability density function

ρ̃n(X n, t ) :=
k∏

i=0

1

ni!

∑
π

p̃∗
n(π (Xn), t ). (38)
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If the assumptions given in Eqs. (9) hold, then the PIDE satisfied by ρ̃n is

∂ρ̃n

∂t
+

k∑
i=1

ni∑
j=1

∂ (giρ̃n)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i ρ̃n
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(βi + μi )ρ̃n

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
j1 �= j2

∫
β̃i(Y, Xi+1, j1 , Xi+1, j2 )ρ̃nb,i

(
X j1, j2

nb,i
, t

)
dY

+ 1

n0

∞∑
i=1

(ni + 1)
n0∑

j=1

μi(X0, j )ρnd̃,i

(
X 1

nd̃,i
, t

)
. (39)

The expectation of the total biomass X0 ≡ ∑n0
j=1 X0, j asso-

ciated with dead cells can be found from

E[X0(t )] ≡
∑

n

∫ ( n0∑
j=1

X0, j

)
ρ̃n(X n, t ) dX n. (40)

If the death rates μi of cells are equal and constant within each
generation i, then E[X0(t )] satisfies

dE[X0(t )]

dt
=

∞∑
i=1

μiE[Xi(t )], (41)

where E[Xi(t )] is the total expected biomass from cells in the
ith generation, as defined in Eq. (33).

We can also define second moments involving the biomass
from dead cells

E
[
X 2

0 (t )
] =

∑
n

∫ ( n0∑
j=1

X0, j

)2

ρ̃n(X n, t ) dX n (42)

and

E[X0(t )X (t )] =
∑

n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)( n0∑
�=1

X0,�

)
ρ̃n(X n,t ) dX n.

(43)

If we assume that the death rate is a constant μ for all cells,
then the growth rate g(X ) = g0X , and the state variable X
is conserved at division, then we can derive the differential

equations

dE
[
X 2

0 (t )
]

dt
= 2μE[X0(t )X (t )]

+ μ
∑

n

∫ ( k∑
i=1

ni∑
j=1

X 2
i, j

)
ρ̃n(X n, t ) dX n

(44)

dE[X0(t )X (t )]

dt
= (g0 − μ)E[X0(t )X (t )] + μE[X 2(t )]

− μ
∑

n

∫ ( k∑
i=1

ni∑
j=1

X 2
i, j

)
ρ̃n(X n, t ) dX n.

(45)

Higher moments of X0, X can also be evaluated, which we do
not include for brevity.

E. Correlations and interactions

Although examples so far have involved simple forms of
g, σ, β, μ that depend only on the state of of the cell being
tracked, these rates can depend on the states of other cells
in the population. These more complex dependencies prevent
closure of the PIDEs and signal more complex correlations,
or “interactions.” Simple interactions can be incorporated in
the “mean-field” limit if we consider the parameters g, σ , β,
and μ to be functions of only averaged macroscopic quantities
such as X (t ).

As an intuitive example, if we allow the death rate
of the jth cell in the ith generation to also depend
on the total “biomass” from all living cells, then μi, j =
μi, j (Xi, j,

∑
i

∑ni
j=1 Xi, j ). Furthermore, using the assumptions

given in Eqs. (9) leads to a symmetric population density
ρn(X n, t ) that satisfies

∂ρn

∂t
+

k∑
i=1

ni∑
j=1

∂ (giρn)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2(σiρn)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi(Xi, j ) + μi

(
Xi, j,

k∑
�=1

n�∑
m=1

X�,m

))
ρn

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1� j1 �= j2�ni+1

∫
β̃i

(
Y, Xi+1, j1 , Xi+1, j2

)
ρnb,i

(
X j1, j2

nb,i
, t

)
dY (46)

+
∞∑

i=1

ni+1∑
j=1

∫
μi

(
Y,

k∑
�=1

n�∑
m=1

X�,m + Y
)
ρnd

(
X j

nd,i
, t

)
dY.
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Due to the dependencies on the mean-field term
∑k

i=1

∑ni
j=1 Xi, j , we cannot obtain a closed-form equation for macroscopic

quantities such as the cellular density u1(X1, t ) defined in Eq. (27). However, assuming Eqs. (22) and the approximation∑k
i=1

∑ni
j=1 Xi, j ≈ ∑k

i=1

∑ni
j=1 Xi, j + Y ≈ E[X (t )] hold [with E[X (t )] defined in Eq. (33)], an approximate PIDE for u1(X, t )

defined in Eq. (25) can be motivated:

∂u1(X1, t )

∂t
+ ∂ (gu1)

∂X1
= 1

2

∂2(σ 2u1)

(∂X1)2
−

(
β(X1) + μ

(
X1,

∫
Yu1(Y, t )dY

))
u1(X, t )

+
∫ (

β̃(Y, X1, Z ) + β̃(Y, Z, X1)
)
u1(Y, t ) dY dZ. (47)

Equation (47) is nonlinear because the mean-field term de-
pends on

∫
xu1(x, t )dx. Similarly, if other coefficients depend

on mean-field quantities or some specific interaction terms
among cells exist, then by making assumptions and marginal-
ization, it might still be possible to find self-consistent
integrodifferential equations for macroscopic quantities of in-
terest. For example, death rates that depend on the values of
X of two different cells have been shown to reduce to a non-
linear interaction term in kinetic derivations of single-species
predator-prey type models [33].

IV. SUMMARY AND CONCLUSIONS

In this work, we used the forward-type Feynman-Kac
formula and Markov jump process to formulate a kinetic
theory for describing the cellular population density of a
generation-resolved cellular population with fluctuating rates
of changing internal states as well as random division times.
Such a general kinetic theory not only tracks each cell’s
continuous-valued state attribute such as its volume, protein
or mRNA abundance, but also its generation (i.e., how many
times its ancestors have divided). In general, our kinetic theory
framework can apply to any collection of particles that expe-
rience demographic noise from birth-death processes as well
as noise in specific individual-level attributes. It is a natural
framework for one to quantify age-structured, size-structured,
or gene expression-structured populations and can be applied
to problems in ecology [19], conservation biology, and popu-
lation genetics [38,39]. The kinetic framework allows one to
tailor the convection and death rates to construct systems that
exhibit rich crossover behavior [19].

A number of new results were presented. The underlying
kinetic theory describing the intra-generation-symmetrized
cell populations is given by Eq. (10) (or Eq. (13) for a vector of
attributes). We find that this fully resolved, high-dimensional
probability density can be marginalized in to different di-
rections. First, one can sum over moments of the discrete
populations/subpopulations to find the dynamics of a gen-
eralized cell population density un(X n, t ) [Eq. (14)], which
is found to obey Eq. (15) when generations are tracked, and
Eq. (27) in the generation-independent case. Further marginal-
izing over all cell attributes X n allows one to derive simpler
equations for useful quantities such as the expected total num-
ber of cells in each generation [Eq. (30)] and the generation
structure of the total population [Eq. (32)].

Alternatively, the full probability densities can be used to
define moments of mean-field quantities such as total gene
expression levels or biomass X across the entire population.
These are derived in Eqs. (34) and (36), which depend on

integrals over the single-particle number density u1(x, t ). We
also show how the biomass X0 from dead calls can also be
tracked, as is often the case in experiments. Expressions for
the lowest moments are given in Eqs. (41), (44), and (45). Our
results are tabulated below:

Note that the PIDEs for marginalized densities un(X n, t )
can be solved numerically using newly developed adaptive
spectral methods suited for unbounded domains [40–42],
providing an “Eulerian” picture of the structured population
density. Our kinetic theory/PIDE framework does not directly
track the structure of populations along lineages of cells (a
more “Lagrangian” picture) but connecting our Eulerian rep-
resentation with representations that delineate cell lineages
would be useful area of future analysis.

Many of our results can be directly compared to data. At
the intracellular level, statistical techniques recently devel-
oped for reconstructing general diffusion processes [43,44]
make it possible to directly reconstruct the single-cell level
gene expression dynamics from single-cell data, i.e., g and
σ given by Eq. (1), providing parameters that can then be
used in our population-level PIDE models summarized in
Table II. Inference of the intracellular SDE from trajectories
Xi, j (tk ) measured at time points k is also amenable to recently
developed machine-learning-based approaches [43,44].

At the population level, the PIDEs we derived for the
macroscopic quantities can also be more directly compared
to available population-level data, allowing for better infer-
ence of unknown coefficients such as g, σ , β, and μ. Our
macroscopic PIDEs can also inform inverse-type problems
by providing constraints for neural network-based machine
learning approaches for inferring model parameters (such as
interacting birth and death rates) from data [45,46]. For ex-
ample, consider Eq. (27) with X representing cell size and
u1(X, t ) being the population density of a size-structured
cell population. In deriving Eq. (27), the coefficients g, σ ,
β, β̃, and μ are implicitly equivalent across all cells in all
generations. Suppose we measure the size-structured cell pop-
ulation density u1(X, t ) at different time points. One can then
apply machine-learning-based approaches to train parameter-
ized neural networks that approximate the functions g, σ , β, β̃,
and μ [45–47]. It will potentially be interesting to compare the
g, σ learned from single-cell trajectories to those learned from
population density data for further validation. Additionally,
the g, σ reconstructed from single-cell dynamics may be more
accurate and can be used as priors for inference of β, β̃, and
μ in the PIDEs.

Finally, our approach shows how cell-cell “interactions”
can arise through functions g, σ , β, β̃, and μ that depend
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TABLE II. Summary of our main results. Functions describing cell numbers and overall attributes are listed, along with the equation
numbers of their mathematical definitions and dynamical equations.

Quantity Meaning Equation

un(X n, t ) Partially marginalized cell population density of any
order

Eq. (15). Closed set of PIDEs for noninteracting
systems

un( �Xn, t ) Generation-independent cell population density (may
include intercellular dependence)

Eqs. (25) and (26)

E[n(t )] Expectation of moments of total cell number Eqs. (28), (29), and (30)
P(n, t ) Probability of n = {ni} in each generation i Eqs. (31) and (32)
E[X q(t )] Expectation of moments of total biomass or expression

levels
Eqs. (35), (36), and (27)

E[X p
0 (t )X q(t )], p + q � 2 Moments of biomass from dead and living cells Eqs. (41), (42), (43), (44), (45), and (39)

on the attribute Xi, j of multiple cells. Such functional depen-
dencies preclude full marginalization, leading to higher-order
correlation terms for which an approximation must be im-
posed to close the equations. We explicitly showed how a
death rate that also depends on the total biomass results in
the implicitly nonlinear [in u1(x, t )] PIDE given in (47). Here
by inferring some information about the functional form of μ
from data, one may also recover information about cell-cell
interactions.

Other directions for future analysis include developing
tractable models of interactions that arise through complex
dependencies of birth and death rates on X n and develop-
ing effective transition state models by considering attractors
in the landscape dynamics [48]. Structured populations that
vary spatially also arise in many applications [49–51]. For
models in which convection and diffusion depend on ex-
pression levels, the dynamics of X n can be modeled as
being coupled to transport. Our model focuses on the case

when the evolution of cellular states X follows a pure dif-
fusion process. However, other types of stochastic processes
such as the Lévy processes are also used to describe the
dynamics of bursty gene expression products, e.g., mRNA and
protein copy numbers [52]; compound Poisson processes are
also used to describe the dynamics of chemicals related to
gene expression dynamics [53]. Generalizing our pure diffu-
sion model [Eq. (1)] to include compound Poisson processes
would expand the applicability of our kinetic framework to
bursty gene expression dynamics.

The datasets and codes generated during and/or analyzed
during the current study are available from the corresponding
author on reasonable request.

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

APPENDIX A: DERIVATION OF THE DIFFERENTIAL EQUATION SATISFIED BY THE CELL POPULATION
PROBABILITY DENSITY FUNCTION

To show pn(X n, t |X (0)n(0), 0) defined in Eq. (4) satisfies Eq. (6), we require the following two propositions.

Proposition 1. (Forward-type Feynman-Kac formula for the joint survival probability) If the coefficients gi, j, σi, j, βi, j, μi, j

are smooth, uniform Lipschitz continuous, and uniformly bounded, then, under certain conditions, the solution to

∂ p̂n(X n, t |X (0)n(0), 0)

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j (Xi, j, t ) p̂n)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Xi, j, t ) p̂n
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
p̂n, (A1)

with initial condition p̂n(X n, 0) = δ(X (0)n(0) − X n) if n = n(0) (and p̂n(X (0)n(0), 0) = 0 if n �= n(0)), is

p̂n(X n, t |X (0)n(0), 0) := E
[
δ
(
X (t )n(t ) − X n

)
S
(
t ; X (t )n(t )

)∣∣X (0)n(0), 0; n(0 � s � t ) = n(0)
]
, (A2)

where each component in X (t )n(t ) satisfies Eq. (1).
Proposition 1 provides the PDE satisfied by the density function for all cells with states X n in the absence of division and

death. The proof of Proposition 1 and the associated specific technical assumptions are given in Sec. A 1 below.
When cell division or death occurs, the total number of cells changes according to a Markov jump process. Thus, we

need the following proposition to derive the differential equation satisfied by the conditional probability density function
pn(X n, t |X (0)n(0), 0) defined in Eq. (4).

Proposition 2. (Markov jump process for describing the transition of cellular states and change in generations resulting from
cell division) Given the initial condition n(0) with states X (0)n(0) at t = 0 and a target state at time t with n cells and their
internal states X n, we start with the conditions

p0
n

(
X n, t

∣∣X (0)n(0), 0
)

:= 0, p1
n

(
X n, t

∣∣X (0)n(0), 0
)

:= p̂n
(
X n, t

∣∣X (0)n(0), 0
)
, (A3)
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and recursively define

pm+1
n

(
X n, t

∣∣X (0)n(0), 0
)

:= p̂n
(
X n, t

∣∣X (0)n(0), 0
)

+
∫ t

0
E

[
S
(
τ ; X (τ )n(τ )

)
Jm

(
t, τ ; X n, n(0)

)∣∣X (0)n(0), 0; n(0 < s < τ ) = n(0)
]
dτ, (A4)

where the birth-death probability flux is defined by

Jm(t, τ ; X n, n(0)) :=
k(0)∑
i=1

ni (0)∑
j=1

(
β̃i, j

(
Xi, j (τ ), X1(τ ), X2(τ )

)
pm

n

(
X n, t − τ

∣∣X (τ )− j
n(0)b,−i

, 0
)

+ μi, j (Xi, j (τ ))pm
n

(
X n, t − τ

∣∣X (τ )− j
n(0)d,−i

, 0
))

. (A5)

Then, pm+1
n satisfies

∂ pm+1
n

∂t
+

k∑
i=1

ni∑
j=1

∂
(
gi, j pm+1

n

)
∂Xi, j

= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j pm+1
n

)
(∂Xi, j )2

−
k∑

i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
pm+1

n

+
k−1∑
i=1

nb
i−1∑

j=1

∫
β̃i, j

(
Y, Xi+1,ni+1−1, Xi+1,ni+1

)
pm

nb,i

(
X j

nb,i
, t | X (0)n(0), 0

)
dY

+
∞∑

i=1

nd
i∑

j=1

∫
μi, j (Y)pm

nd,i

(
X j

nd,i
, t

∣∣X (0)n(0), 0
)
dY. (A6)

Furthermore, pm
n is nondecreasing in m.

The proof of Proposition 2 will be given in Sec. A 2 below. Intuitively, m in Eq. (A4) is the maximal number of birth or death
events allowed within the cell population. Since pm

n is increasing in m, there exists a p∗ such that pm → p∗ a.s. for all X (0)n(0)

and X n. After integrating over X n and summing over all n on both sides of Eq. (A4) and assuming

∑
n

∫
pm−1

n

(
X n, t

∣∣X (0)n(0), 0
)

dX n � 1 (A7)

for m ∈ N and any initial condition X (0)n(0), we have
∑

n

∫
pm

n (X n, t | X (0)n(0), 0)dX n � F m(t ; X (0)n(0), 0), where

F m
(
t ; X (0)n(0), 0

)
:=

∫
p̂n(0)

(
X n(0), t

∣∣ X (0)n(0), 0
)
dX n(0)

+
∫ t

0
E

[
S
(
τ ; X (τ )n(τ )

) k(0)∑
i=1

ni (0)∑
j=1

(
βi, j (Xi, j (τ )) + μi, j (Xi, j (τ ))

)∣∣∣X (0)n(0), 0; n(0 < s < τ ) = n(0)
]

dτ

(A8)

and S(τ ; X (τ )n(τ ) ) is defined in Eq. (5). Taking the derivative of F m(t ; X (0)n(0), 0), we find dF m(t ; X (0)n(0), 0)/dt = 0. It is
straightforward to verify that F m(0; X (0)n(0), 0) = 1; therefore, we have F m(t ; X (0)n(0), 0) ≡ 1,∀t � 0, which indicates that

∑
n

∫
pm

n

(
X n, t

∣∣X (0)n(0), 0
)
dX n � 1. (A9)

By induction, Eq. (A7) holds true for all m ∈ N+. Finally, it is easy to show that pm
n (X (0)n, t |X (0)n(0), 0) � 0, so by the

monotone convergence theorem,

∑
n

∫
p∗

n

(
X n, t

∣∣X (0)n(0), 0
)
dX n � 1, (A10)

which indicates 0 � p∗ < ∞ exists a.e..
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If (i) the convergence pm → p∗ is uniform and (ii) taking the limit with respect to m is interchangeable with taking the partial
derivatives in Eq. (A6), then p∗ is the solution to

∂ p∗
n

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j p∗
n)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2(σi, j p∗
n)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
p∗

n

+
k−1∑
i=1

ni+1∑
j=1

∫
β̃i, j

(
Y, Xi+1,ni+1−1, Xi+1,ni+1

)
p∗

nb,i

(
X j

nb,i
, t

∣∣X (0)n(0), 0
)
dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi, j (Y)p∗

nd,i

(
X j

nd,i
, t

∣∣X (0)n(0), 0
)
dY. (A11)

Since by taking the limit m → ∞ in Eq. (A4), p∗ can also be written as

p∗
n

(
X n, t

∣∣X (0)n(0), 0
) = p̂n

(
X n, t

∣∣X (0)n(0), 0
)

+
∫ t

0
E

[
S
(
τ ; X (τ )n(τ )

)
Jm

(
t, τ ; X n, n(0)

)∣∣X (0)n(0)(0), 0; n(0 < s < τ ) = n(0)
]

dτ, (A12)

which solves the differential equation (6).
Finally, the definition of p∗ in Eq. (A12) coincides with the definition of p in Eq. (4). Thus, if Eq. (A12) defined a unique p∗,

then p∗
n(X n, t |X (0)n(0), 0) = pn(X n, t |X (0)n(0), 0). Therefore, pn also solves the differential equation Eq. (6). Specifically, if∑

n

∫
pn

(
X n, t

∣∣X (0)n(0), 0
)
dX n = 1, (A13)

then pn is indeed a probability density function of the total cell population that satisfies Eq. (6).

1. Proof of Proposition 1

Here we prove Proposition 1 and provide the needed technical assumptions. We shall apply Theorem 6.2 in Ref. [34].
If n �= n(0), then by definition p̂n = 0, which solves Eq. (A1). If n(s) ≡ n(0), s ∈ [0, t], then for any smooth function
φ ∈ C∞(R|n|1 ), |n|1 := ∑k

i=1 ni, we define the measure

γ m(φ, t ) :=
∫
C|n|1

φ(X n(t ; ω))S
(
t ; X (t, ω)n(t )

)
dm(ω), X (0; ω)n = X (0)n(0), (A14)

where Cd := C([0, t],Rd ) (the integration is taken all realizations of X (t ; ω)n). Using Theorem 6.2 in Ref. [34], γ m(φ) solves
the PDE

∂γ m

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j (Xi, j (t ), t )γ m)

∂Xi, j (t )
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Xi, j (t ), t )γ m
)

(∂Xi, j (t ))2
−

k∑
i=1

ni∑
j=1

(
βi, j (Xi, j (t )) + μi, j (Xi, j (t ))

)
γ m (A15)

in the sense of distributions. Let Kε = 1
ε|n|1 K (·), where K (·) is a smooth mollifier, and define

vε (X n, t ) := γ m(Kε (· − X n), t ), (A16)

or

vε (X n, t ) = E
[
Kε

(
X (t )n(t ) − X n

)
S
(
t ; X (t )n(t )

)∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]
, (A17)

where S(t ; X (t )n(t ) ) is the survival probability defined in Eq. (5). By Eq. (A15), we have

∂vε (X n, t )

∂t
= E

[ k∑
i=1

ni∑
j=1

∂Xi, j (t )K
ε
(
X (t )n(t ) − X n

)
gi, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]

+ E
[ k∑

i=1

ni∑
j=1

1

2
∂2

Xi, j (t )K
ε
(
X (t )n(t ) − X n

)
σ 2

i, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]

− E
[ k∑

i=1

ni∑
j=1

(
βi, j (Xi, j (t )) + μi, j (Xi, j (t ))

)
Kε

(
X (t )n(t ) − Xn

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]
.

(A18)
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The assumptions that we shall impose for Proposition 1 are that (i) the limit

v := lim
ε→0+

vε = E
[
δ
(
X (t )n(t )−X n

)
S
(
t ; X (t )n(t )

)∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]

(A19)

exists and (ii) taking the limit ε → 0+ commutes with taking the expectation and the derivative with respect to t and Xi, j , i.e.,

∂v(Xn(t ), t )

∂t
= E

[ k∑
i=1

ni∑
j=1

∂Xi, j (t )δ
(
X (t )n(t )−X n

)
gi, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]

+ E
[ k∑

i=1

ni∑
j=1

1

2
∂2

Xi, j (t )δ
(
X (t )n(t )−X n

)
σ 2

i, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]

− E
[ k∑

i=1

ni∑
j=1

(
βi, j (Xi, j (t )) + μi, j (Xi, j (t ))

)
δ(X (t )n(t )−X n)S(t ; X (t )n(t ) )

∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]
.

(A20)

After integration by parts and noticing that

gi, j (Xi, j, t )v ≡E
[ k∑

i=1

ni∑
j=1

δ
(
X (t )n(t ) − X n

)
gi, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]
,

σ 2
i, j (Xi, j, t )v ≡E

[ k∑
i=1

ni∑
j=1

δ
(
X (t )n(t )−X n

)
σ 2

i, j

(
Xi, j (t ), t

)
S
(
t ; X (t )n(t )

)∣∣∣X (0)n(0), 0; n(0 � τ � t ) = n(0)
]
, (A21)

the partial differential equation satisfied by v is

∂v

∂t
+

k∑
i=1

ni∑
j=1

∂ (gi, j (Xi, j, t )v)

∂Xi, j
= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Xi, j, t )v
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
v, (A22)

which proves Proposition 1.

2. Proof of Proposition 2

We prove Proposition 2 by induction on m. Clearly, when m = 0, 1, p0 and p1 solve Eq. (A6) by using Proposition 1. If the
conclusion holds for m � 1, then when n �= n(0), we have

∂ pm+1
n

∂t
=E

[
S
(
t ; X (t )n(t )

)
Jm(t, t ; X n, n(0))

∣∣X n(0)(0), 0; n(0 < s < t ) = n(0)
]

+
∫ t

0
E

[
S(τ ; X n)∂t J

m(t, τ ; X n, n(0))
∣∣X (0)n(0), 0; n(0 < s < τ ) = n(0)

]
dτ

= −
k∑

i=1

ni∑
j=1

∂
(
gi, j (Xi, j, t )pm+1

n

)
∂Xi, j

+ 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Xi, j, t )pm+1
n

)
(∂Xi, j )2

−
k∑

i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
pm+1

n

+
k−1∑
i=1

ni+1∑
j=1

∫
β̃i, j

(
Y, Xi+1,nr+1−1, Xr+1,ni+1

)

× E
[
δ(Xi, j (t ) − Y )δ

(
X (t )− j

n(0)b,−i
− X n

)
δn(0)b,−i,nS(t ; X n)

∣∣∣X (0)n(0), 0; n(0 < s < t ) = n(0)
]
dY

+
k−1∑
i=1

ni+1∑
j=1

∫
β̃i, j

(
Y, Xi+1,ni+1−1, Xi+1,ni+1

)

×
( ∫ t

0
E

[
S(τ ; X n)Jm−1

(
t, τ ; X j

nb,i
, n(0)

)∣∣X (0)n(0), 0; n(0 < s < t ) = n(0)
]
dτ

)
dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi, j (Y )E

[
δ(Xi, j − Y )δ

(
X− j

n(0)d,−i
(t ) − X n

)
δn(0)d,−i,nS(t ; X (t )n(t ) )

∣∣X (0)n(0), 0; n(0 < s < t ) = n(0)
]
dY
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+
∞∑

i=1

ni+1∑
j=1

∫
μi, j (Y )

∫ t

0
E

[
S(τ ; X n)Jm−1

(
t, τ ; X− j

nd,i
, n(0)

)∣∣X (0)n(0), 0
]
dτ dY

= −
k∑

i=1

ni∑
j=1

∂
(
gi, j pm+1

n

)
∂Xi, j

+ 1

2

k∑
i=1

ni∑
j=1

∂2
(
σi, j pm+1

n

)
(∂Xi, j )2

−
k∑

i=1

ni∑
j=1

(
βi, j (Xi, j ) + μi, j (Xi, j )

)
pm+1

n

+
k−1∑
i=1

ni+1∑
j=1

∫
β̃i, j

(
Y, Xi+1,ni+1−1, Xi+1,ni+1

)
pm

nb,i

(
X j

nb,i
, t

∣∣X (0)n(0), 0
)
dY

+
∞∑

i=1

ni+1∑
j=1

∫
μi, j (Y )pm

nd,i

(
X j

nd,i
, t

∣∣X (0)n(0), 0
)
dY. (A23)

Here the function δn(0)b,−i,n = 1 if n(0)b,−i = n and δn(0)b,−i,n = 0 otherwise; similarly, δn(0)d,−i,n = 1 if n(0)d,−i = n and
δn(0)d,−i,n = 0 otherwise. Proposition 1 shows that

E
[
δ
(
X (t )n−X n

)
S
(
t ; X (t )n(t )

)∣∣X (0)n(0), 0; n(0 � s � t ) = n(0)
]

(A24)

satisfies Eq. (A1), so we can verify that Eq. (A6) also holds for m + 1 when n = n(0). Thus, we have proved that Eq. (A6)
holds true for m + 1. Additionally, it is obvious that pm+1

n � pm
n holds for m = 0. If pm

n � pm−1
n for any n, X n, then we have for

m
n := pm

n − pm−1
n ,

m+1
n =

∫ t

0
E

[
S(τ ; X n)

k(0)∑
i=1

ni (0)∑
j=1

(
β̃i, j (Xi, j (τ ), X1, X2)

)
m

n

(
X n, t − τ

∣∣X (τ )− j
n(0)b,−i

, 0
)

+ μi, j (Xi, j )
m
n

(
X n, t − τ

∣∣X (τ )− j
nd,−i

, 0
))∣∣∣X (0)n(0), 0; n(0 � s � τ ) = n(0)

]
dτ � 0. (A25)

Therefore, we have proved that pm+1
n satisfies Eq. (A6) and that pm+1

n � pm
n for all m ∈ N by induction.

APPENDIX B: DIFFERENTIAL EQUATIONS SATISFIED BY X q(t ), q ∈ N+

With X q(t ) according to Eq. (35), it can be shown that for q > 1,

dX q(t )

dt
= q

∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q−1( k∑
�=1

n�∑
m=1

g�(X�,m, t )

)
ρn(X n, t )dX n

+ q(q − 1)

2

∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q−2( k∑
�=1

n�∑
m=1

σ 2
� (X�,m, t )

)
ρn(X n, t )dX n

−
∑

n

∫ [ k∑
i=1

ni∑
j=1

μi(Xi, j, t )
q∑

r=1

(−1)r−1
(q

r

)( k∑
�=1

′ n�∑
m=1

′
X�,m

)q−r

X r
i, j

]
ρn(X n, t )dX n

−
∑

n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q k∑
�=1

n�∑
m=1

β�(X�,m)ρn(X n, t )dX n

+
∑

n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q( k−1∑
�=1

n� + 1

n�+1(n�+1 − 1)

∫ ∑
j1 �= j2

β̃�(Y, X�+1, j1 , X�+1, j2 )ρnb,�

(
X j1, j2

nb,�
, t

)
dY

)
dX n, (B1)

where ρn is the symmetric probability density function defined in Eq. (8). Here
k∑

�=1

′
n�∑

m=1

′ denote sums over which � �= i or m �= j.
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In particular, if X is a conserved quantity at division, then the evolution of the second-order moment can be further
simplified as

dX q(t )

dt
= q

∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q−1 k∑
�=1

n�∑
m=1

g�(X�,m, t )ρn(X n, t )dX n

+
∑

n

q(q − 1)

2

∫ ( k∑
i=1

ni∑
j=1

Xi, j

)q−2 k∑
�=1

n�∑
m=1

σ 2
� (X�,m, t )ρn(X n, t )dX n

−
∑

n

∫ [ k∑
i=1

ni∑
j=1

μi(Xi, j )
q∑

r=1

(−1)r−1
(q

r

)( k∑
�=1

′ n�∑
m=1

′
X�,m

)q−r

X r
i, j

]
ρn(X n, t )dX n. (B2)

Equation (B2) can be further simplified if the coefficients gi and σi satisfy certain conditions. For example, if the cells grow
exponentially, i.e., gi(Xi, j, t ) = λXi, j and σ 2

i (Xi, j, t ) = σ 2Xi, j , then Eq. (B2) can be more simply expressed as

dX q(t )

dt
= λqX q(t ) + q(q − 1)

2
σ 2X q−1(t ) −

∑
n

∫ [ k∑
i=1

ni∑
j=1

μi(Xi, j )
q∑

r=1

(−1)i−1
(q

r

)( k∑
�=1

′ n�∑
m=1

′
X�,m

)q−r

X r
i, j

]
ρn(X n, t )dX n.

(B3)

APPENDIX C: BIRTH-INDUCED BOUNDARY CONDITIONS

We can also consider variables that describe cellular quantities that reset upon cell division. Example of such variables include
cell size and cell age [13,25]. Specifically, consider simple “timer” models where a new daughter cell acquires age 0 at its birth,
while the other cell is assumed to be the “mother” that continues to age. This assignment of age across a proliferating population
is described as “budding” birth [11,12]. A kinetic theory can track both cell volume and cell age through the variables X n and
An := (A1, . . . , Ak ), respectively. Here in analogy with Xi, j ( j � ni ) (Table I), Ai := (Ai,1, . . . , Ai,ni ) and Ai, j ( j � ni ) is the age
of the jth cell of generation i. Here the corresponding parameters gi, j , σi, j , βi, j , β̃i, j , and μi, j can depend also on Ai, j .

We can show that the solution to

∂ p̂n(An, X n, t )

∂t
+

k∑
i=1

ni∑
j=1

∂ p̂n

∂Ai, j
+

k∑
i=1

ni∑
j=1

∂
(
gi, j (Ai, j, Xi, j, t ) p̂n

)
∂Xi, j

= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Ai, j, Xi, j, t ) p̂n
)

(∂Xi, j )2
−

k∑
i=1

ni∑
j=1

(
βi, j (Ai, j, Xi, j ) + μi, j (Ai, j, Xi, j )

)
p̂n (C1)

p̂n
(
An, X n, 0

∣∣A(0)n(0), X (0)n(0), 0
) = δ

(
X (0)n(0) − Xn

)
δ
(
A(0)n(0) − An

)
, if n = n(0),

p̂n(An, X n, 0) = 0 if n �= n(0)

can be expressed as

p̂n
(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)

:= E
[
δ
(
X (t )n(t ) − X n

)
δ
(
A(t )n(t ) − An

)
SA

(
t ; X (t )n(t ), A(t )n(t )

)∣∣A(0)n(0), X (0)n(0), 0; n(0 � s � t ) = n(0)
]
,

p̂n(An, X n, t ) = 0, if n �= n(0), (C2)

where here

SA
(
t ; X (t )n(t ), A(t )n(t )

)
:= exp

(
−

∫ t

0

k(0)∑
i=1

ni (0)∑
j=1

(
βi, j (Ai, j (τ ), Xi, j (τ )) + μi, j (Ai, j (τ ), Xi, j (τ ))

)
dτ

)
. (C3)

Furthermore, if we set

p0
(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
) = 0,

p1
(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
) = p̂n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)
, (C4)

then we can define the recursion

pm+1
n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
) = p̂n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)

+ E

[ ∫ t

0
SA

(
τ ; X (τ )n(τ ), A(τ )n(τ )

)
Jm

A

(
t, τ ; X n, An, n(0)

)
dτ

∣∣∣∣A(0)n(0), X (0)n(0), 0; n(0 � τ � t ) = n(0)

]
, if An > 0,
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pm+1
n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)

= E
[ ni∑

j=1

β̃i, j
(
Ai, j,Y (t ), Xi, j (t ), Xi+1,ni+1

)
pm

n

(
A j

nb,i
, X j

nb,i
, t

∣∣A(0)n(0), X (0)n(0), 0
)]

, if Ai+1,ni+1 = 0,

pm+1
n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
) = 0, otherwise. (C5)

Here An > 0 indicates that each component in Ai of An is greater than 0. β̃i, j (Ai, j,Y (t ), Xi, j, Xi+1,ni+1 ) is the rate of a cell
in the ith generation giving birth to a cell in the (i + 1)th generation with the state Xi+1,ni+1 and its own state shifting to Xi, j .
A j

nb,i
differs from An in that its (i + 1)th generation does not contain the (ni+1)th component. X j

nb,i
differs from X n in that its jth

component in the ith generation is Yi, j (t ), not Xi, j and it does not have the (ni+1)th component in the (i + 1)th generation. In
analogy to Eq. (A5), JA(t, τ ; An, X n) in Eq. (C5) is defined as

Jm
A (t, τ ; X n, An, n(0)) :=

k(0)∑
i=1

ni (0)∑
j=1

(
β̃i, j

(
Ai, j (τ ), Xi, j (τ ), X1(τ ), X2(τ )

)
pm

n

(
An, X n, t − τ

∣∣A(τ )− j
n(0)b,−i

, X (τ )− j
n(0)b,−i

, 0
)

+ μi, j
(
Ai, j (τ ), Xi, j (τ )

)
pm

n

(
An, X n, t − τ

∣∣A(τ )− j
n(0)d,−i

, X (τ )− j
n(0)d,−i

, 0
))

. (C6)

In Eq. (C6), A− j
n(0)b,−i

differs from An(0) in that its (i + 1)th generation has an extra component Ai+1,ni+1(0)+1 = 0. X− j
n(0)b,−i

(τ )

is different from Xn(0)(τ ) in that compared to Xn(0)(τ ), the jth component of the ith generation of X− j
n(0)b,−i

(τ ) is Yi, j (τ )
in the jth, but the jth component of the ith generation is Xi, j (τ ) for X n(0)(τ ); furthermore, the (i + 1)th generation of
X n(0)(τ ) does not have the (ni+1 + 1)th component Xi+1,ni+1(0)+1(τ ). A(τ )− j

n(0)d,−i
differs from A(τ )n in that its ith gener-

ation is (Ai,1(τ ), . . . , Ai, j−1(τ ), Ai, j+1(τ ), . . . , Ai,ni (0)(τ )), and X (τ )− j
n(0)d,−i

differs from X (τ )n in that its ith generation is
(Xi,1(τ ), . . . , Xi, j−1(τ ), Xi, j+1(τ ), . . . , Xi,ni (0)(τ )).

Then, similar to the proof of Proposition 2, pm+1
n satisfies the following PIDE

∂ pm+1
n (An, X n, t )

∂t
+

k∑
i=1

ni∑
j=1

∂ pm+1
n

∂Ai, j
+

k∑
i=1

ni∑
j=1

∂
(
gi, j (Ai, j, Xi, j, t )pm+1

n

)
∂Xi, j

= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Ai, j, Xi, j, t )pm+1
n

)
(∂Xi, j )2

−
k∑

i=1

ni∑
j=1

(
βi, j (Ai, j, Xi, j ) + μi, j (Ai, j, Xi, j )

)
pm+1

n

+
∞∑

i=1

nd
i∑

j=1

∫
μi, j (A,Y )pm

nd,i

(
A j

nd,i
, X j

nd,i
, t

∣∣A(0)n(0), X (0)n(0), 0
)
dY dA, if An > 0

pm+1
n

(
X n, An, t

∣∣X (0)n(0), A(0)n(0), 0
)

=
∫ k−1∑

i=1

ni∑
j=1

β̃i, j
(
Ai, j,Yi, j, Xi, j, Xi+1,ni+1

)
pm

n

(
A j

n(0)b,i
(t ), X j

n(0)b,i
(t ), t

∣∣A(0)n(0), X (0)n(0), 0
)
dYi, j, if Ai+1,ni+1 = 0.

(C7)

Likewise, it can be shown that pm
n is non-negative, increasing in m, and satisfies∑

n

∫
pm

n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)
dX ndAn � 1, ∀A(0)n(0), X (0)n(0). (C8)

Therefore, under certain technical conditions such as commuting derivatives, there exists a limit p∗
n = lim

m→∞ pm
n that satisfies

the PIDE

∂ p∗
n(An, X n, t )

∂t
+

k∑
i=1

ni∑
j=1

∂ p∗
n

∂Ai, j
+

k∑
i=1

ni∑
j=1

∂
(
gi, j (Ai, j, Xi, j, t )p∗

n

)
∂Xi, j

= 1

2

k∑
i=1

ni∑
j=1

∂2
(
σ 2

i, j (Ai, j, Xi, j, t )p∗
n

)
(∂Xi, j )2

−
k∑

i=1

ni∑
j=1

(
βi, j (Ai, j, Xi, j ) + μi, j (Ai, j, Xi, j )

)
p∗

n

+
∞∑

i=1

nd
i∑

j=1

∫
μi, j (A,Y )p∗

nd,i

(
A j

nd,i
, X j

nd,i
, t

∣∣A(0)n(0), X (0)n(0), 0
)
dY dA , if An > 0, (C9)
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p∗
n

(
An, X n, t

∣∣X (0)n(0), A(0)n(0), 0
)

=
∫ k−1∑

i=1

ni∑
j=1

β̃i, j
(
Ai, j,Yi, j, Xi, j, Xi+1,ni+1

)
p∗

n

(
A− j

n(0)b,−i
, X− j

n(0)b,−i
, t

∣∣A(0)n(0), X (0)n(0), 0
)
dYi, j, if Ai+1,ni+1 = 0.

If p∗ satisfies the normalization conditions, i.e.,
∑

n

∫
p∗

n(An, X n, t )dX ndAn ≡ 1,∀t � 0, then we can also define the uncondi-
tional probability density by averaging over the initial probability density qn(0)(A(0)n(0), X (0)n(0), 0),

pn(An, X n, t ) :=
∑
n(0)

∫
p∗

n

(
An, X n, t

∣∣A(0)n(0), X (0)n(0), 0
)
qn(0)

(
A(0)n(0), X n(0), 0

)
dX (0)n(0)dA(0)n(0). (C10)

From Eq. (C10), we can define the symmetric probability density function,

ρn(An, X n, t ) :=
k∏

i=1

1

ni!

∑
π

p∗
n(π (An), π (X n), t ), (C11)

where π is the same rearrangement for the age variables An and state variables X n. From Eq. (C11), we could derive the
macroscopic quantities such as the marginalized cell density. We shall omit detailed discussions on those macroscopic quantities
for brevity.
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