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Abstract It remains poorly understood how SARS-CoV-2 infection influences the physiological 
host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, 
and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian 
hamster. Both VOCs displayed a confined window of detectable airborne virus (24–48 hr), shorter 
than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constric-
tion resulting in a decrease of fine aerosols (1–10 µm) produced, which are suspected to be the 
major driver of airborne transmission. Male sex was associated with increased viral replication and 
virus shedding in the air. Next, we compared the transmission efficiency of both variants and found 
no significant differences. Transmission efficiency varied mostly among donors, 0–100% (including 
a superspreading event), and aerosol transmission over multiple chain links was representative of 
natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only 
occurred when both viruses were shed by the same donor during an increased exposure timeframe 
(24–48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled 
particle profile is critical for understanding airborne transmission.

eLife assessment
This manuscript describes rigorous experiments that provide a wealth of virologic, respiratory 
physiology, and particle aerodynamic data pertaining to aerosol transmission of SARS-CoV-2 
between infected Syrian hamsters. The significance of the paper is fundamental because infection is 
compared between alpha and delta variants, and because viral load is assessed via numerous assays 
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(gRNA, sgRNA, TCID) and in tissues as well as the ambient environment of the cage. The strength of 
evidence is compelling.

Introduction
Transmission by aerosolized virus particles has been a major contributor to the spread of SARS-CoV-2 
(Zhang et  al., 2020; Port et  al., 2022; Boone and Gerba, 2007; Goldman, 2020; CDC, 2021a; 
Pitol and Julian, 2021). Although highly efficient in preventing severe disease, vaccines do not 
significantly reduce transmission of variants of concern (VOCs) (CDC, 2021b). Transmission occurs 
when people release respiratory droplets carrying virus during (e.g.) speaking, singing, breathing, 
sneezing, or coughing. Droplet size and half-life in the air are not uniform (Morawska et al., 2009; 
Stadnytskyi et al., 2020) and depend on speech and breathing patterns (Johnson and Morawska, 
2009), COVID-19 severity, and physiological parameters such as age (Coleman et al., 2022; Edwards 
et al., 2021). As with influenza (Milton et al., 2013), SARS-CoV-2 RNA was detectable mostly in fine 
aerosols in humans, as opposed to coarse aerosols (Coleman et al., 2022). It is not clear how exhaled 
droplet size, breathing patterns and even the quantity of exhaled infectious virus itself fundamentally 
contribute to the airborne transmission efficiency in vivo and how COVID-19 directly influences addi-
tional physiological factors which may contribute to fine aerosol production. There is reportedly large 
heterogeneity in the transmission potential of individuals. Superspreading events have been reported 
numerous times throughout the pandemic and are suggested to be a major driver (Sun et al., 2021; 
Yang et al., 2021). They are thought to arise from a combination of biological, social, and chance 
factors. While human epidemiology and modeling studies have highlighted various factors which may 
contribute to SARS-CoV-2 transmission heterogeneity, including viral load (Goyal et al., 2021), much 
of the observed variance remains poorly understood. These factors are currently best studied in small 
animal models like the Syrian hamster, which allow for stringent and controlled experimental compar-
isons. The Syrian hamster model has been widely used to study SARS-CoV-2 transmission Muñoz-
Fontela et al., 2020; it recapitulates human contact, fomite and, importantly, airborne short distance 
and fine aerosol transmission (Port et al., 2022; Sia et al., 2020; Rosenke et al., 2020; Port et al., 
2021b). In this model, highest efficiency of short-distance airborne transmission was observed before 
onset of weight loss and acute lung pathology, peaking at 1 day post inoculation and correlating to 
the highest virus loads in the upper respiratory tract of donor animals (Ganti et al., 2022). Data on 
lung function loss in the Syrian hamster model after SARS-CoV-2 infection is available (Port et al., 
2021a; Halfmann et al., 2022), and virus has been demonstrated in exhaled droplets (Hawks et al., 
2021). Yet, a systematic study that addresses how airborne transmission potential depends on these 
features, along with recognized influences of sex and VOC, has not been performed. The study of 
these contributing factors would allow us to address how they come together to shape transmission 
outcomes.

Here, we introduce a mathematical model delineating for Alpha and Delta VOCs the relationship 
between exhaled infectious virus and virus detected in the upper respiratory tract during infection and 
longitudinally detail the changes in lung function, respiratory capacity, and exhaled particle profiles. 
Finally, we assess the airborne transmission competitiveness and heterogeneity in vivo of Alpha and 
Delta.

Results
Peak infectious SARS-CoV-2 in air samples is detected between 24 hr 
and 48 hr post infection
Structural modeling and pseudotype-entry comparison suggested that the Syrian hamster model 
should recapitulate the entry-specific competitive advantage of Delta over Alpha observed in humans 
(Figure 1—figure supplement 1A–D). Syrian hamsters were inoculated with a low dose (103 TCID50, 
intranasal [IN], N=10 per group) of SARS-CoV-2 Delta or Alpha. Animals were monitored for 14 days 
post inoculation (DPI). We observed no significant differences in weight loss or viral titers in lung or 
nasal turbinates between the variants (Figure  1—figure supplement 2A–C). At 14 DPI, hamsters 
(N=5) mounted a robust anti-spike IgG antibody response, and the overall binding pattern was similar 

https://doi.org/10.7554/eLife.87094
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between Alpha and Delta (Figure  1—figure supplement 2D and E). In a live virus neutralization 
assay, homologous virus was neutralized significantly better as compared to the heterologous variant 
Figure 1—figure supplement 2F and G), but no significant difference was determined between the 
neutralization capacity against the respective homologous variant (median reciprocal virus neutraliza-
tion titer = 320 (Alpha anti-Alpha)/ 320 (Delta anti-Delta), p=0.9568, N=5, ordinary two-way ANOVA, 
followed by Tukey’s multiple comparisons test.

We determined the window of SARS-CoV-2 shedding for Alpha and Delta using swabs from the 
upper respiratory tract and air sampling from cages, quantifying virus using gRNA, sgRNA, and infec-
tious virus titers. Oral swabs remained positive for gRNA and sgRNA until 7 DPI, but infectious virus 
dropped to undetectable levels after 4 DPI in most individuals (Figure 1—figure supplement 3A). 
Cage air was sampled during the first 5 days of infection in 24 hr time windows from cages containing 
two or three animals, grouped by sex. gRNA and sgRNA were detectable as early as 1 DPI in 50% 
of air samples and remained high through 5 DPI, while infectious virus peaked at on 2 DPI and was 
detectable for a shorter window, from 1 to 4 DPI (Figure 1—figure supplement 3B).

Mathematical modeling demonstrates airborne shedding peaks later 
and declines faster than oral swab viral load
We quantified heterogeneity in shedding by variant, sex, and sampling method by fitting a mathe-
matical model of within-hamster virus kinetics (see Appendix) to the data. This served to correlate 
parameters which are easier to measure, such as RNA in the oral cavity, to the quantity of greatest 
interest for understanding transmission (i.e. infectious virus in the air per unit time). To do this, we 
jointly inferred the kinetics of shed airborne virus and parameters relating observable quantities (e.g. 
plaques from purified air sample filters) to the actual longitudinal shedding. The inferential model uses 
mechanistic descriptions of deposition of infectious virus into the air, uptake from the air, and loss of 
infectious virus in the environment to extract estimates of the key parameters describing viral kinetics, 
as well as the resultant airborne shedding, for each animal. Virus was detectable and peaked earlier 
in oral swabs (approximately 24 hr post inoculation) than virus sampled from the air (approximately 
48 hr post inoculation), and quantity of detected virus declined slower in the swabs (Figure 1A and B). 
gRNA and sgRNA declined slower than infectious virus both in the air and in swabs. Oral swab data 
was an imperfect proxy for airborne shedding, even when we directly quantified infectious virus titers. 
This was due to a lag between peak swab shedding and peak airborne shedding. Inferred within-host 
exponential growth and decay rates were similar for the two variants. For both variants, males shed 
more virus than females, even after accounting for males’ higher respiration rates in measurements of 
shedding into the air. We found a slightly higher ratio of infectious virus to sgRNA in air samples for 
Delta than for Alpha (Figure 1B, Figure 1—figure supplement 3C and D). We also found substan-
tial individual-level heterogeneity in airborne shedding, even after accounting for sex and variant 
(Figure 1B). For example, air samples from cage 5 had more than twice as many peak plaques per 
capita than cage 6, even though both cages contained hamsters of the same sex, inoculated by the 
same dose, route, and variant. Our model captures this, with substantial inferred heterogeneity in 
individual airborne shedding in PFU per h, both in timing and in height of peak (Figure 1B).

Changes in breathing profile after SARS-CoV-2 infection precede onset 
of weight loss and are variant and sex-dependent
Pathology in nasal turbinates and lungs did not differ significantly between animals (Figure 2—figure 
supplement 1). Pathological changes were consistent with those described previously for COVID-19 
in Syrian hamsters after intranasal inoculation with other SARS-CoV-2 strains (Rosenke et al., 2020). 
Whole body plethysmography (WBP) was performed. We focused the analysis on the first 5 days after 
inoculation, in which changes in virus shedding and release into the air were observed (Figure 1—
figure supplement 2A). Expiratory time (Te), inspiratory time (Ti), percentage of breath occupied by 
the transition from inspiration to expiration (TB), end expiratory pause (EEP), breathing frequency (f), 
peak inspiratory flow (PIFb), peak expiratory flow (PEFb), tidal volume (TVb), minute volume (MVb), 
and enhanced pause (Penh) were used to assess changes in pulmonary function throughout infection. 
Principal component analysis was used to determine trends in lung function changes across all groups 
(Figure 2A). This revealed a large degree of inherent variation in individual hamster plethysmography 
measures. Before inoculation there was no discernible pattern to the clustering observed besides 

https://doi.org/10.7554/eLife.87094
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Figure 1. Alpha and Delta variant shedding profiles in oral swabs and air samples. Syrian hamsters were inoculated with 103 TCID50 via the intranasal 
route with Alpha or Delta. ( A) Comparison of swab viral load and virus shedding into the air. Inferred profile of air shedding in PFU/h compared to 
sgRNA levels and infectious virus titers (TCID50/mL) in oropharyngeal swabs collected 1, 2, 3, 4, 5, and 7 DPI. Semitransparent lines are 100 random 
draws from the inferred posterior distribution of hamster within-host kinetics for each of the metrics. Joined points are individual measured timeseries 
for experimentally infected hamsters; each set of joined points is one individual. Measurements and inferences shown grouped by variant and animal 
sex. Measurement points are randomly jittered slightly along the x (time) axis to avoid overplotting. (B). Viral sgRNA and infectious virus (PFU) recovered 
from cage air sample filters over a 24 hr period starting at 0, 1, 2, 3, 4, and 5 DPI. Points are measured values, normalized by the number of hamsters 
in the cage (2 or 3) to give per-capita values. Downward-pointing arrows represent virus below the limit of detection (0 observed plaques or estimated 
copy number corresponding to Ct ≥40). Semitransparent lines are posterior predictions for the sample that would have been collected if sampling 
started at that timepoint; these reflect the inferred underlying concentrations of sgRNA and infectious virus in the cage air at each timepoint and are 
calculated from the inferred infection kinetics for each of the hamsters housed within the cage. 100 random posterior draws shown for each cage. 
Cages housed 2 or 3 hamsters; all hamsters within a cage were of the same sex and infected with the same variant. Column titles show cage number 
and variant, with number of and sex of individuals in parentheses. Dotted lines limit of detection. Grey = Alpha, teal = Delta, p-values are indicated 
where significant. Abbreviations: sg, subgenomic; TCID, Tissue Culture Infectious Dose; PFU, plaque forming unit; F, female; M, male; DPI, days post 
inoculation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Alpha and Delta variant spike interaction with hamster ACE2.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.87094
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a slight separation by sex. Beginning at 2 DPI, we observed a separation of infected and control 
animals. This coincided with the observation that all SARS-CoV-2 animals visibly decreased activity 
levels after 2 DPI, reducing exploratory activity and grooming with sporadic short convulsions which 
may represent coughing. No single parameter had an overwhelming influence on clustering, though 
several parameters contributed strongly across all days: Te, Ti, TB, EEP, f, PIFb, PEFb, TVb, and MVb 
(Figure 2B and C).

Broad patterns emerged by variant and by sex. Cumulative Penh AUC values for all infected groups 
were increased compared to the sex-matched control hamsters (p=0.022, Kruskal-Wallis test, N=4 for 
Alpha and Delta, N=5 for controls). The median Penh AUC values for Alpha, Delta, and control males 
were 0.741, 2.666, and 0.163, respectively (p=0.062). The median Penh AUC values for Alpha females, 
Delta females, and control females were 1.783, 2.255, and 0.159, respectively (p=0.019). At 4 DPI, 
the median fold change Penh values for Alpha males and Delta males were 0.793 and 1.929, respec-
tively, as compared to 0.857 for control males. The corresponding Penh values for Alpha, Delta, and 
control females were 1.736, 1.410, and 1.008, respectively. The separation on 4 DPI did not translate 
to significant changes in more traditional measures of respiratory function, including f, TVb, and MVb.

Changes in exhaled aerosol aerodynamic profile after SARS-CoV-2 
infection precede acute disease, are variant and sex-dependent
Alpha and Delta inoculated groups (N=10 each) and a control group (N=10) were individually eval-
uated on 0, 1, 3, and 5 DPI. To normalize the particle counts between animals we focused on the 
percentage of particles in each size range. Across each variant group, particle diameter size <0.53 µm 
was the most abundant (Figure 3A). No consistent, significant overall change in the number of overall 
particles across all sizes was observed between groups (Figure 3—figure supplement 1C). Particles 
between 1 and 10 µm in diameter, most relevant for fine aerosol transmission (Wang et al., 2021), 
were examined. At baseline (0 DPI), females across all groups produced a higher proportion of drop-
lets in the 1–10 µm diameter range compared to males (Figure 3A). At 3 DPI, the particle profiles 
shifted toward smaller aerodynamic diameters in the infected groups. At 5 DPI, even control animals 
demonstrated reduced exploratory behavior, resulting in a reduction of particles in the 1–10  µm 
range, which could be due to acclimatization to the chamber. This resulted in an overall shift in particle 
size from the 1–10 µm range to the <0.53 µm range. To analyze these data, individual slopes for each 
animal were calculated using simple linear regression across the four timepoints (Percent ~Intercept 
+ SlopeDay) for percent of particles in the <0.53 µm range and percent of particles in the 1–10 µm 
range and multiple linear regression was performed (Figure 3B). Females had a steeper decline at an 
average rate of 2.2 per day after inoculation in the percent of 1–10 μm particles (and a steeper incline 
for <0.53 μm) when compared to males, while holding variant group constant. When we compared 
variant group while holding sex constant, we found that the Delta group had a steeper decline at an 
average rate of 5.6 per day in the percent of 1–10 μm particles (and a steeper incline for <0.53 μm); a 
similar trend, but not as steep, was observed for the Alpha group.

The estimated difference in slopes for Delta vs. controls and Alpha vs. controls in the percent 
of <0.53 μm particles was 5.4 (two-sided adjusted p=0.0001) and 2.4 (two-sided adjusted p=0.0874), 
respectively. The estimated difference in slopes for percent of 1–10  μm particles was not as 
pronounced, but similar trends were observed for Delta and Alpha. Additionally, a linear mixed model 
was considered and produced virtually the same results as the simpler analysis described above; the 
corresponding linear mixed model estimates were the same and standard errors were similar.

Alpha and Delta VOC attack rates reveal minimal individual risk of dual 
infection in vivo
We next compared attack rates between Alpha and Delta during a 4 hr exposure window at 200 cm 
distance. Groups of sentinels (N=4 or 5) were exposed to two donor animals, one inoculated with 
Alpha and one inoculated with Delta (Figure 4A).

Figure supplement 2. Schematic overview of inoculation experiment.

Figure supplement 3. Window of Alpha and Delta variant shedding profiles.

Figure 1 continued

https://doi.org/10.7554/eLife.87094
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Figure 2. Lung function and breathing changes after SARS-CoV-2 infection with Alpha and Delta. Syrian hamsters were inoculated with 103 TCID50 
via the intranasal route with Alpha or Delta. (A) Lung function was assessed on days –1, 0, 1, 2, 3, 4, and 5 by whole body plethysmography. Principal 
component analysis was used to investigate individual variance. Depicted are principal component (PC) 1 and 2 for each day, showing individual animals 
(colors refer to legend on right, sex-separated) and clusters (black ellipses). (B) Individual loading plots for contributions of top 6 variables to PC1 and 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.87094
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sgRNA in oral swabs taken on 1 DPI varied between animals (Figure 4B). Sentinels were either 
exposed first for 2 hr to one variant and then for 2 hr to the second (Figure 4C, first 4 iterations), or 
to both variants at the same time for 4 hr (last three iterations). Transmission was confirmed by sgRNA 
in oral swabs collected from all sentinels at 2, 3, and 5 DPE. On 2 DPE, N=13/34 sentinels were 
positive for sgRNA in oral swabs, N=19/34 on 3 DPE and N=27/34 on 5 DPE. Swabs from 3 DPE and 
5 DPE were sequenced, and the percentage of reads mapped to Alpha, and Delta were compared 
(Figure 4D).

All animals had only one variant detectable on day 3. In total, 12 sentinels were infected with 
Alpha and 7 with Delta by 3 DPE. At 5 DPE, slightly more sentinels shed Alpha (cartoon hamster 
representation in Figure 4D depicts majority variant for each individual across both sampling days; 
Supplementary file 1 lists sequencing results). Interestingly, we observed one superspreading event 
in iteration A, in which one donor animal transmitted Alpha to all sentinels. For all other iterations, 
either both donors managed to transmit to at least one sentinel, or not all sentinels were infected. For 
the iterations with simultaneous exposure, attack rates were similar and statistically indistinguishable: 
Alpha = 50 %, Delta = 42.8%. In one simultaneous exposure (iteration F), three sentinels had both 
Delta and Alpha detectable at 5 DPE. In two, Delta was dominant, and in one Alpha, always with the 
other variant in the clear minority (<15%). We did not observe any other such coinfections (defined as 
a PCR-positive animal with both Alpha and Delta at 5% frequency or higher by NGS). This led us to ask 
whether there was virus interference in sequential exposures - that is, whether established infection 
with one variant could reduce the probability of successful infection given a later exposure.

To assess this, we used our within-host dynamics model to calculate the estimated infection prob-
abilities for Alpha and Delta for each sentinel in each iteration, assuming each sentinel is exposed 
independently, but accounting for the different exposure durations, donor sexes, and donor viral 
load (as measured by oral swabs). From those probabilities, we then calculated posterior probability 
distributions for the number of co-infections predicted to occur in each iteration if Alpha and Delta 
infections occurred independently and did not interfere with each other (Appendix 1—figures 2–4). 
We found that our observed coinfections were consistent with this null model; our data do not provide 
clear evidence of virus interference during sequential exposure, though they also do not rule out such 
an effect. No difference in virus replication or disease severity was observed between the sentinels 
infected with Alpha or Delta (Figure 4—figure supplement 1).

Limited sustainability of heterologous VOC populations through 
multiple rounds of airborne transmission
To assess the transmission efficiency in direct competition between the Alpha and Delta VOCs, 
we conducted an airborne transmission experiment over three subsequent rounds of exposure 
(Figure 5A). Donor animals (N=8) were inoculated IN with 5x102 TCID50 of Alpha and 5x102 TCID50 
Delta (1:1 mixture) and eight sentinels were exposed (Sentinels 1, 1:1 ratio) on 1 DPI for 24 hr (first 
chain link, exposure window: 24–48 hr post inoculation of the donors) (Figure 5). Two days after the 
start of this exposure, the eight sentinels were placed into the donor side of a new cage and eight 
new sentinels (Sentinels 2) were exposed for 24 hr (second chain link, exposure window 48–72 hr post 
exposure start of the Sentinels 1). Again, 2 days after exposure start, this sequence was repeated for 
Sentinels 3 (third chain link, exposure window 48–72 hr post exposure start of the Sentinels 2). All 
animals were individually housed between exposures, and after exposure as well for the sentinels. 
We assessed viral presence in oropharyngeal swabs taken from all animals at 2 and 5 DPI/DPE. While 
all Sentinels 1 demonstrated active shedding at 2 and 5 DPE, in the Sentinels 2 group no viral RNA 
was detected in 2/8 animals and no infectious virus in 4/8 by 5 DPE. In the Sentinels 3 group, sgRNA 

2 at each day. (C) Relevant subset of lung function parameters. Line graphs depicting median and 95% CI fold change values (left) and area under the 
curve (AUC, right), Kruskal-Wallis test, p-values indicated where significant. Grey = Alpha, teal = Delta, beige = anesthesia control, light = male, dark 
= female. Abbreviations: Expiratory time (Te), inspiratory time (Ti), percentage of breath occupied by the transition from inspiration to expiration (TB), 
end expiratory pause (EEP), breathing frequency (f), peak inspiratory flow (PIFb), peak expiratory flow (PEFb), tidal volume (TVb), minute volume (MVb), 
enhanced pause (Penh), male (M), female (F).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Respiratory tract pathology after SARS-CoV-2 infection with Alpha and Delta.

Figure 2 continued

https://doi.org/10.7554/eLife.87094
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Figure 3. Aerodynamic particle analysis of SARS-CoV-2 infected hamsters. (A) Syrian hamsters were inoculated 
with 103 TCID50 via the intranasal route with Alpha or Delta. Aerodynamic diameter profile of exhaled particles 
was analyzed on days 0, 1, 3, and 5. Heatmap shows rounded median percent of total particles across groups, 
including the anesthesia control group (N=10, comprising five males and five5 females). Colors refer to scale 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.87094
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and infectious virus were only detected robustly in one animal on 5 DPE. In contrast to donor animals, 
all infected sentinels exhibited higher shedding on day 5 compared to day 2 2 DPI / 5 DPI Donors: 
median gRNA = 7.8 / 6.9 copies/mL (Log10), median sgRNA = 7.2 / 6.4 copies/mL (Log10), median 
infectious virus titer = 2.3 / 0.5 TCID50/mL (Log10); Sentinels 1 (median gRNA = 7.2 / 7.4 copies/mL 
(Log10), median sgRNA = 6.4 / 6.9 copies/mL (Log10), median infectious virus titer = 2.9 / 2.6 TCID50/
mL (Log10); Sentinels 2=median gRNA = 3.7 / 5.4 copies/mL (Log10), median sgRNA = 1.8 / 3.0 copies/
mL (Log10), median infectious virus titer = 0.5 / 1.6 TCID50/mL (Log10)) (Figure 5B). Taken together, this 
evidence suggests that the infectious shedding profile shifts later and decreases in magnitude with 
successive generations of transmission. This could be explained by lower exposure doses causing 
lower and slower infections in the recipients.

We then proceeded to compare the viral loads in the lungs and nasal turbinates at 5 DPE. Viral 
gRNA was detected in the lungs (Figure 5C) and nasal turbinates (Figure 5D) of all Donors (lungs: 
median gRNA = 9.7 copies/gr tissue (Log10), nasal turbinates: median gRNA = 6.2 copies/gr tissue 
(Log10)). Interestingly, while the gRNA amount was similar in lungs between Donors and Sentinels 
1 (lungs: median gRNA = 9.5 copies/gr tissue (Log10)), it was increased in nasal turbinates for the 
Sentinel 1 group (nasal turbinates: median gRNA = 8.6 copies/gr tissue (Log10)). Similarly, sgRNA was 
increased in Sentinels 1 as compared to Donors in nasal turbinates, but not lungs (Donors = lungs: 
median sgRNA = 9.4 copies/gr tissue (Log10), nasal turbinates: median sgRNA = 5.7 copies/gr tissue 
(Log10); Sentinels 1=lungs: median sgRNA = 9.2 copies/gr tissue (Log10), nasal turbinates: median 
sgRNA = 8.4 copies/gr tissue (Log10)). Viral gRNA above the level of quantification was detectable in 
6/8 Sentinels 2 in both lungs and nasal turbinates, yet sgRNA was only detected in 4/8 Sentinels 2 in 
lungs and 5/8 in nasal turbinates. Even though gRNA was detected in 3/8 Sentinels 3, no animal had 
detectable sgRNA in either lungs or nasal turbinates, signaling a lack of active virus replication. To 
confirm this, infectious virus was analyzed in both tissues for the Donors, Sentinels 1, and Sentinels 
2 groups (Figure 5E). In both tissues titers were marginally higher in Sentinels 1 (median TCID50 /gr 
tissue (Log10) Donors: lungs = 8.6, nasal turbinates = 8.0; Sentinels 1: lungs = 8.9, nasal turbinates = 
8.8). Infectious virus was present in 6/8 Sentinels 2 in lungs and 5/8 in nasal turbinates.

Hence, even though the exposure interval for the second and third chain links were started 48 hr 
after the start of their own exposure, not all Sentinels 2 became infected, and only one Sentinel 3 
animal became infected and demonstrated shedding. We conducted a separate experiment to assess 
viral loads in the respiratory tract after SARS-CoV-2 airborne transmission at 2 DPI/DPE. While infec-
tious virus was present in oral swabs from all sentinels, virus in lungs and nasal turbinates was not 
present in all animals (Figure 5—figure supplement 1).

To determine the competitiveness of the variants, we analyzed the relative composition of the two 
viruses using next generation sequencing (Figure 5F and G). Neither variant significantly outcom-
peted the other. We first compared the percentage of Delta in oral swabs taken on 2 DPI/DPE, the day 
of exposure of the next chain link. In Donors, no variant was more prevalent across animals or clearly 
outcompeted the other within one host (median = 56.5% Delta, range = 40.3–69%). After the first 
transmission event, Delta outcompeted Alpha at 2 DPE (median = 87.3% Delta, range = 19–92.7%), 

below. (B) For each animal, line graphs of the percent of particles in the <0.53 and 1–10 µm diameter range by 
variant group and sex indicated by color. Multiple linear regression performed for each diameter range with group 
and sex as predictors, F-statistic (Boone and Gerba, 2007; Jones et al., 2021)=9.47 for<0.53 µm model and 
F-statistic (Boone and Gerba, 2007; Jones et al., 2021)=2.62 for 1–10 µm model, with Tukey multiple comparison 
adjustment for the three variant-group comparisons (95% family-wise confidence level). For <0.53 range, Male-
Female (estimate = –1.7, standard error = 0.888, two-sided p=0.0659); Alpha-Control (estimate = 2.41, standard 
error = 1.09, two-sided p=0.0874), Delta-Control (estimate = 5.40, standard error = 1.09, two-sided p=0.0001), 
Delta-Alpha (estimate = 2.99, standard error = 1.09, two-sided p=0.0280). For 1–10 range, Male-Female (estimate 
= 2.19, standard error = 1.23, two-sided p=0.0875); Alpha-Control (estimate = –0.633, standard error = 1.51, 
two-sided p=0.9079), Delta-Control (estimate = –3.098, standard error = 1.51, two-sided p=0.1197), Delta-Alpha 
(estimate = –2.465, standard error = 1.51, two-sided p=0.2498). Grey = Alpha, teal = Delta, beige = anesthesia 
control, red = female, blue = male.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Exhaled particle profiles of Syrian hamsters.

Figure 3 continued

https://doi.org/10.7554/eLife.87094
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Figure 4. Airborne attack rate of Alpha and Delta SARS-CoV-2 variants. Donor animals (N=7) were inoculated with either the Alpha or Delta variant 
with 103 TCID50 via the intranasal route and paired together randomly (1:1 ratio) in 7 attack rate scenarios (A–G). To each pair of donors, 1 day after 
inoculation, 4–5 sentinels were exposed for a duration of 4 hr (i.e. h 24–28 post inoculation) in an aerosol transmission set-up at 200 cm distance. 
(A) Schematic figure of the transmission set-up. (B). Day 1 sgRNA detected in oral swabs taken from each donor after exposure ended. Individuals are 
depicted. Wilcoxon test, N=7. Grey = Alpha, teal = Delta inoculated donors. (C) Respiratory shedding measured by viral load in oropharyngeal swabs; 
measured by sgRNA on days 2, 3, and 5 for each sentinel. Animals are grouped by scenario. Colors refer to legend below. 3.3=limit of detection of 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.87094
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while after the second transmission event, half (N=2/4) the animals shed either >80% either Alpha or 
Delta. Notably, and in strong contrast to the dual donor experiments described above, every sentinel 
animal exhibited a mixed infection at 2 DPE, often with proportions resembling those in the donor.

Next, we looked at the selective pressure within the host. By 5 DPI/DPE, no clear difference was 
observed in Donors (median = 60% Delta, range = 34.3–67.7%), but in the Sentinels 1 group Alpha 
overtook Delta in three animals (median = 68.3% Delta, range = 17–92.3%), while the reverse was 
never seen. In one animal, we observed a balanced infection established between both variants at 5 
DPE (Sentinel 1.8). In the Sentinels 2 group, Alpha was the dominant variant in N=3/8 animals, and 
Delta dominated in 3/8 (median = 55% Delta, range = 17–92.7%). The one Sentinel 3 animal for which 
transmission occurred shed nearly exclusively Alpha. This suggests that within one host, Alpha was 
marginally more successful at outcompeting Delta in the oropharyngeal cavity.

We then assessed virus sequences in lungs and nasal turbinates to understand if the selective 
pressure is influenced by spatial dynamics. In Donor lungs, the percentage of Alpha was marginally 
higher on 5 DPI (median = 42.3% Delta, range = 23.3–75.7%). In the Sentinels groups, either Alpha or 
Delta outcompeted the other variant within each animal, only one animal (Sentinel 1.8) revealing both 
variants >15%. In N=5/8 Sentinels 1, yet only in N=1/4 Sentinel 2 animals, Delta outcompeted Alpha. 
Sequencing of virus isolated from nasal turbinates reproduced this pattern. In Donors, neither variant 
demonstrated a completive advantage (median = 51.2% Delta, range = 38.7–89.3%). In N=5/8 Senti-
nels 1, and N=3/8 Sentinels 2, Delta outcompeted Alpha. Combined a trend, while not significant, 
was observed for increased replication of Delta after the first transmission event, but not after the 
second, and in the oropharyngeal cavity (swabs) as opposed to lungs (Figure 5H) (Donors compared 
to Sentinels 1: p=0.0559; Donors compared to Sentinels 2: p = >0.9999; Kruskal Wallis test, followed 
by Dunn’s test). Swabs taken at 2 DPI/DPE did significantly predict variant patterns in swabs on 5 DPI/
DPE (Spearman’s r=0.623, p=0.00436) and virus competition in the lower respiratory tract (Spear-
man’s r=0.60, p=0.00848). Oral swab samples taken on day 5 strongly correlate with both upper 
(Spearman’s r=0.816, p=0.00001) and lower respiratory tract tissue samples (Spearman’s r=0.832, 
p=0.00002) taken on the same day (Figure 5I).

Discussion
In immunologically naive humans, peak SARS-CoV-2 shedding occurs multiple days after exposure 
and in some cases multiple days before onset of symptoms (Jones et al., 2021). It is not known how 
this informs the window of transmissibility, which is poorly understood and difficult to study in the 
absence of controlled exposures. Measuring the quantity of exhaled virus and size distribution of 
airborne particles can provide additional insight into the window of transmissibility beyond simply 
measuring infectious virus in upper respiratory tract swabs. In addition, the shedding of virus in large 
and fine aerosols may be a function of physiological changes after infection. Past studies in hamsters 
have shown that SARS-CoV-2 transmissibility is limited to the first 3 days. This coincides with peak 
shedding and ends before the onset of weight loss, clinical manifestation, and loss of infectious virus 
shedding in the upper respiratory tract (Port et al., 2022; Sia et al., 2020; Rosenke et al., 2020). We 
set out to determine if SARS-CoV-2 infection affects host-derived determinants of airborne transmis-
sion efficiency early after infection, which may explain this restriction.

Human studies have found similar peak viral RNA levels for Alpha and Delta (Kissler et al., 2021; 
Elie et al., 2022) despite their epidemiological differences, including Delta’s higher transmissibility 
(Earnest et  al., 2022), shorter generation interval (Hart et  al., 2022), and greater risk of severe 
disease (Twohig et al., 2022). We observe similar kinetics in a controlled experimental setting using 
the hamster model. We found that swab viral load measurements are a valuable imperfect proxy for 
the magnitude and timing of airborne shedding. Crucially, there is a period early in infection (around 
24 hr post-infection in inoculated hamsters) when oral swabs show high infectious virus titers, but air 

RNA (<10 copies/rxn). (D) Schematic representation of majority variant for each sentinel as assessed by percentage of Alpha and Delta detected in 
oropharyngeal swabs taken at day 2 and day 5 post exposure by deep sequencing. Grey = Alpha, teal = Delta, white = no transmission.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants.

Figure 4 continued
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Figure 5. Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants. (A) Schematic. Donor animals (N=8) were inoculated with Alpha and Delta 
variant with 5x102 TCID50, respectively, via the intranasal route (1:1 ratio), and three groups of sentinels (Sentinels 1, 2, and 3) were exposed subsequently 
at a 16.5 cm distance. Animals were exposed at a 1:1 ratio; exposure occurred on day 1 (Donors → Sentinels 1) and day 2 (Sentinels → Sentinels). 
(B) Respiratory shedding measured by viral load in oropharyngeal swabs; measured by gRNA, sgRNA, and infectious titers on days 2 and day 5 post 
exposure. Bar-chart depicting median, 96% CI and individuals, N=8, ordinary two-way ANOVA followed by Šídák’s multiple comparisons test. (C-E). 
Corresponding gRNA, sgRNA, and infectious virus in lungs and nasal turbinates sampled five days post exposure. Bar-chart depicting median, 96% CI 
and individuals, N=8, ordinary two-way ANOVA, followed by Šídák’s multiple comparisons test. Dark orange = Donors, light orange = Sentinels 1, grey 
= Sentinels 2, dark grey = Sentinels 3, p-values indicated where significant. Dotted line = limit of detection. (F) Percentage of Alpha and Delta detected 
in oropharyngeal swabs taken at days 2 and day 5 post exposure for each individual donor and sentinel, determined by deep sequencing. Pie-charts 
depict individual animals. Grey = Alpha, teal = Delta. (G) Lung and nasal turbinate samples collected on day 5 post inoculation/exposure. (H). Summary 
of data of variant composition, violin plots depicting median and quantiles for each chain link (left) and for each set of samples collected (right). Shading 
indicates majority of variant (grey = Alpha, teal = Delta). (I) Correlation plot depicting spearman r for each chain link (right, day 2 swab) and for each set 
of samples collected across all animals (left). Colors refer to legend on right. Abbreviations: TCID, Tissue Culture Infectious Dose.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Early virus shedding in donors and sentinels.

https://doi.org/10.7554/eLife.87094
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samples show low or undetectable levels of virus. Viral shedding should not be treated as a single 
quantity that rises and falls synchronously throughout the host; spatial models of infection may be 
required to identify the best correlates of airborne infectiousness (Snedden et al., 2021). Attempts to 
quantify an individual’s airborne infectiousness from swab measurements should thus be interpreted 
with caution, and these spatiotemporal factors should be considered carefully.

While past studies have used whole body plethysmography to differentiate the impact of VOCs 
on lung function, these have mostly focused on using mathematically derived parameters such as 
Penh, to compare significant differences on pathology in late acute infection (Halfmann et al., 2022). 
Within our experimental setup we observed high variation within and between different hamsters. 
Observed differences could be contributed to the behavioral state which correlated with sex, high-
lighting that future studies of this nature may require increased acclimatization of the animals to these 
experimental procedures. However, we did observed changes in breathing patterns as early as 2 
DPI, preceding clinical symptoms, but coinciding with the window of time when infectious virus was 
detected in the air.

The majority of SARS-CoV-2 exhaled from hamsters was observed within droplet nuclei <5  μm in 
size (Kissler et al., 2021). We report a rise in <0.53 μm particles and a drop in particles in the 1–10 μm 
range after infection. One of the caveats of these measurements in small animals is that detected 
particles may come from aerosolized fomites, and residual dust generated by movement (Asadi et al., 
2021). In our system, we did not detect any particles originating from dead animals or the environ-
ment, but we also saw a noticeable reduction of particles across sizes when movement was minimal, 
or animals were deeply asleep. Considering the individual variability in the lung function data, we did 
not observe that this shift in particle production was accompanied by a consistent change in either 
breathing frequency, tidal volume, or minute volume. It remains to be determined how well airway and 
particle size distribution dynamics in Syrian hamsters model those in humans. Humans with COVID-19 
have been shown to exhale fewer particles than uninfected individuals during normal breathing, but 
not during coughing (Viklund et al., 2022) and fine aerosols have been found to be the major source 
of virus-loaded droplets. This suggests that a shorter duration of measurable infectious virus in air, 
as opposed to the upper respiratory tract, could be partially due to early changes in airway constric-
tion and a reduction in exhaled particles of the optimal size range for transmission. The mechanisms 
involved in the changing aerodynamic particle profile, and the distribution of viral RNA across particle 
sizes, require further characterization in the hamster model.

Lastly, we compared the transmission efficiency of the Alpha and Delta variants in this system. 
We did not find a clear transmission advantage for Delta over Alpha in Syrian hamsters, in either an 
attack rate simulation or when comparing intra- and inter-host competitiveness over multiple genera-
tions of airborne transmission. This contrasts sharply with epidemiological observations in the human 
population, where Delta rapidly replaced Alpha (and other VOCs). The Syrian hamster model may not 
completely recapitulate all aspects of SARS-CoV-2 virus kinetics and transmission in humans, particu-
larly as the virus continues to adapt to its human host.

Moreover, at the time of emergence of Delta, a large part of the human population was either 
previously exposed to and/or vaccinated against SARS-CoV-2; that underlying host immune land-
scape also affects the relative fitness of variants. Our naïve animal model does not capture the high 
prevalence of pre-existing immunity present in the human population and may therefore be less rele-
vant for studying overall variant fitness in the current epidemiological context. Analyses of the cross-
neutralization between Alpha and Delta suggest subtly different antigenic profiles (van Doremalen 
et al., 2022), and Delta’s faster kinetics in humans may have also helped it cause more reinfections 
and ‘breakthrough’ infections (Yang and Shaman, 2022).

Our two transmission experiments yielded different outcomes. When sentinel hamsters were 
sequentially exposed, first to Alpha and then to Delta, generally no dual infections—both variants 
detectable—were observed. In contrast, when we exposed hamsters simultaneously to one donor 
infected with Alpha and another infected with Delta, we were able to detect mixed-variant virus 
populations in sentinels in one of the cages (Cage F, Appendix 1—figures 2–4). The fact that we saw 
both single-lineage and multi-lineage transmission events suggests that virus population bottlenecks 
at the point of transmission do indeed depend on exposure mode and duration, as well as donor host 
shedding. Notably, our analysis suggests that the Alpha-Delta co-infections observed in the Cage 
F sentinels could be due to that being the one cage in which both the Alpha and the Delta donor 

https://doi.org/10.7554/eLife.87094
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shed substantially over the course of the exposure (Appendix Appendix 1—figures 2 and 3). Mixed 
variant infections were not retained equally, and the relative variant frequencies differed between 
investigated compartments of the respiratory tract, suggesting roles for randomness or host-and-
tissue specific differences in virus fitness.

A combination of host, environmental and virus parameters, many of which vary through time, 
play a role in virus transmission. These include virus phenotype, shedding in air, individual variability 
and sex differences, changes in breathing patterns, and droplet size distributions. Alongside recog-
nized social and environmental factors, these host and viral parameters might help explain why the 
epidemiology of SARS-CoV-2 exhibits classic features of over-dispersed transmission (Lloyd-Smith 
et al., 2005). Namely, SARS-CoV-2 circulates continuously in the human population, but many trans-
mission chains are self-limiting, while rarer superspreading events account for a substantial fraction 
of the virus’s total transmission. Heterogeneity in the respiratory viral loads is high and some infected 
humans release tens to thousands of SARS-CoV-2 virions/min (Chen et al., 2021; Majra et al., 2021). 
Our findings recapitulate this in an animal model and provide further insights into mechanisms under-
lying successful transmission events. Quantitative assessment of virus and host parameters responsible 
for the size, duration and infectivity of exhaled aerosols may be critical to advance our understanding 
of factors governing the efficiency and heterogeneity of transmission for SARS-CoV-2, and potentially 
other respiratory viruses. In turn, these insights may lay the foundation for interventions targeting indi-
viduals and settings with high risk of superspreading, to achieve efficient control of virus transmission 
(Kain et al., 2020).

Materials and methods
Cells and viruses
SARS-CoV-2 variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, EPI_ISL_683466) was 
obtained from Public Health England via BEI Resources. Variant Delta (B.1.617.2/) (hCoV-19/USA/
KY-CDC-2-4242084/2021, EPI_ISL_1823618) was obtained from BEI Resources. Virus propagation 
was performed in VeroE6 cells (kindly provided by Ralph Baric, University of North Carolina, Chapel 
Hill, USA; also available as VERO C1008 from ATCC (CRL-1586, https://www.atcc.org/products/all/​
crl-1586.aspx)) in DMEM supplemented with 2% fetal bovine serum, 1 mM L-glutamine, 50 U/mL peni-
cillin and 50 μg/mL streptomycin (DMEM2). VeroE6 cells were maintained in DMEM supplemented 
with 10% fetal bovine serum, 1 mM L- glutamine, 50 U/mL penicillin and 50 μg/ml streptomycin. No 
mycoplasma and no contaminants were detected. All virus stocks were sequenced; no SNPs compared 
to the patient sample sequence were detected in the Delta stock. In the Alpha stock we detected: 
ORF1AB D3725G: 13% ORF1AB L3826F: 18%.

Pseudotype entry assay
The spike coding sequences for SARS-CoV-2 variant Alpha and Delta were truncated by deleting 
19 aa at the C-terminus. The S proteins with the 19 aa deletions of coronaviruses were previously 
reported to show increased efficiency incorporating into virions of VSV (Fukushi et al., 2005; Kawase 
et  al., 2009). These sequences were codon optimized for human cells, then appended with a 5′ 
kozak expression sequence (GCCACC) and 3′ tetra-glycine linker followed by nucleotides encoding 
a FLAG-tag sequence (DYKDDDDK). These spike sequences were synthesized and cloned into 
pcDNA3.1+(GenScript). Human and hamster ACE2 (Q9BYF1.2 and GQ262794.1, respectively) were 
synthesized and cloned into pcDNA3.1+ (GenScript). All DNA constructs were verified by Sanger 
sequencing (ACGT). BHK cells were seeded in black 96-well plates and transfected the next day 
with 100  ng plasmid DNA encoding human or hamster ACE2, using polyethylenimine (Polysciences). 
All downstream experiments were performed 24   hr post-transfection. Pseudotype production was 
carried out as described previously (Letko et al., 2020). Briefly, plates pre-coated with poly-L-lysine 
(Sigma–Aldrich) were seeded with 293T cells and transfected the following day with 1200  ng of empty 
plasmid and 400  ng of plasmid encoding coronavirus spike or no-spike plasmid control (green fluo-
rescent protein (GFP)). After 24  hr, transfected cells were infected with VSVΔG seed particles pseudo-
typed with VSV-G as previously described (Letko et al., 2020; Takada et al., 1997). After 1 hr of 
incubating with intermittent shaking at 37  °C, cells were washed four times and incubated in 2  mL 
DMEM supplemented with 2% FBS, penicillin/streptomycin, and L-glutamine for 48  hr. Supernatants 
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were collected, centrifuged at 500 x g for 5  min, aliquoted, and stored at −80  °C. BHK cells previously 
transfected with ACE2 plasmids of interest were inoculated with equivalent volumes of pseudotype 
stocks. Plates were then centrifuged at 1200 x g at 4  °C for 1 hr and incubated overnight at 37  °C. 
Approximately 18–20  hr post-infection, Bright-Glo luciferase reagent (Promega) was added to each 
well, 1:1, and luciferase was measured. Relative entry was calculated by normalizing the relative light 
unit for spike pseudotypes to the plate relative light unit average for the no-spike control. Each figure 
shows the data for two technical replicates.

Structural interaction analysis
The locations of the described spike mutations in the Alpha and Delta VOCs were highlighted on the 
SARS-CoV-2 spike structure (PDB 6ZGE, Wrobel et al., 2020). To visualize the molecular interactions 
at the RBD-ACE2 binding interface, the crystal structure of the Alpha variant RBD and human ACE2 
complex (PDB 7EKF Han et  al., 2021) was utilized. All figures were generated using The PyMOL 
Molecular Graphics System (https://www.schrodinger.com/pymol).

Aerosol caging
Aerosol cages as described by Port et  al., 2022 were used for transmission experiments and air 
sampling as indicated. The aerosol transmission system consisted of plastic hamster boxes (Lab Prod-
ucts) connected by a plastic tube. The boxes were modified to accept a 7.62 cm (3') plastic sanitary 
fitting (McMaster-Carr), which enabled the length between the boxes to be changed. Airflow was 
generated with a vacuum pump (Vacuubrand) attached to the box housing the naïve animals and was 
controlled with a float-type meter/valve (McMaster-Carr).

Experimental study design for in vivo studies
Sample size was determined based on expected differences in virological parameters (0.5 log differ-
ence in shedding or tissue titers) or transmission efficiency (75% difference or 2.25 ratio). Animals were 
randomly assigned to groups, keeping them sex separated. Experimenters performing data analysis 
were blinded where possible. No animals were excluded from the analysis.

Hamster infection with Alpha and Delta
Four-to-6-week-old female and male Syrian hamsters (ENVIGO) were inoculated (10 animals per virus) 
intranasally (IN) with either SARS-CoV-2 variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, 
EPI_ISL_683466), variant Delta (B.1.617.2/) (hCoV-19/USA/KY-CDC-2-4242084/2021, EPI_
ISL_1823618)., or no virus (anesthesia controls). IN inoculation was performed with 40  µL sterile 
DMEM containing 103 TCID50 SARS-CoV-2 or simply sterile DMEM. At 5 days post inoculation (DPI), 
five hamsters from each group were euthanized and tissues were collected. The remaining five animals 
were euthanized at 14 DPI for disease course assessment and shedding analysis. For the control 
group, no day 5 necropsy was performed. Hamsters were weighed daily, and oropharyngeal swabs 
were taken on days 1, 2, 3, 4, 5, and 7. Swabs were collected in 1 mL DMEM with 200 U/mL penicillin 
and 200 µg/mL streptomycin. For the control group, mock swabs were performed to ensure animals 
underwent the same anesthesia protocols as infection groups. On days –1, 0, 1, 2, 3, 4, 5, 6, 7, and 
14 whole body plethysmography was performed. Profiles of particles produced by hamsters were 
collected on days 0, 1, 3, and 5. Cage air was sampled on day 0, 1, 2, 3, 4, and 5. Hamsters were 
observed daily for clinical signs of disease. Necropsies and tissue sampling were performed according 
to IBC-approved protocols.

Air sampling of hamster cages
During the first 5  days, hamsters were housed in modified aerosol cages (only one hamster box) 
hooked up to an air pump. Air flow was generated at 30 cage changes/hr. Between the cage and the 
pump a 47 mm gelatin air filter was installed. Filters were exchanged in 24 hr intervals. The filters were 
dissolved in 5 mL of DMEM containing 10% FBS and presence of virus was determined by qRT PCR 
and plaque assay.

Aerodynamic particle sizing of exhaled droplets
Two strategies were used to measure the aerodynamic diameter of droplets exhaled by hamsters. 
SARS-CoV-2 inoculated hamsters or uninfected control animals were placed into a 1.25 L isoflurane 
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chamber. This allowed free movement of the animal in the chamber. The chamber was hooked up with 
one port to a HEPA filter. The second port was hooked up to a Model 3321 aerodynamic particle sizer 
spectrometer (TSI). Both chamber and particle sizer were placed into a BSC class II cabinet. Animals 
remained in the chamber for 5x1 min readings. For each set of readings, there were 52 different 
particle sizes. For each hamster and timepoint, the total number of particles was calculated and the 
percent of particles in a particular diameter range was derived using this total. RStudio 2021.09.1 
Build 372 Ghost Orchid Release, R version 4.1.2 (2021-11-01), Tidyverse R package version 1.3.1 
(2021-04-15), and Emmeans R package version 1.7.2 (2022-01-04) were used for the aerodynamic 
particle size analysis.

To differentiate between particle profiles produced by an awake and moving animal and those 
produced by a sleeping animal with limited movement, uninfected age-matched hamsters (three males 
and two females) were acclimatized to being inside a 38.1 mm inside diameter tube hooked up to a 
particle sizer (Figure 5A and B). Both tube and particle sizer were placed into a BSC class II cabinet. 
To acclimate the animals to the tube, sunflower seeds were provided to encourage investigation and 
free entry and exit from the tube. After animals became used to being in the tube, ends were capped 
as depicted and 5x5 min readings were taken. The particle size was measured using a Model 3321 
aerodynamic particle sizer spectrometer (TSI). Particle size profiles were analyzed using TSI software. 
As a control, particles originating from empty enclosures and euthanized animals were recorded and 
found to be absent.

Aerosol transmission attack rate experiment
Four-to-6-week-old female and male Syrian hamsters (ENVIGO) were used. In this experiment naïve 
hamsters (sentinels) were exposed to donors infected with either Alpha or Delta in the same aerosol 
transmission set-up to evaluate the attack rates of both variants. Donor hamsters were infected intra-
nasally as described above with 103 TCID50 SARS-CoV-2 (Alpha or Delta, N=7, respectively) and housed 
individually. After 24 hr, donor animals were placed into the donor cage. 4 or 5 sentinels were placed 
into the sentinel cage (N=34, 7 iterations), which was connected to the donor cage by a 2 m tube 
and exposed for 4 hr. Air flow was generated between the cages from the donor to the sentinel cage 
at 30 cage changes/h. One donor inoculated with Alpha, and one donor inoculated with Delta were 
randomly chosen for each scenario. Both donors were either placed together into the donor cage, or, 
alternatively, first one donor was placed into the cage for 2 hr, then the other for 2 hr. To ensure no 
cross-contamination, the donor cages and the sentinel cages were never opened at the same time, 
sentinel hamsters were not exposed to the same handling equipment as donors, and equipment 
was disinfected with either 70% ETOH or 5% Microchem after each sentinel. Regular bedding was 
replaced by alpha-dri bedding to avoid the generation of dust particles. Oropharyngeal swabs were 
taken for donors after completion of the exposure and for sentinels on days 2, 3, and 5 after exposure. 
Swabs were collected in 1 mL DMEM with 200 U/mL penicillin and 200 µg/mL streptomycin. Donors 
were euthanized after exposure ended, and sentinels were euthanized on day 5 for collection of lungs. 
All animals were always single housed outside the exposure window.

Variant competitiveness transmission chain
Four-to six-week-old female and male Syrian hamsters (ENVIGO) were used. Donor hamsters (N=8) 
were infected intranasally as described above with 103 TCID50 SARS-CoV-2 at a 1:1 ratio of Alpha and 
Delta (exact titration of the inoculum for both variants = 503 TCID50, 80% Delta sequencing reads). 
After 12 hr, donor animals were placed into the donor cage and sentinels (Sentinels 1, N=8) were 
placed into the sentinel cage (1:1) at a 16.5 cm distance with an airflow of 30 cage changes/h as 
described by Port et al., 2022. Hamsters were co-housed for 24 hr. The following day, donor animals 
were re-housed into regular rodent caging. One day later, Sentinels 1 were placed into the donor cage 
of new transmission set-ups. New sentinels (Sentinels 2, N=8) were placed into the sentinel cage at 
a 16.5 cm distance with an airflow of 30 changes/hr. Hamsters were co-housed for 24 hr. Then, Senti-
nels 1 were re-housed into regular rodent caging and Sentinels 2 were placed into the donor cage of 
new transmission set-ups 1 day later. New sentinels (Sentinels 3, N=8) were placed into the sentinel 
cage at a 16.5 cm distance with an airflow of 30 changes/hr. Hamsters were co-housed for 24 hr. Then 
both Sentinels 2 and Sentinels 3 were re-housed to regular rodent caging and monitored until 5 DPE. 
Oropharyngeal swabs were taken for all animals at 2 and 5 DPI/DPE. All animals were euthanized at 
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5 DPI/DPE for collection of lung tissue and nasal turbinates. To ensure no cross-contamination, the 
donor cages and the sentinel cages were never opened at the same time, sentinel hamsters were not 
exposed to the same handling equipment as donors, and the equipment was disinfected with either 
70% EtOH or 5% Microchem after each sentinel. Regular bedding was replaced by alpha-dri bedding 
to avoid the generation of dust particles.

Within-host kinetics model
We used Bayesian inference to fit a semi-mechanistic model of within-host virus kinetics and shedding 
to our data from inoculated hamsters. Briefly, the model assumes a period of exponential growth of 
virus within the host up to a peak viral load, followed by exponential decay. It assumes virus shedding 
into the air follows similar dynamics, and the time of peak air shedding and peak swab viral load may 
be offset from each other by an inferred factor. Decay of RNA may be slower than that of infectious 
virus by an inferred factor, representing the possibility, seen in our data, that some amplified RNA may 
be residual rather than representative of current infectious virus levels. We also inferred conversion 
factors (ratios) among the various quantities, that is how many oral swab sgRNA copies correspond 
to an infectious virion at peak viral load. We fit the model to our swab and cage air sample data using 
Numpyro (Phan et al., 2019), which implements a No-U-Turn Sampler (Hoffman and Gelman, 2014). 
For full mathematical details of the model and how it was fit, including prior distribution choices and 
predictive checks (Appendix 1—figure 1), see Appendix: Within-host dynamics model and Bayesian 
inference methods.

Whole body plethysmography
Whole body plethysmography was performed on SARS-CoV-2 and uninfected Syrian hamsters. 
Animals were individually acclimated to the plethysmography chamber (Buxco Electronics Ltd., NY, 
USA) for 20 min, followed by a 5-min measurement period with measurements taken continuously 
and averaged over two-second intervals. Initial data was found to have an especially high rejection 
index (Rinx) for breaths, so was reanalyzed using a custom Buxco formula to account for differences 
between mice and hamsters. This included expanding the acceptable balance range, the percent 
change in volume between inhalation and exhalation, from 20–180% to 15–360%. Reanalysis using 
this algorithm resulted in the Rinx across all hamsters from one day before infection to 5 days post-
infection decreasing from 62.97% to 48.65%. The reanalyzed data were then used for further analysis. 
Each hamster’s individual averages one day prior to infection were used as their baselines for data 
analysis.

Areas under the curve (AUCs) for each parameter were calculated for each individual hamster 
based on their raw deviation from baseline at each time point. Either positive or negative peaks 
were assessed based on parameter-specific changes. Principal component analyses (PCAs) to visu-
alize any potential clustering of animals over the course of infection were performed for each day 
on raw values for each of the parameters to accurately capture the true clustering with the least 
amount of data manipulation. PCAs and associated visualizations were coded in R using RStudio 
version 1.4.1717 (RStudio Team, 2021). The readxl package version 1.3.1 was then used to import 
Excel data into RStudio for analysis (Wickham and Bryan, 2023). Only parameters that encapsu-
lated measures of respiratory function were included (zero-centered, scaled). The factoextra package 
version 1.0.1 (Kassambara and Mundt, 2020) was used to determine the optimal number of clusters 
for each PCA via the average silhouette width method and results were visualized using the ggplot2 
package (Wickham, 2016). Correlation plots were generated based on raw values for each lung func-
tion parameter using the corrplot package version 0.90 (Wei and Simko, 2021). The color palette for 
correlation plots was determined using RColorBrewer version 1.1–2 (Neuwirth, 2022).

Viral RNA detection
Swabs from hamsters were collected as described above. A total of 140  µL was utilized for RNA 
extraction using the QIAamp Viral RNA Kit (Qiagen) using QIAcube HT automated system (Qiagen) 
according to the manufacturer’s instructions with an elution volume of 150 µL. For tissues, RNA was 
isolated using the RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions and eluted 
in 60 µL. Sub-genomic (sg) and genomic (g) viral RNA were detected by qRT-PCR (Corman et al., 
2020). RNA was tested with TaqMan Fast Virus One-Step Master Mix (Applied Biosystems) using 
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QuantStudio 6 or 3 Flex Real-Time PCR System (Applied Biosystems). SARS-CoV-2 standards with 
known copy numbers were used to construct a standard curve and calculate copy numbers/mL or 
copy numbers/g. Limit of detection = 10 copies/rxn.

Viral titration
Viable virus in tissue samples was determined as previously described Yang et al., 2021. In brief, 
lung tissue samples were weighed, then homogenized in 1 mL of DMEM (2% FBS). Swabs were used 
undiluted. VeroE6 cells were inoculated with ten-fold serial dilutions of homogenate, incubated for 
1 hr at 37 °C, and the first two dilutions washed twice with 2% DMEM. For swab samples, cells were 
inoculated with ten-fold serial dilutions and no wash was performed. After 6 days, cells were scored 
for cytopathic effect. TCID50/mL was calculated by the Spearman-Karber method. To determine titers 
in air samples, a plaque assay was used. VeroE6 cells were inoculated with 200 µL/well (48-well plate) 
of undiluted samples, no wash was performed. Plates were spun for 1 hr at RT at 1000 rpm. A total 
of 800  µL of CMC (500  mL MEM Cat#10370, Gibco, must contain NEAA), 5  mL PenStrep, 7.5  g 
carboxymethylcellulose (CMC, Cat# C4888, Sigma, sterilize in autoclave) overlay medium was added 
to each well and plates incubated for 6 days at 37 °C. Plates were fixed with 10% formalin overnight, 
then rinsed and stained with 1% crystal violet for 10 min. Plaques were counted.

Serology
Serum samples were analyzed as previously described (Yinda et al., 2021). In brief, maxisorp plates 
(Nunc) were coated with 50 ng spike protein (generated in-house, purified recombinant) per well. 
Plates were incubated overnight at 4  °C. Plates were blocked with casein in phosphate buffered 
saline (PBS) (Thermo Fisher) for 1 hr at room temperature (RT). Serum was diluted twofold in blocking 
buffer and samples (duplicate) were incubated for 1 hr at RT. Secondary goat anti-hamster IgG Fc 
(horseradish peroxidase (HRP)-conjugated, Cat.No. 5220–0371 Lot. 10492253, Seracare) antibodies 
were used for detection and KPL TMB 2-component peroxidase substrate kit (SeraCare, Cat.No. 
5120–0047) was used for visualization. The reaction was stopped with KPL stop solution (Seracare) 
and plates were read at 450 nm. The threshold for positivity was calculated as the average plus 3 x the 
standard deviation of negative control hamster sera.

MesoPlex assay
The V-PLEX SARS-CoV-2 Panel 13 (IgG) kit from Meso Scale Discovery was used to test binding anti-
bodies against spike protein of SARS-CoV-2 with 10,000-fold diluted serum obtained from hamsters 
14 DPI. A standard curve of pooled hamster sera positive for SARS-CoV-2 spike protein was serially 
diluted fourfold. The secondary antibody was prepared by conjugating a goat anti-hamster IgG cross-
adsorbed secondary antibody (Thermo Fisher, Cat.No. SA5-10284) using the MSD GOLD SULFO-TAG 
NHS-Ester Conjugation Pack (MSD). The secondary antibody was diluted 10,000 X for use on the 
assay. The plates were prepped, and samples were run according to the kit’s instruction manual. After 
plates were read by the MSD instrument, data was analyzed with the MSD Discovery Workbench 
Application.

Virus neutralization
Heat-inactivated γ-irradiated sera were two-fold serially diluted in DMEM. 100 TCID50 of SARS-CoV-2 
variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, EPI_ISL_683466) or variant Delta 
(B.1.617.2/) (hCoV-19/USA/KY-CDC-2-4242084/2021, EPI_ISL_1823618) was added. After 1 hr of incu-
bation at 37 °C and 5% CO2, the virus:serum mixture was added to VeroE6 cells. CPE was scored after 
5 days at 37 °C and 5% CO2. The virus neutralization titer was expressed as the reciprocal value of the 
highest dilution of the serum that still inhibited virus replication. The antigenic map was constructed 
as previously described (Smith et al., 2004; Fonville et al., 2014) using the antigenic cartography 
software from https://acmacs-web.antigenic-cartography.org. In brief, this approach to antigenic 
mapping uses multidimensional scaling to position antigens (viruses) and sera in a map to represent 
their antigenic relationships. The maps here relied on the first SARS-CoV-2 infection serology data of 
Syrian hamsters. The positions of antigens and sera were optimized in the map to minimize the error 
between the target distances set by the observed pairwise virus-serum combinations. Maps were 
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effectively constructed in only one dimension because sera were only titrated against two viruses and 
the dimensionality of the map is constrained to the number of test antigens minus one.

Next-generation sequencing of virus
Total RNA was extracted from oral swabs, lungs, and nasal turbinates using the Qia Amp Viral kit 
(Qiagen, Germantown, MD), eluted in EB, and viral Ct values were calculated using real-time PCR. 
Subsequently, 11 µL of extracted RNA was used as a template in the ARTIC nCoV-2019 sequencing 
protocol V.1 (​Protocols.​io - https://www.protocols.io/view/ncov-2019-sequencing-protocol-​
bbmuik6w) to generate 1st-strand cDNA. Five microliters were used as template for Q5 HotStart Pol 
PCR (Thermo Fisher Sci, Waltham, MA) together with 10 µM stock of a single primer pair from the 
ARTIC nCoV-2019 v3 Panel (Integrated DNA Technologies, Belgium), specifically 76 L_alt3 and 76 R_
alt0. Following 35 cycles and 55 °C annealing temperature, products were AmPure XP cleaned and 
quantitated with Qubit (Thermo Fisher Scientific) fluorometric quantitation per instructions. Following 
visual assessment of 1 µL on a Tape Station D1000 (Agilent Technologies, Santa Clara, CA), a total of 
400 ng of product was taken directly into TruSeq DNA PCR-Free Library Preparation Guide, Revision 
D (Illumina, San Diego, CA) beginning with the Repair Ends step (q.s. to 60 µL with RSB). Subsequent 
cleanup consisted of a single 1:1 AmPure XP/reaction ratio and all steps followed the manufacturer’s 
instructions including the Illumina TruSeq CD (96) Indexes. Final libraries were visualized on a BioAna-
lyzer HS chip (Agilent Technologies) and quantified using KAPA Library Quant Kit - Illumina Universal 
qPCR Mix (Kapa Biosystems, Wilmington, MA) on a CFX96 Real-Time System (BioRad, Hercules, CA). 
Libraries were diluted to 2 nM stock, pooled together in equimolar concentrations, and sequenced on 
the Illumina MiSeq instrument (Illumina) as paired-end 2X250 base pair reads. Because of the limited 
diversity of a single-amplicon library, 20% PhiX was added to the final sequencing pool to aid in final 
sequence quality. Raw fastq reads were trimmed of Illumina adapter sequences using cutadapt version 
1.1227, then trimmed and filtered for quality using the FASTX-Toolkit (Hannon Lab, CSHL). To process 
the ARTIC data, a custom pipeline was developed (Avanzato et al., 2020). Fastq read pairs were 
first compared to a database of ARTIC primer pairs to identify read pairs that had correct, matching 
primers on each end. Once identified, the ARTIC primer sequence was trimmed off. Read pairs that 
did not have the correct ARTIC primer pairs were discarded. Remaining read pairs were collapsed into 
one sequence using AdapterRemoval (Schubert et al., 2016) requiring a minimum 25 base overlap 
and 300 base minimum length, generating ARTIC amplicon sequences. Identical amplicon sequences 
were removed, and the unique amplicon sequences were then mapped to the SARS-CoV-2 genome 
(MN985325.1) using Bowtie2 (Langmead and Salzberg, 2012). Aligned SAM files were converted to 
BAM format, then sorted and indexed using SAMtools (Li et al., 2009). Variant calling was performed 
using Genome Analysis Toolkit (GATK, version 4.1.2) HaplotypeCaller with ploidy set to 2 (McKenna 
et  al., 2010). Single nucleotide polymorphic variants were filtered for QUAL >200 and quality by 
depth (QD) >20 and indels were filtered for QUAL >500 and QD >20 using the filter tool in bcftools, 
v1.9 (Li et al., 2009). Pie charts were generated using ggplot2 (Wickham, 2016) in R 4.2.1 using 
RStudio version 1.4.1717 (RStudio Team, 2021).

Histopathology
Necropsies and tissue sampling were performed according to IBC-approved protocols. Tissues were 
fixed for a minimum of 7 days in 10% neutral buffered formalin with 2 changes. Tissues were placed in 
cassettes and processed with a Sakura VIP-6 Tissue Tek on a 12 hr automated schedule using a graded 
series of ethanol, xylene, and ParaPlast Extra. Prior to staining, embedded tissues were sectioned at 
5 µm and dried overnight at 42 °C. Using GenScript U864YFA140-4/CB2093 NP-1 (1:1000), specific 
anti-CoV immunoreactivity was detected using the Vector Laboratories ImPress VR anti-rabbit IgG 
polymer (# MP-6401) as secondary antibody. The tissues were then processed using the Discovery 
Ultra automated processor (Ventana Medical Systems) with a ChromoMap DAB kit Roche Tissue Diag-
nostics (#760–159).

Statistical analysis
Significance tests were performed as indicated where appropriate for the data using GraphPad Prism 
9. Unless stated otherwise, statistical significance levels were determined as follows: ns = p > 0.05; *=p 
≤ 0.05; **=p ≤ 0.01; ***=p ≤ 0.001; ****=p ≤ 0.0001. Exact nature of tests is stated where appropriate. 
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Data collected from animal experiments was assumed non-parametric and tests were applied appro-
priately. All data collected from animal experiments represents biological replicates.
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Appendix 1
Within-host dynamics model and Bayesian inference methods
Introduction
We modeled the observation process explicitly to extract maximal information from the data 
generated.

Notation
In the text that follows, we use the following mathematical notation.

Logarithms and exponentials
‍log

(
x
)
‍ denotes the logarithm base ‍e‍ of ‍x‍ (sometimes called ‍ln

(
x
)
‍). We explicitly refer to the 

logarithm base 10 of ‍x‍ as ‍log10
(
x
)
‍ . ‍exp

(
x
)
‍ denotes ‍ex‍ .

Probability distributions
The symbol ∼  denotes that a random variable is distributed according to a given probability 

distribution. So, for example

	﻿‍ X ∼ Normal
(
0, 1

)
‍�

indicates that the random variable X is normally distributed with mean 0 and standard deviation 1.
We parameterize normal distributions as:

	﻿‍ Normal
(
mean, standard deviation

)
‍�

We parameterize positive-constrained normal distributions (i.e. with lower limit 0) as:

	﻿‍ PosNormal
(
mode, standard deviation

)
‍�

We parameterize censored normal distributions, in which values outside the censoring range are 
reported at the lower limit of detection (lld) and upper limit of detection (uld), respectively, as:

	﻿‍ CensoredNormal
(
mean, standard deviation, lld, uld

)
‍�

We parameterize Poisson distributions as:

	﻿‍ Poisson
(
mean

)
‍�

Units
Unless otherwise stated, we express time in units of hours, volume in units of mL, infectious virus in 
units of plaque forming units collected on our air filter, and sgRNA in units of copy numbers.

Dynamics model
We modeled the within-host dynamics of the virus within inoculated hamsters as a process of 
exponential growth of virus up to a peak, followed by exponential decay of virus down from that 
peak. The principal quantity of interest is airborne virus shedding over time ‍Va

(
t
)
‍ , expressed in units 

of infectious virions exhaled per unit volume of exhaled air per unit time. We express time in units 
of hours post-infection.

Growth and decay of air shedding
We denote the exponential growth rate of the virus within the hamster by ‍g‍ and the exponential 
decay rate after the peak by ‍dav‍ . We denote the time of peak airborne shedding ‍ta > 0‍ and define 
‍t = 0‍ as the time of inoculation.

Our model is therefore:

	﻿‍

Va
(
t
)

=





Va
(
0
)

exp
[
gt
]

t < ta

Va
(
0
)

exp
[
gta − dav

(
t − ta

)]
t ≥ ta‍� (1)

https://doi.org/10.7554/eLife.87094


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Port et al. eLife 2023;13:RP87094. DOI: https://doi.org/10.7554/eLife.87094 � 27 of 39

Offset growth and decay of oral shedding
Since we also took measurements of virus shed in oral swabs, we incorporated the dynamics of 
oral swab shedding ‍Vo

(
t
)
‍ into our model. We modeled ‍Vo

(
t
)
‍ as offset in time from the dynamics of 

airborne shedding ‍Va
(
t
)
‍ by some offset factor ‍ω > 0‍. That is, the time of peak oral shedding ‍to‍ is:

	﻿‍ to = ωta‍� (2)

Note that ‍ω < 1‍ implies that swab shedding peaks earlier than airborne shedding, ‍ω > 1‍ implies 
that swab shedding peaks later, and ‍ω = 1‍ implies the peaks coincide in time.

We also allowed for the possibility that oral virus shedding decays at a faster or slower rate ‍dov‍ 
than airborne virus shedding, which decays at a rate ‍dav‍ . Specifically, we defined the ratio of ‍dov‍ to 
‍dav‍ as ‍qo > 0‍, so:

	﻿‍ dov = qodav‍� (3)

Then:

	﻿‍

Vo
(
t
)

=





Vo
(
0
)

exp
[
gt
]

t < to

Vo
(
0
)

exp
[
gto − dov

(
t − to

)]
t ≥ to‍�

(4)

Relationship between sgRNA and infectious virus
We also modeled the possibility that measured sgRNA decays slower or faster than measured 
infectious virus. Slower decay, for instance, could result from persistence of undegraded RNA after 
all infectious virions have been neutralized or otherwise lost infectivity.

We modeled this possibly different RNA shedding decay rate with an estimated ratio ‍qn > 0‍ that 
relates sgRNA shedding decay to infectious virus shedding decay. So the decay rate of airborne 
sgRNA shedding ‍dan‍ is:

	﻿‍ dan = qndav‍� (5)

And similarly the decay rate of oral sgRNA shedding ‍don‍ is:

	﻿‍ don = qndov = qoqndav‍� (6)

We modeled the ratio between produced virus ‍V
(
t
)
‍ and produced sgRNA copies ‍N

(
t
)
‍ with 

multipliers ‍on‍ for oral swabs and ‍an‍ for air samples. So before the decay phase begins, ‍V
(
t
)
‍ and ‍N

(
t
)
‍ 

are linearly related.

	﻿‍

Na
(
t
)

anVa
(
t
)

if t < ta
No

(
t
)

onVo
(
t
)

if t < to‍�
(7)

The dynamics of airborne sgRNA shedding ‍Na
(
t
)
‍ and oral sgRNA shedding ‍No

(
t
)
‍ are therefore 

equivalent to those for infectious virus in Equation 1 and Equation 4, respectively, but with ‍dan‍ 
instead of ‍dav‍ , ‍don‍ instead of ‍dov‍ , and initial values ‍Na

(
0
)

= anVa
(
0
)
‍ , ‍No

(
0
)

= onVo
(
0
)
‍ :

	﻿‍

Na
(
t
)

=





Na
(
0
)

exp
[
gt
]

t < ta

Na
(
0
)

exp
[
gta − dan

(
t − ta

)]
t ≥ ta‍�

(8)

	﻿‍

No
(
t
)

=





No
(
0
)

exp
[
gt
]

t < to

No
(
0
)

exp
[
gto − don

(
t − to

)]
t ≥ to‍�

(9)
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Initial shedding value
For inference purposes, rather than set a prior distribution on the initial airborne shedding viral load 

‍V0 = Va
(
0
)
‍ , we instead set a prior on the peak airborne viral load ‍Vmax = Va

(
ta
)
‍ and back-calculated 

‍Va
(
0
)
‍ (and thus ‍Vo

(
0
)
‍ , ‍Na

(
0
)
‍ , and ‍No

(
0
)
‍) via:

	﻿‍ log
(
V0

)
= log

(
Vmax

)
− gta‍� (10)

Variant effects
We allowed the two variants of interest, Alpha and Delta, to take on different typical values for all 
of the virological parameters: ‍g‍, ‍dav‍ , ‍ta‍ , ‍ω‍, ‍qo‍ , ‍qn‍ , ‍an‍ , ‍on‍ , and mean peak viral shedding ‍Vmax‍ . We 
denote the variant-specific values for variant ‍i‍ by ‍gi‍ , ‍davi‍ , and so on.

Respiration rates
We also measured animal respiration rates ‍m

(
t
)
‍ and included these in our model. The amount of 

infectious virus an animal deposits into the air per unit time is ‍m
(
t
)

Va
(
t
)
‍ and the amount of sgRNA 

the animal deposits per unit time is ‍m
(
t
)

Na
(
t
)
‍ .

Sex effects
Since male hamsters are physically larger and appeared to have different shedding profiles, we 
wanted to be able to estimate the effect of host sex on key parameters of interest. To do this, we 
modeled males as possibly offset from females in their typical values of respiration rate ‍m

(
t
)
‍ , airborne 

shedding exponential growth rate ‍g‍, airborne shedding exponential decay rate ‍dav‍ , peak airborne 
shedding time ‍ta‍ , and peak airborne shedding rate ‍Vmax‍ (this then has downstream consequences 
for other parameters such as ‍dan‍ or ‍to‍ that depend on those core virological parameters).

We modeled sex differences in the virological parameters via offsets to the mean log values for 
male hamsters. ‍∆x‍ denotes the offset for variable ‍x‍. So for example if females have a mean log 
respiration rate of ‍log

[
m
]
‍ , males have one of ‍log

[
m
]

+ ∆m‍ . We also estimated male offsets ‍∆g‍ for 
growth rate ‍g‍, ‍∆d‍ for decay rate ‍dav‍ , and ‍∆V ‍ for peak shedding ‍Vmax‍ . We did not treat effects as 
variant-specific, but rather sought to estimate the average sex differences in infection dynamics 
across the two variants tested.

Individual heterogeneity in disease course
To account for the fact that individuals have heterogeneous disease courses, we made our model 
hierarchical, with core virological parameter values for specific individuals distributed about the 
typical population values. If infected with a variant ‍i‍, animal ‍j‍ has individual values for the virus 
growth rate ‍gij‍ , the virus decay rate ‍davij‍ , the peak load time ‍taij‍ , and the peak load 

‍
Vmax

ij ‍
 .

These values are log-normally distributed about the population values for the given variant and 
animal sex, with estimated variant-specific standard deviations ‍σgi‍ , ‍σdi‍ , ‍σti‍, and ‍σVi‍ . We use ‍sj‍ as an 
indicator for the sex of hamster ‍j‍ (0 if female, 1 if male). Then:

	﻿‍

log
[
gij
]

∼ Normal
(
log

[
gi
]

+ sj∆g,σgi
)

log
[
davij

]
∼ Normal

(
log

[
davi

]
+ sj∆d,σdi

)

log
[
taij

]
∼ Normal

(
log

[
tai
]

,σti
)

log
[

Vmax
ij

]
∼ Normal

(
log

[
Vmax

i

]
+ sj∆V,σVi

)
‍�

(11)

We also allowed for individual heterogeneity in respiration rates: animal ‍j‍ has an individual 
time-averaged respiration rate ‍mj‍ log-normally distributed about the population value ‍m‍ with an 
estimated standard deviation ‍σm‍ :

	﻿‍ log
[
mj
]
∼ Normal

(
log

[
m
]

+ sj∆m,σm
)
‍� (12)

Predicting observable quantities
We measured the following quantities:

•	 Virus subgenomic RNA (sgRNA) in oral swabs, measured via quantitative PCR (qPCR) in units 
of estimated copy numbers.

https://doi.org/10.7554/eLife.87094
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•	 Infectious virus in oral swabs, measured via endpoint titration in units of ‍log10 TCID50‍ per mL.
•	 Respiration rates, measured via plethysmography in units of mL air exhaled per unit time.
•	 Virus sgRNA collected on cage air filters over 24 hr sampling periods, measured via qPCR in 

units of estimated copy numbers.
•	 Infectious virus collected on cage air filters over 24 hr sampling periods, measured via plaque 

assay as total plaques formed.
•	 Infection statuses for each variant for each sentinel hamster.

Units of virus dynamics
We expressed ‍Va

(
t
)
‍ and ‍Vo

(
t
)
‍ in units of total filter-collectible plaque forming units (PFU) shed per 

‍mL/h‍ (i.e. units that directly predict the cage air infectious virus measurements).
As discussed in section 2, our model explicitly relates infectious virus dynamics ‍Va

(
t
)
‍ and ‍Vo

(
t
)
‍ to 

sgRNA copy number dynamics ‍Na
(
t
)
‍ and ‍No

(
t
)
‍ . The distinct conversion factors ‍an‍ and ‍on‍ and decay 

rates ‍dan‍ and ‍don‍ for airborne versus oral shedding account for two types of possible differences 
between airborne and oral samples: biological differences (distinct underlying relationships between 
infectious virus concentration and sgRNA concentration) and measurement differences (distinct 
quantities of absolute sgRNA quantity recovered given the same underlying sgRNA concentration).

Converting predicted swab virus to units of TCID50
To fit our model, we needed to convert our internal representation of predicted oral shedding of 
virus ‍Vo

(
t
)
‍ , which has the same ‘predicted air plaques’ units as airborne shed virus ‍Va

(
t
)
‍ , into the 

units in which we measured oral shedding: infectious virus ‍vo
(
t
)
‍ in units of ‍log10 TCID50‍ mL. We 

modeled this conversion via a multiplier ‍ov‍ :

	﻿‍ vo
(
t
)

= ovVo
(
t
)
‍� (13)

The multiplier ‍ov‍ subsumes both unit conversion and any actual multiplicative difference in 
virion numbers between airborne shedding and swabs (which could come from lower peak virion 
concentrations, sampling volume, et cetera.).

Predicting air sample plaques
We measured shedding into the air at the cage level; multiple hamsters were housed within a single 
cage. Moreover, samples were cumulative 24 hr accumulation on the air filter, rather than a point-
sample.

Cumulative shedding over a time period
So to fit our model, we needed to compute the cumulative airborne shedding ‍A‍ over some time 

period ‍
(
t1, t2

)
‍ :

	﻿‍
A
(
t1, t2

)
=
ˆ t2

t1
m
(
t
)

Va
(
t
)

dt
‍�

(14)

where ‍m
(
t
)
‍ is the animal’s respiration rate. Integrating yields:

	﻿‍

A
(
t1, t2

)
=





m
g
(
Va

(
t2
)
− Va

(
t1
))

t2 ≤ ta
m

dav

(
Va

(
t1
)
− Va

(
t2
))

t1 > ta
m
g
(
Va

(
ta
)
− Va

(
t1
))

+ m
dav

(
Va

(
ta
)
− Va

(
t2
))

otherwise
‍�

(15)

where ‍m‍ is an appropriately-chosen constant to represent the time-varying effect of ‍m
(
t
)
‍ on the 

value of the integral. Note that while ideally, we would know how ‍m
(
t
)
‍ and ‍Va

(
t
)
‍ change together 

and compute the integral explicitly, in practice we could only measure ‍m
(
t
)
‍ coarsely, and so it was 

simpler to infer the appropriate value, understanding that it would not necessarily equal a naive 
temporal average.

Accounting for loss of virion infectivity
Furthermore, since the air shedding measured accumulation on the air filter over a 24 hr period, 

we had to account for decay of infectious virus between exhalation and quantification. To do this, 
we assumed that the virus decays exponentially in suspended aerosols and on the filter (as we have 

https://doi.org/10.7554/eLife.87094
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previously measured empirically Morris et al., 2021; van Doremalen et al., 2020) but that minimal 
virus is lost once the filter is removed for virus quantification.

Suppose that the sampling period begins at a time ‍t1‍ post-infection and ends at a time ‍t2‍ when 
the filter is removed. Each hamster ‍j‍ sheds infectious virus at a rate ‍mVaj

(
t
)
‍ per unit time. But if the 

virus loses infectivity according to an exponential decay process with rate ‍λ‍, then only a fraction 
‍e−λ

(
ts−t

)
‍ of the virions shed at time ‍ts > t1‍ and collected on the filter will remain infectious when 

the filter is collected at ‍t2‍ . For simplicity in mathematical notation, we assume here that, as in our 
experiments, potentially shedding individual remained present until at least ‍t2‍ , though our code 
allows for modeling other situations, such as the removal of the shedding individual prior to the 
removal of the filter.

We denote the cumulative number of virions shed since ‍t1 ≥ t0‍ that remain viable (infectious) 
at ‍t2 ≥ t1‍ by ‍Av

(
t1, t2

)
‍ (to distinguish it from the cumulative shedding irrespective of retained 

infectiousness ‍A‍). Fixing ‍t1‍ , ‍Av‍ is defined by the following differential equation with respect to ‍t2‍ :

	﻿‍

dAv
dt2

= mVa
(
t2
)
− λAv

‍�
(16)

Since we have an expression for ‍Va
(
t
)
‍ consisting of fixed periods of constant-rate exponential 

growth or decay, we can treat this as a system of two coupled linear ordinary differential equations, 
with ‍

dVa
dt2 = gVa‍ or ‍

dVa
dt2 = −davVa‍ , depending on whether ‍t2 > ta‍ , and solve.

Assume the shedding individual is removed at a time ‍ts ≥ t1‍ , which may or may not be after ‍ta‍ . 
Then:

	﻿‍

Av
(
t1, t2

)
=





mV
(
t1
)

g + λ

(
eg

(
t2−t1

)
− e−λ

(
t2−t1

))
t1 < t2 ≤ ta, ts

mV
(
t1
)

−dav + λ

(
e−dav

(
t2−t1

)
− e−λ

(
t2−t1

))
ta ≤ t1 < t2 ≤ ts

mV
(
ta
)

−dav + λ

(
e−dav

(
t2−ta

)
− e−λ

(
t2−ta

))
+ Av

(
t1, ta

)
e−λ

(
t2−ta

)
t1 < ta < t2 ≤ ts

Av
(
t1, ts

)
e−λ

(
t2−ts

)
t1 ≤ ts < t2 ‍�

(17)

In a previous version of this work, we took an equivalent alternative approach based on integrating 
over the virions shed at a time ‍t1 ≤ t ≤ t2‍ that would survive until ‍t2‍ ; we describe that alternative 
approach in section 8.2 below for completeness.

Predicting air sample sgRNA
For air sample sgRNA, we again predicted cumulative accumulation. We did not model environmental 
degradation of detectable sgRNA, but rather chose to treat it implicitly via the decay rate ratio ‍qn‍ 
relating airborne infectious virus shedding to airborne sgRNA shedding. We chose not to model 
sgRNA environmental degradation more explicitly because environmental half-lives for sgRNA are 
less well-characterized, but likely longer, than environmental half-lives for infectious virus.

The cumulative predicted number of sgRNA copies collected is:

	﻿‍
An

(
t1, t2

)
= m
ˆ t2

t1
Na

(
t
)

dt
‍�

(18)

‍An‍ can be computed using the following antiderivative:

	﻿‍
G
(
t, a, ti

)
=
ˆ

exp
[
a
(
t − ti

)]
dt = 1

a
exp

[
a
(
t − ti

)]
‍�

(19)

We obtain:

	﻿‍

An
(
t1, t2

)
=





mNa
(
t1
) [

G
(
t2, g.t1

)
− G

(
t1, g, t1

)]
t2 < ta

mNa(t1)[G(t2,−d, t1) − G(t1,−d, t1)] t1 > ta
mNa(t1)[G(ta, g, t1) − G(t1, g, t1)]+

mNa(ta)[G(t2,−d, ta) − G(ta,−d, ta)] t1 ≤ ta ≤ t2‍� (20)
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Predicting sentinel exposures
Using our kinetics model, we were able to estimate the probability each donor in our dual donor 
experiment had of infecting each sentinel, taking into account donor sex, infecting variant, and 
timing of exposure. This also enabled us to assess whether the absence of observed co-infections in 
sequential donor experiments was more suggestive of competitive interference or non-interference 
among the virus variants (see section Assessing coinfection probabilities for methods and results).

To do this, we assumed that each sentinel’s dose from each donor was proportional to the 
cumulative airborne shedding by the donor over the period of sentinel exposure. Given the short 
exposure period, we ignored the effect of environmental loss, so the computation was ‍Av

(
t1, t2

)
‍ as 

in Equation 17, but with the environmental loss rate set to ‍λ = 0‍. We assumed that the total dose 
received by each sentinel was equal to the cumulative shedding multiplied by an estimated variant-
specific constant ‍ci‍ that subsumes uncertainty about sentinel respiration rate, cage airflow, and per-
virion infectivity when inhaled by a hamster (since ‍Av‍ has units of predicted cell culture plaques, and 
hamster airways may be more or less susceptible to virions of a given variant).

So in our model, each sentinel ‍j‍ receives a dose ‍hij‍ of variant ‍i‍ that depends on the virus shedding 

‍Avij
(
t1ij, t2ij

)
‍ from the donor animal associated to variant ‍i‍ and sentinel ‍j‍, where ‍t0ij‍ and ‍t1ij‍ are the 

start and end times of the exposure under the exposure design for variant ‍i‍ and sentinel ‍j‍:

	﻿‍ hij = ciAvij
(
t1ij, t2ij

)
‍� (21)

We again applied a Poisson single-hit model of infection, so the probability ‍pinf
(
i, j
)
‍ that sentinel 

‍j‍ is infected with variant ‍i‍ depends on the cumulative dose ‍hij‍ as:

	﻿‍ pinf
(
i, j
)

= 1 − e−hij
‍� (22)

Relating predicted quantities to observed quantities
Oral swabs
Infectious virus titers

Denote the ‍k‍th measured oral swab titer by ‍yvok‍ . Suppose it was sampled from individual animal 

‍j‍ at time ‍t‍. Then its predicted value is ‍vok = ovVoj
(
t
)
‍ .

We modeled the distribution of observed swab titers given ‍log10 TCID50‍ values ‍vok‍ via a Poisson 
single-hit process, as we have described previously Gamble et al., 2021; Morris et al., 2021 (in 
particular, see section Offset growth and decay of oral shedding of SI of Gamble et  al., 2021). 
Briefly, in a Poisson single-hit model of virus titration, a Poisson-distributed number of virions 
successfully infect cells in each. The mean µ of this Poisson depends on the underlying sample virus 
concentration ‍v‍ (in ‍log10 TCID50‍) and degree of dilution ‍D‍ (in ‍log10‍ fold dilutions).

	﻿‍ µ = log
(
2
)

10v−D
‍� (23)

The factor of ‍log
(
2
)
‍ converts from units of ‍TCID50‍ to units of successful virions.

A well will be positive for infection if at least one virion infects a cell, which occurs with probability:

	﻿‍
1 − exp

(
− log

(
2
)

10v−D
)
‍� (24)

A complication to the typical single-hit model in this case is that we only had total counts of 
positive wells rather than exact well identities, dilutions, and positive/negative status. To handle this, 
we used an approximate method that integrates the likelihood function over the most probable 
configurations of positive and negative wells that could generate an observed total count. We 
describe this method in section Well observation process .

Subgenomic RNA
If ‍ynok‍ is the ‍kth‍ measurement of oral swab sgRNA, sampled from animal ‍j‍ at time ‍t‍, its 

predicted value is ‍nok = No
(
t
)
‍ . To account for different sampling procedures and qPCR runs for the 

donor animals used in the dual donor experiments compared to the animals used in the kinetics 
experiments, for the donor animals we added an estimated offset term ‍f ‍ to the log copy number: 

‍log
[
nok

]
= log

[
No

(
t
)]

+ f ‍.

https://doi.org/10.7554/eLife.87094
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We modeled the observed ‍log10‍ oral swab sgRNA copy numbers ‍ynok‍ as distributed about their 
predicted values ‍nok‍ , with an estimated variant-specific standard deviation ‍σnoi‍ (where ‍i‍ is the variant 
infecting animal ‍j‍) and censoring at the minimum and maximum observable values (which are given 
by the particular sgRNA standard curve).

	﻿‍ log10
(
ynoj

)
∼ CensoredNormal

(
log10

(
noj

)
,σnoi, nmin, nmax

)
‍� (25)

Air samples
Plaques

We used Equation 17 to predict the number of plaques ‍vak‍ observed on each filter.
Note that this implies ‍Va

(
t
)
‍ has units of filter plaques produced per mL exhaled air per unit time 

(in the absence of environmental decay).
If an observed plaque count ‍yavk‍ comes from an air sample taken between time ‍t1‍ and time ‍t2‍ from 

a cage with ‍nh‍ hamsters infected with variant ‍j‍, the corresponding predicted plaque count ‍vak‍ is:

	﻿‍
vak =

nh∑
u=1

Avu
(
t1, t2

)
‍�

(26)

where ‍Avu
(
t1, t2

)
‍ is ‍Av

(
t1, t2

)
‍ for the ‍u‍th hamster.

Since in vitro cell infection is well-described by a Poisson single-hit process (Brownie et  al., 
2011) (possibly with binomial thinning), we modeled the observed plaque counts ‍yavk‍ as Poisson-
distributed about their predicted values ‍vak‍ .

	﻿‍ yvak ∼ Poisson
(
vak

)
‍� (27)

Subgenomic RNA
Similarly, we used Equation 20 to predict the number of sgRNA copies ‍nak‍ that would be observed 

when sampling cage ‍k‍ from ‍t1‍ until ‍t2‍ as:

	﻿‍
nak =

nh∑
u=1

Anu
(
t1, t2

)
‍�

(28)

where ‍Anu‍ is the cumulative sgRNA shedding function ‍An‍ for hamster u.
We model the observed ‍log10‍ air sample sgRNA copy numbers ‍log10

(
ynak

)
‍ as normally distributed 

about their predicted values ‍log10
(
nak

)
‍ with an estimated variant-specific standard deviation ‍σnai‍ and 

censoring at the minimum and maximum possible ‍log10‍ estimated copy numbers (which depend on 
the standard curve).

	﻿‍ log10
(
ynak

)
∼ CensoredNormal

(
log10

[
nak

]
,σnai, nmin, nmax

)
‍� (29)

Respiration rates
We modeled the observed log respiration rates for animal ‍j‍‍log

(
ymij

)
‍ as distributed about the animal’s 

typical log value ‍log
(
mj
)
‍ with an estimated standard deviation ‍σr‍ .

	﻿‍ log
(
ymij

)
∼ Normal

(
log

(
mj
)

,σr
)
‍� (30)

Sentinel infection status
Our dynamical model generates predicted infection probabilities ‍pinf

(
i, j
)
‍ for sentinel ‍i‍ with variant 

‍j‍ (see section Predicting sentinel exposures).
The observed infection status for sentinel ‍j‍ with variant ‍i‍, ‍ypij ∈

{
0, 1

}
‍ is therefore Bernoulli 

distributed with probability ‍pinf
[
i, j
]
‍ .

	﻿‍ ypij ∼ Bernoulli
(
pinf

[
i, j
])

‍� (31)
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Prior distributions
In general, we sought to set prior distributions for our parameters that were “weakly informative” 
(Gelman et  al., 2008); that is, that rule out biologically implausible or impossible values while 
remaining fairly agnostic about possible values of interest. We assessed the robustness of our prior 
distribution choices via prior predictive checks.

Respiration rates
We placed a normal prior on the population-wide mean log respiration rate ‍log

(
m
)
‍ , with ‍m‍ in units 

of mL h−1.

	﻿‍ log
(
m
)
∼ Normal

(
log

[
4800

]
, 0.25

)
‍� (32)

We placed a positive-constrained normal prior on the individual respiration rate standard deviation 

‍σmi‍ (see section Individual heterogeneity in disease course).

	﻿‍ σmi ∼ PosNormal
(
0, 0.25

)
‍� (33)

Virological parameters
We placed log-normal priors on the variant-specific time to peak ‍tai‍ and peak shedding rate 

‍
Vmax

i ‍
 ; ‍i‍ 

indexes the variant. To encode prior information about the variant-specific growth and decay rates 

‍gi‍ and ‍davi‍ in an interpretable manner, we placed normal priors on the doubling and halving times (in 
hours) ‍t2i = log

(
2
)

/gi‍ and ‍
t 1

2 i = log
(
2
)

/davi‍ and then back-calculated ‍gi‍ and ‍davi‍ .

	﻿‍

log
[
tai
]

∼ Normal
(
log

[
24

]
, 0.5

)

log
[
Vmax

i

]
∼ Normal

(
log

[
1
]
− log

[
24

]
− log

[
4800

]
, 3
)

log
[
t2i
]

∼ Normal
(
log

[
5
]

, 0.5
)

log


t 1

2
i


 ∼ Normal

(
log

[
15

]
, 0.75

)

log


t 1

2
i


 ∼ Normal

(
log

[
15

]
, 0.75

)

‍�

(34)

The prior mode for 
‍
log

[
Vmax

i

]
‍
 can be interpreted as corresponding to the amount of shedding 

that would lead to 1 plaque(s) on the air filter from a 24 h sample at the prior mean respiration rate 
of ‍log

[
4800mL/h

]
‍ .

We placed normal priors on the male sex effects ‍∆m‍ , ‍∆g‍ , ‍∆d‍ , and ‍∆V ‍ that modify the virological 
parameters.

	﻿‍

∆m ∼ Normal
(
0, 0.25

)

∆g ∼ Normal
(
0, 0.25

)

∆d ∼ Normal
(
0, 0.25

)

∆V ∼ Normal
(
0, 0.25

)
‍�

(35)

We placed lognormal priors on the swab to air peak timing ratio ‍ω‍, the swab to air decay rate 
ratio ‍qo‍ , the sgRNA to infectious virus decay rate ratio ‍qn‍ , the air infectious virus to oral TCID 
conversion factor ‍ov‍ , the air and swab copy number to infectious virus ratios ‍an‍ and ‍on‍ . We placed 
a normal prior on the donor log copy number offset ‍f ‍.

https://doi.org/10.7554/eLife.87094
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	﻿‍

log
(
ω
)

∼ Normal
(
0, 0.25

)

log
(
qo
)

∼ Normal
(
0, 1

)

log
(
qn
)

∼ Normal
(
log

[
1
]

, 1
)

log
(
ov
)

∼ Normal
(
0, 10

)

log
(
an
)

∼ Normal
(
0, 10

)

log
(
on
)

∼ Normal
(
0, 10

)

f ∼ Normal
(
0, 1.5

)
‍�

(36)

We placed positive-constrained normal priors on the hierarchical standard deviations that specify 
degree of individual variation about these population-wide virological parameters (see section 
Individual heterogeneity in disease course).

	﻿‍

σgi ∼ PosNormal
(
0, 0.2

)

σdi ∼ PosNormal
(
0, 0.2

)

σti ∼ PosNormal
(
0, 0.15

)

σVi ∼ PosNormal
(
0, 2

)
‍�

(37)

Sentinel infection process constant
We placed a lognormal prior on the variant-specific sentinel infection process constant ‍ci‍ .

	﻿‍ log
[
ci
]
∼ Normal

(
0, 3

)
‍� (38)

Observation error standard deviations
We placed positive-constrained normal priors on the observation process standard deviations for 
respiration rate ‍σr‍ , oral swab sgRNA copies ‍σnoi‍ , and air sample sgRNA copies ‍σnai‍ .

	﻿‍

σr ∼ PosNormal
(
0, 0.2

)

σnoi ∼ PosNormal
(
0, 0.5

)

σnai ∼ PosNormal
(
0, 0.5

)
‍�

(39)

Prior predictive checks
We assessed the appropriateness of prior choices via prior predictive checks. Appendix 1—figure 1 
shows a version of main text Figure 1 but where sample trajectories are plotted alongside the data 
but drawn from the prior predictive distribution rather than the posterior distribution.

Assessing coinfection probabilities
To assess the probability of coinfection, we visualized the infection probabilities for each variant in 
each cage. Given no interaction between two variants’ infection processes, the probability of being 
coinfected for each hamster ‍j‍ is the product of the hamster’s probabilities for each variant:

	﻿‍ Pcoinf
(
j
)

= Pinf
(
1, j

)
Pf

(
2, j

)
‍� (40)

The distribution of the number of coinfections in a given cage or experiment is then the convolution 
of these individual Bernoulli-distributed outcomes for individuals.

Results
Appendix 1—figure 2 shows the estimated infection probabilities by variant and cage. Cage F was 
the only cage in which we observed coinfections, and our model shows that it is indeed the only cage 
in which both Alpha and Delta clearly had a high probability of causing infections in the sentinels.

We then calculated the posterior estimated probability of coinfection occurring for each hamster 
in each cage, according to equation (40). Appendix 1—figure 3 shows the resulting estimates.

The model estimates that coinfection probabilities were highest in Cage F simply because both 
Alpha and Delta infection probabilities were high. In other cages, coinfection probabilities are 
substantially lower, since at least one variant has a low individual infection probability 2. Cage C 

https://doi.org/10.7554/eLife.87094
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(Delta, then Alpha) is the only sequential exposure cage in which the absence of coinfections is 
perhaps surprising; even there, the data are consistent with a coinfection probability of under 25% 
or even under 10%, so given that only 5 sentinels were exposed, the absence of a coinfection is 
consistent with random variation.

Finally, to assess whether the absence of any coinfections in the sequential experiments while 
several were observed in the simultaneous experiments could be explained by chance, we calculated 
the posterior distribution for the expected number of coinfections by experiment type (this is the 
sum of the probability for each cage times the number of sentinels in that cage). The results are 
shown in Appendix 1—figure 4.

The model suggests that the absence of coinfections in the sequential exposures could simply 
result from low probabilities in all cages except C; the data are consistent with an expectation of 
between zero and two coinfections, though more than that would also have been plausible.

Taken together, our results suggest that differences in donor virus dynamics and shedding could 
readily explain the differences between sequential and simultaneous exposures in our small-N 
dataset. Identifying or ruling out competitive (or facilitating) interaction among virus variants during 
sequential versus simultaneous transmission would likely require larger samples.

Computational methods
We implemented and conducted inference from our model in Python using the Numpyro probabilistic 
programming framework (Phan et al., 2019). We drew posterior samples using Numpyro’s iterative 
implementation (Phan et al., 2019) of the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014), 
a form of Hamiltonian Monte Carlo (HMC). For each model fit, we ran three Markov Chains, each 
with 1000 warmup steps and 1000 samples. We assessed convergence by examining figures and by 
confirming sufficient effective sample sizes and the absence of divergent transitions after warmup.

For inference purposes, we set a minimum rate of for all Poisson distributions of “hitting” virions 
(for filter plaques and virus titration). True rates can cause numerical issue when conducting NUTS 
sampling with Numpyro. This minimum rate of can be thought of as representing a very small 
temperature and humidity on inactivation of SARS-CoV-2 and other enveloped vprobability of a 
false positive plaque or well.

We prepared data for modeling and analyzed and visualized output in Python Van Rossum and 
Drake, 2009; the packages Numpy (Harris et  al., 2020), Scipy (Jones et  al., 2001), Matplotlib 
(Hunter, 2007), and Polars (Vink, 2022) were particularly critical.

All code and data to reproduce Bayesian inference results, including model fits and model output 
figures, is available on the project Github repository (https://github.com/dylanhmorris/host-viral-​
determinants) and archived on Zenodo (https://doi.org/10.5281/zenodo.8396135).

Additional mathematical details
Well observation process
Spearman-Karber estimates for a 0.1 mL inoculum give an exact value for the total number of positive 
wells in a 4 well by 8 serial dilution series (with a an undilute first row , and serial -fold dilutions—here 
—such that the row has been diluted -fold). This allowed us to back-calculate the total number of 
positive wells. With some additional assumptions, we were then able to calculate the approximate 
likelihood of observing a given number of positive wells given a true underlying titer .

We assumed that wells were all positive until some dilution and wells were all negative or not 
attempted at dilutions and higher. That is, only two sequential dilutions are assumed potentially to 
have a mix of positive and negative wells: and . This is by far the most probable way to produce 
a given total number of positive wells, particularly with 10-fold or coarser dilutions, since other hit 
distributions require some negative wells to occur at substantially higher plated concentrations than 
some positive wells.

With this assumption made, a given total number of positive wells has implies a value of this and 
a corresponding number of total positives seen at dilutions d and d+1 combined:

	﻿‍

k = min
{

n, 4 + n mod 4
}

d = n − k
4 ‍�

(41)
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where mod denotes the modulo operation (remainder when n is divided by 4). Note that while we 
assume d and d+1 can have a mix of positive wells, we do not assume for certain that they do. When 
k=4, all positive at and all negative at d+1 is a possible outcome (or, much less probably, all positive 
at d+1and all negative at d); it is just not the only possible outcome, as we could also have, e.g., 3 
of 4 wells positive at and 1 of 4 positive at d+1.

The approximate log likelihood for observing ‍n‍ positive wells given an underlying virus 
concentration ‍v‍ is then the sum over the possible ways to generate ‍k‍ positives at dilutions ‍d‍ and 
‍d + 1‍. Define the random variables ‍Kd‍ and ‍Kd+1‍ as the number of wells positive at dilutions ‍d‍ and 
‍d + 1‍, respectively. Then the probability of observing a certain value of ‍Kd‍ given the underlying virus 
concentration ‍v‍ is given by a binomial distribution with success probability equal to the single hit 
probability at dilution ‍d‍, i.e.:

	﻿‍

P
(
Kd = k ∨ v

)
=


 4

k


 pk (1 − p

)4−k

‍�
(42)

For our experiments, ν is measured in ‍log10TCID50‍ and dilutions are 10-fold, so we have

	﻿‍
p = 1 − exp

(
−log

(
2
)

10v−d
)
‍�

This gives us a computable approximate likelihood ‍L
(
n ∨ v

)
:‍

	﻿‍
L
(
n ∨ v

)
≈

4∑
c=k−4

log
[
P
(
Kd = c ∨ v

)]
+ log

[
P
(
Kd+1 = k − c ∨ v

)]
‍�

(43)

Alternative approach to computing viable virions shed during a time window
This describes a second, equivalent manner of computing ‍Av

(
t1, t2

)
‍ , the cumulative number of 

virions shed between ‍t1‍ and ‍t2‍ that remain viable at ‍t2‍ . In this instance, we integrate over the time 
of shedding t, but thin the virions shed by considering only the fraction ‍e−λ

(
t2−t

)
‍ that will be viable 

when sampled at ‍t2 ≥ t‍. This fraction is exact if we treat virion loss of infectivity as exponential at a 
rate λ.

	﻿‍
Av

(
t1, t2

)
= m
ˆ t2

t1
Va

(
t
)

e−λ
(

t2−t
)
dt

‍�
(44)

This integral can be computed using the following antiderivative:

	﻿‍
F
(
t, a, ti, ts

)
=
ˆ

exp
[
a
(
t − ti

)
− λ

(
ts − t

)]
dt = 1

a + λ
exp

[
a
(
t − ti

)
− λ

(
ts − t

)]
‍�

(45)

In our case, a is the exponential growth rate of shedding, with negative a values representing 
exponential decay, and ‍ts ≥ t‍ is the time of filter removal (so ‍ts − t‍ is how long a virion deposited at 
‍t‍ must retain infectiousness in order to be infectious when the filter is removed).

To compute ‍Av
(
t1, t2

)
‍ , we have to consider several possible cases. Recall that time is measured 

relative to the time ‍t = 0‍ that the shedding individuals were inoculated, and ‍ta > 0‍ is the time of peak 
air shedding.

If ‍t2 < ta‍ , the entire sampling period happens before peak air shedding. In that case:

	﻿‍ Av
(
t1, t2

)
= mVa

(
t1
) [

F
(
t2, g, t1, t2

)
− F

(
t1, g, t1, t2

)]
‍� (46)

If ‍t1 > ta‍ , the entire sample is taken after air shedding has peaked. In that case:

	﻿‍ Av
(
t1, t2

)
= mVa

(
t1
) [

F
(
t2,−dav, t1, t2

)
− F

(
t1,−dav, t1, t2

)]
‍� (47)

If the air shedding peak occurs during sampling (‍t1 ≤ ta ≤ t2‍), the problem can be solved piecewise:

https://doi.org/10.7554/eLife.87094
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	﻿‍

Av
(
t1, t2

)
=
ˆ ta

t1
mVa

(
t1
)

exp
[
g
(
t − t1

)
λ
(
t2 − t

)]
dt+

ˆ t2

ta
mVa

(
ta
)

exp
[
−dav

(
t − ta

)
− λ

(
t2 − t

)]
dt

‍�

(48)

And so applying the antiderivative ‍F‍ from Pitol and Julian, 2021:

	﻿‍

Av
(
t1, t2

)
= mVa

(
t1
) [

F
(
ta, g, t1, t2

)
− F

(
t1, g, t1, t2

)]
+

mVa
(
ta
) [

F
(
t2,−dav, ta, t2

)
− F

(
ta,−dav, ta, t2

)]
‍�

(49)

Appendix 1—figure 1. Prior predictive checks. Figure is as main text Figure 1, except that the trajectories 
showed by the semi-transparent lines are randomly sampled from the prior predictive distribution rather than 
from the posterior, and 500 lines are drawn in panel A rather than 100, given the greater dispersion relative to the 
data. Wide range of simulated trajectories relative to the data shows that priors allow for a wide range of a priori 
plausible kinetics.

https://doi.org/10.7554/eLife.87094
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Appendix 1—figure 2. Posterior estimates for the infection probabilities for each variant in each cage. Half-
violin plots show posterior densities for Alpha infection probability (gray) compared to Delta infection probability 
(green). There were very high Alpha infection probabilities in cages A and F.

Appendix 1—figure 3. Posterior estimates for coinfection probabilities by cage. Sequential exposures shown in 
blue, simultaneous exposures shown in pink. Cage F, where coinfections were actually observed, has a substantially 
higher coinfection probability estimate than other cages.

https://doi.org/10.7554/eLife.87094
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Appendix 1—figure 4. Expected coinfection counts for sequential and simultaneous experiments.
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