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Patterns of lineal descent play a critical role in the development of metazoan embryos. In eutelic organisms that generate a fixed number 
of somatic cells, invariance in the topology of their cell lineage provides a powerful opportunity to interrogate developmental events with 
empirical repeatability across individuals. Studies of embryonic development using the nematode Caenorhabditis elegans have been 
drivers of discovery. These studies have depended heavily on high-throughput lineage tracing enabled by 4D fluorescence microscopy 
and robust computer vision pipelines. For a range of applications, computer-aided yet manual lineage tracing using 4D label-free mi
croscopy remains an essential tool. Deep learning approaches to cell detection and tracking in fluorescence microscopy have advanced 
significantly in recent years, yet solutions for automating cell detection and tracking in 3D label-free imaging of dense tissues and em
bryos remain inaccessible. Here, we describe embGAN, a deep learning pipeline that addresses the challenge of automated cell detec
tion and tracking in label-free 3D time-lapse imaging. embGAN requires no manual data annotation for training, learns robust detections 
that exhibits a high degree of scale invariance, and generalizes well to images acquired in multiple labs on multiple instruments. We 
characterize embGAN’s performance using lineage tracing in the C. elegans embryo as a benchmark. embGAN achieves near–state- 
of-the-art performance in cell detection and tracking, enabling high-throughput studies of cell lineage without the need for fluorescent 
reporters or transgenics.
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Introduction
Recent advances have led to the development of highly accurate 
and scalable automated pipelines for reconstructing cell lineages 
from 3D fluorescence time-lapse images (Santella et al. 2010; 
Wolf et al. 2021; Sugawara et al. 2022; Malin-Mayor et al. 2023). 
Despite this, manual lineage tracing continues to play an import
ant role in the study of animal development, ever since its use in 
seminal lineage tracing experiments (Sulston et al. 1983). 
Label-free imaging for small organisms remains more accessible 
than high-resolution long-term fluorescence imaging, as it avoids 
the need for transgenesis or staining. Comparative studies in 
non-model organisms including diverse nematodes (Houthoofd 
et al. 2003, 2006; Houthoofd and Borgonie 2007; Schulze et al. 
2012) and tardigrades (Hejnol and Schnabel 2005; Heikes et al. 
2023) have depended heavily on manual tracking using label-free 
microscopy. Automation, however, has been essential for process
ing large datasets. Stable transgenic reporter lines in C. elegans and 
well-optimized imaging protocols have facilitated the analysis of 

several thousands of individual embryos in a variety of contexts 
(Moore et al. 2013; Du et al. 2015; Li et al. 2019; Cao et al. 2020; Ma 

et al. 2021) using automated lineage tracing.
Image analysis approaches have not been extensively developed 

to detect and track cells in widely used 3D label-free imaging modal

ities such as differential interference contrast (DIC). Prior efforts 

based on local entropy and texture detection achieved robust recall 

but poor precision and were only effective for embryos containing 

small numbers of nuclei (Yasuda et al. 1999; Hamahashi et al. 

2005). Recently, interest in the analysis of label-free imaging owing 

to its simplicity and accessibility has motivated the development of 

deep learning approaches to their manipulation. This includes tools 

meant for performing computational staining, where a deep neural 

network is trained to identify subcellular structures in label-free 

images, and style transfer, where it is trained to transform the ap

pearance of images between imaging modalities (Christiansen 

et al. 2018; Ounkomol et al. 2018; Chen et al. 2023). These approaches 

use paired labeled and label-free images of stained or fluorescent 
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samples, minimizing manual generation of training data typically 
associated with deep learning. These methods have widely used 
training schemes that minimize pixel-by-pixel measurements of 
mismatch between the network’s output and the real fluorescence 
modality images provided in the training set. For cell detection and 
lineage tracing, however, visual similarity is less important than the 
processed image’s compatibility with object detection algorithms.

We developed embGAN to address this gap. embGAN is a deep 
learning–based pipeline for automated cell detection in 3D label- 
free imaging. We trained embGAN using 3D fluorescence and 
DIC imaging of C. elegans embryonic development, compared its 
performance with DIC images relative to a standard lineage tra
cing pipeline run on matching fluorescence images, and used it 
to trace the embryonic lineage of wild-type embryos from the 
widely used laboratory strain N2. We further demonstrate that 
our pre-trained embGAN model generalizes well to data acquired 
on different hardware than the training data. embGAN opens the 
door to automated lineage tracing in situations where fluores
cence time lapse imaging is unavailable, where spectral channels 
for fluorescence need to be conserved for functional reporters, or 
in genetic backgrounds where transgenesis-induced mutagenesis 
would be undesirable. To facilitate these applications and contin
ued development, we provide both the trained model, codebase 
for training and using embGAN, and our complete training image 
set for use by the community.

Materials and methods
C. elegans strains and culture
JIM113 was a gift of J. Murray (University of Pennsylvania), and N2 
was sourced from the Caenorhabditis Genetics Center (University of 
Minnesota). Strains were grown at 20 °C on nematode growth 
media (US Biological) and fed OP50 E. coli. Gravid hermaphrodites 
from well-fed plates were cut using a needle in M9 buffer and em
bryos at the 2-cell or early 4-cell stage were mounted using a 
standard bead-mount approach (Bao and Murray 2011). Briefly, 
extracted embryos were transferred via a hand-drawn glass capil
lary to a 2 uL drop of M9 buffer containing ∼100 polystyrene beads 
20 um in diameter (Polysciences Inc.), sandwiched between two 
pieces of #1.5 coverglass, and sealed with melted petrolatum jelly 
for imaging. RNAi against cdc-25.1 was performed by feeding the 
appropriate clone from the Ahringer Lab RNAi collection (Fraser 
et al. 2000). Briefly, RNAi bacteria were seeded onto NGM plates 
supplemented with 1 mM IPTG and allowed to induce in the 
dark for 24–48 h. L4 larva were transferred to these plates and al
lowed to mature and begin producing eggs overnight. The next 
day, gravid adults were cut and embryos prepped for imaging as 
above.

DIC and fluorescence microscopy
Imaging was performed using either DIC alone for N2 or both DIC 
and fluorescence for JIM113 using an Olympus IX83 inverted frame 
equipped with a UPLSAPO60xs2 objective, a Visitech iSIM multi
point confocal scanner, ASI MX2000XYZ stage, and Hamamatsu 
Orca Fusion camera. The mCherry channel of JIM113 was acquired 
using 594 nm excitation and a 605 nm long-pass emission filter 
using 150 ms exposures and a laser power that was empirically 
tuned to not cause any qualitative developmental delays vs un- 
imaged control embryos and maintain a ∼100% hatch rate for im
aged embryos. Embryos were imaged every 60 s with a 750 nm 
z-spacing. DIC images were acquired with the Visitech scanner in 
brightfield bypass mode, a 50 ms camera exposure, and the LED 
light source tuned to not generate any saturated pixels in the 

image. DIC illumination was generated using an Olympus UCD8 
manual condenser equipped with a U525 oil immersion 1.4 NA 
top lens and a DICTHR tilt-shift slider. The microscope room hous
ing this instrument is maintained at 21 °C by forced air cooling, and 
temperature ranges in the room are checked daily using a therm
ometer that tracks min/max temperature ranges. Images were 
acquired using micro-manager and cropped and converted to indi
vidual tiff volumes using Fiji. An additional dataset was acquired at 
a different site (California State University at Northridge) using a 
Leica DM6000 upright microscope equipped with an HCX PL APO 
63x/1.4 NA objective, Leica K5 sCMOS camera, and DIC condenser 
equipped with a 1.4 NA oil immersion top lens. The DIC slider shear 
was adjusted empirically to approximate the contrast characteris
tics of images acquired on our Olympus microscope and images 
were acquired with a 50 ms exposure, 750 nm z-spacing, and illu
mination LED intensity adjusted to fill the sensor dynamic range 
without saturating pixels.

embGAN
Image pre- and postprocessing
Individual volumes were prepared for inference by the embGAN 
pipeline by performing per-volume contrast adjustment using 
Fiji’s built-in contrast adjustment pipeline set to target a maximum 
of 0.35% of pixels being saturated. The volumes were then con
verted to 8 bit grayscale, and individual slices were exported as an 
image sequence. After inference, the 2D probability maps generated 
by embGAN were re-assembled into 3D stacks using a Fiji macro. 
Individual volumes were then clipped at an intensity of −4 by add
ing 4 to each image and setting all negative pixel values to 0.

embGAN implementation and training
embGAN is based on SeGAN, an adversarial generative model devel
oped originally for the task of segmenting partially occluded objects 
in natural scenes. More specifically, embGAN is an adversarial train
ing framework that utilizes a U-Net as a generator (Segmentor) and a 
multiscale feature extractor (Critic) as input to a multiscale objective 
loss function. This loss function is critical to the generalizable per
formance of embGAN as learning in adversarial networks often exhi
bits drastic instabilities.

Network structure
The segmentor follows a typical U-Net structure, i.e. a convolution
al encoder–decoder with skip connections used to connect corre
sponding levels between the encoder and decoder. The encoder is 
composed of successive downsampling blocks, each followed by a 
residual block. The downsample block is comprised of a convolu
tional layer with stride of 2, each followed by a batchnorm layer 
and ReLU activation. The decoder mirrors the encoder and takes 
as input the output of the encoder. Each level of the decoder is 
made up of an upsampling block followed by a residual block. The 
upsampling block consists of a bilinear interpolation upsampling 
layer that performs upsampling by a factor of 2, a convolutional 
layer, batchnorm, and ReLU activation. The residual block is used 
in both encoder and decoder and consists of a 1 × 1 convolution, a 
3 × 3 convolution, followed by a 1 × 1 convolution. As in the U-Net, 
we add skip connections between corresponding layers of the en
coder and decoder, concatenating the previous encoder outputs to 
the decoder output.

Critic
The critic performs feature extraction on the masked images and is 
similar in structure to the encoder half of the segmentor without 
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the residual blocks. It also makes use of global convolutions to 
increase the receptive field while reducing the number of learned 
parameters. Hierarchical features are computed at each level and 
are concatenated to produce the final output vector used as input 
to the multi-scale lMAE loss.

In typical GAN frameworks, the critic network is trained to dis
cern the difference between a ground truth or prediction generated 
via the segmentor network. To optimize model performance for seg
mentation, we use the multiscale objective loss function L defined 
as:

minθS maxθC L(θS, θC) =
1
N

􏽘N

n=1

ℓmae( fC(xn ◦ S(xn)), fC(xn ◦ yn)) 

where lMAE is the mean absolute error (MAE). The MAE is calculated 
at multiple scales n, between the input image masked by the pre
dicted mask xn ◦ S (xn) and the input image masked by the ground- 
truth labels xn ◦ yn . fC represents the set of hierarchical features 
extracted by the critic network from each of the masked images. 
The lMAE function is defined as:

ℓmae( fC(x), fC(x′)) =
1
L

􏽘L

i=1

‖ f i
C(x) − f i

C(x′)‖1 

where L is the chosen number of scales in the critic network and 

f i
C(x) is the extracted feature map of image x at the ith layer of the 

critic network.

Label generation
Labels were obtained from the fluorescence images using the pre- 
trained 2D_versatile_fluo model from Stardist.

Training
Both segmentor S and critic C networks are trained end-to-end in 
alternating fashion via backpropagation using a training set con
taining a total of 112,302 2D images. First, we fix S and train C 
doing 1 full forward and backward pass and then fix C and do 
the same for S for 1 step. The process of training S and C resembles 
a min/max game: S attempts to reduce the multiscale feature loss, 
while C attempts to increase it. As the training progresses, both S 
and C networks improve their performance. Eventually, the seg
mentor can generate high-quality predicted labels that closely 
match the ground-truth masks. Both networks were trained sim
ultaneously for 10,000 epochs with batch size 36 using the Adam 
optimizer and a learning rate of 0.0002.

Automated lineage tracing and performance 
characterization
embGAN-processed images were processed using the latest release 
of StarryNite (https://github.com/zhirongbaolab/StarryNite) using 
a bifurcation classifier model trained using manually curated 
embGAN data and tuned parameter file (provided in our Github re
pository: https://github.com/shahlab-ucla/embGAN). For perform
ance characterization, 4 embryos that were imaged separately 
from the original training set and not included in the training of 
embGAN were processed both using the fluorescence channel 
and a parameter file where only the intensity thresholds were ad
justed and using embGAN-processed images as input. Curation 
was performed using the latest release of AceTree (https://github. 
com/zhirongbaolab/AceTree). All detections in the raw StarryNite 
output that were not linked to named cells in the curated version 

were counted as false positives (FPs). Missing cells that were added 
manually during curation were counted as false negatives (FNs). 
Errors in tracking were counted as FP if a nucleus was connected 
to an incorrect successor. We also defined 2 instances of FN for 
tracking: FNs due to a missing detection and FNs due to a connec
tion that was missed during the tracking stage. For cases with re
ciprocal errors, such as when tracks swap between 2 cells, 
previously described as “identity swap” errors, all erroneous edges 
are counted. In the simple case of 2 cells with swapped identities, a 
total of 4 errors are counted: 2 FNs for the missing correct edge be
tween each cell and the next time point and 2 FPs for the incorrect 
edges passing between the tracks.

Tracing the lineages of the amphid neurons was done using 
AceTree with the embGAN-processed images of JIM113 embryos 
used in the performance characterization above except that only 
the sublineages that generate the 2 pairs of 12 amphid neurons on 
both left and right sides of the animal were edited. Errors were 
counted using a MATLAB script that compared the pointers in the 
StarryNite output files connecting detected cells at each time point 
between the edited and unedited files, and every disagreement was 
counted as an error. All amphid neurons except for ASE, ASI, ASJ, 
and ASK were tracked until the birth of the terminal neuron. 
These 4 were tracked until the birth of the neuroblast 1 cell cycle be
fore the terminal neuron as the terminal neurons are born after an 
additional round of cell division compared to the remaining 8 am
phid neurons. This terminal division often occurs after the begin
ning of embryonic twitching and thus was excluded from tracking 
in all embryos for performance characterization. All lineage dia
grams were generated using the interactive lineage tool in 
AceTree and complete lineage diagrams for all embryos presented 
in this manuscript including both the manually edited trees and 
each of the initial raw trees generated by StarryNite results, edited 
only up to the 8-cell stage as required by AceTree to identify the em
bryo body axes to automate further naming.

Branch distance comparison of N2 and JIM113 
lineages
Whole-embryo and lineage-specific distances were computed 
using the intersection branch distance (Natesan et al. 2023), defined 
as the L2 norm between a pair of ordered vectors containing the cell 
cycle times of the corresponding cells that exist in both lineages 
under comparison. Comparisons between the global clock of devel
opment between embryos were performed using the first principal 
component as a nonparametric measurement of the slope between 
the cell cycles of matching cells across pairs of embryos under 
comparison. Comparisons between intra-strain variability based 
on the median branch distance were performed using the rank 
sum test in MATLAB r2022a.

Results
Pipeline design and model training
The performance and generalizability of deep learning models are 
heavily influenced by choice of objective loss function. We reasoned 
that an object-focused loss function that incorporates a segmenta
tion metric would allow a model to better learn the task of cell de
tection in label-free images given the greater complexity of image 
features that denote objects of interest, specifically cell nuclei. We 
thus employed a strategy originally developed for segmenting par
tially obscured objects in natural scenes (Ehsani et al. 2018). In 
embGAN (Fig. 1a), a U-Net (Ronneberger et al. 2015) computes an ob
ject probability map from the DIC image to detect cell nuclei. 
Normally, a segmentation-focused U-Net would be trained using a 
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set of manually labeled training images. Given the variability of DIC 
image characteristics (i.e. contrast, illumination uniformity, and sha
dow direction), the wide range of nuclear geometries observed in 
nematode embryos such as during mitosis and at different stages of 
development, we aimed to use a training approach not based on 
manually labeled reference segmentations. Instead, we incorporated 

a multiscale objective loss function (Xue et al. 2018) that uses the 
output of a second network that serves as a critic of the segmenta
tion. The critic uses imperfect labels generated by a pretrained 2D 
segmentation model (Schmidt et al. 2018) to mask both the input 
DIC image and the segmentor’s output. This strategy allows both 
the segmentor and critic to learn both object and image properties, 

Fig. 1. a) Schematic representation of the embGAN network architecture. The Segmentor network generates a segmentation mask of the input image, 
which is supplied, along with a segmentation generated from the corresponding fluorescence image by a pretrained Stardist model, to the Critic network 
whose output is used to calculate the multiscale loss which is minimized to train the Segmentor and maximized to train the Critic. b) Example 2D images 
from the validation image set of a C. elegans embryo showing the embGAN probability score (green) along with the input DIC image (gray) and 
nuclear-localized mCherry (magenta) channel.
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ensuring more robust generalization compared to pixel-wise im
age mismatch-based loss functions.

In our experience, common adversarial training approaches 
[i.e. pix2pix (Isola et al. 2018) or cycleGAN (Zhu et al. 2020)] using 
only fluorescence images and the output of the segmentor as in
puts to the critic produced unstable networks that fail to converge 
or generate reliable predictions on images outside the training set. 
This brittleness is a well-known challenge with adversarial train
ing (Brock et al. 2019), which this loss function addresses by focus
ing the attention of the critic and thus the loss calculation on 
object detection performance. We found that even imperfect seg
mentations by a generalist model dramatically improved the per
formance and robustness of adversarial training in this task. 
embGAN was ultimately trained on a dataset containing a total 
of 112,302 pairs of images in the training set and 41,823 pairs of 
images in the validation set. These images were acquired using 
automated time lapse imaging of a total of 11 developing embryos 
[strain: JIM113 (Zacharias et al. 2015)] in both DIC and fluorescence 
over an average of 35 z-planes per embryo and 6.5 h of imaging 
(enough to cover from the 2- or 4-cell stage up to the onset of em
bryonic twitching) to capture the transgenic lineage tracing re
porter. We employed a probabilistic strategy where the U-Net 
generates an output image with continuously varying values ra
ther than a binary segmentation. This output format makes 
images generated by embGAN compatible with a wide range of 
downstream cell detection and tracking pipelines developed for 
use with fluorescence microscopy. Tuning parameters used in 
these algorithms for processing embGAN images then allows 
end users to optimize performance for their task, for example, 
by reducing FNs at the cost of a potential increase in FPs by redu
cing cell detection thresholds.

embGAN robustly reconstructs the cell lineage of 
the early C. elegans embryo
We tested embGAN performance on a lineage tracing task with a 
well-characterized ground-truth: reconstructing the C. elegans
(Sulston et al. 1983) embryonic cell lineage. We acquired test data 
of JIM113 embryos separate from the training set using time lapse 
3D microscopy. We measured real-world cell detection and tracking 
performance using StarryNite (Santella et al. 2010), a well- 
characterized and robust cell detection and tracking pipeline. After 
training a new classifier model for StarryNite’s tracking pipeline 
using a manually curated dataset, we optimized StarryNite perform
ance for processing embGAN images solely by adjusting the intensity 
thresholds and cell diameter limits applied to StarryNite’s 
difference-of-Gaussians filter for cell detection. No other tracking 
or detection parameters were adjusted from defaults provided by 
the Bao Lab (https://github.com/shahlab-ucla/embGAN) along with 
the StarryNite codebase.

We separately processed the fluorescence time lapse and DIC 
images processed by embGAN for 4 embryos with StarryNite 
(Fig. 1b). We then manually curated both sets of results from all 
4 embryos for the first 200 min of development (a total of 1,600 vo
lumes). Comparing the automated results against manual cura
tions, we counted all detection (Supplementary Tables 1 and 2; 
Supplementary Figures 1 and 2) and tracking (Supplementary 
Tables 3 and 4; Supplementary Figures 3 and 4) errors (Fig. 2a) in 
each dataset. StarryNite performs extremely well on cell detection 
tasks with fluorescence images (Fig. 2b), with recall exceeding 99% 
(99% of all cells are detected) and precision averaging 97.4% (2.6% 
of detections are FPs). For tracking, StarryNite performance on 
fluorescence images achieved recall and precision averaging 99 
and 95.9% (Fig. 2c), respectively. Since embGAN is trained using 

a critic fed with imperfect segmentations, StarryNite cell 
detection and tracking performance drops slightly compared to 
corresponding fluorescence images. Despite this, embGAN per
formance averaged 98.2% recall and 96.4% precision for detection 
(Fig. 2b) and averaged 95.9% recall and 94.4% precision for track
ing (Fig. 2c).

To clarify the strengths and weaknesses of using embGAN- 
generated images for lineage tracing with StarryNite we character
ized tracking performance as a function of time (Fig. 2d) and axial 
position within the embryo (Fig. 2e). Tracking performance at early 
time points appears to vary wildly, as the small number of cells per- 
frame results in large fluctuations of these metrics. Overall tracking 
performance stabilizes and remains consistent on a per-frame basis 
over the period of development assessed (the first 200 min of prolif
eration in the embryo) and is similarly consistent as a function of 
axial depth. We further dissected tracking and detection perform
ance in terms of absolute true positive and error rates on a per- 
embryo basis for lineage tracing performed in fluorescence images 
and in embGAN-processed DIC images (Supplementary Figs. 1–4). 
In general, StarryNite detection errors on embGAN images occur 
most during periods of development where large numbers of cell di
visions are occurring. Detection errors are somewhat correlated 
with increasing depth into the sample, although this seems to 
vary from embryo to embryo, which generally matches trends 
seen in fluorescence imaging where increasing depth results in sig
nal attenuation due to scattering, absorption, and depth-dependent 
aberrations.

As would be expected given StarryNite’s tracking approach 
being based on greedy linking to nearby detections, most FNs 
in tracking are caused by detection errors. Also similar to 
StarryNite’s performance on fluorescence images, both FP and 
FN tracking errors are similarly correlated to periods of develop
ment when cell divisions are occurring. Tracking errors independ
ent of detection errors are uniformly distributed along the depth 
of the embryo. Examination of embGAN prediction confidence 
during cell divisions shows that these detection and related track
ing errors are caused by a drop in confidence during cytokinesis, 
visualized as the intensity of the embGAN image channel 
(Supplementary Movie S1). Future refinement of the masking 
step used in training embGAN or enrichment of cell divisions in 
the training set may further improve embGAN performance dur
ing cell divisions in the future. Complete lineage diagrams of each 
of these 5 embryos are provided in Supplementary File S1, includ
ing the fully edited diagrams for each embryo and the initial out
put of StarryNite for both fluorescence and embGAN images 
edited only up to the point necessary for AceTree to establish 
cell naming based on the convention established by Sulston 
et al. (Sulston et al. 1983).

embGAN performs well in lineage tracing tasks 
spanning late embryogenesis
Since embGAN performed well for lineage reconstruction in the 
early embryo, we next tested it at later stages of development 
when cell nuclei are much smaller and more densely packed, often 
with no separation between adjacent nuclei. Since embGAN per
formance remained stable up until 200 min of development as 
evaluated embryo-wide (Fig. 2d), we expect the total number of er
rors to scale into later stages of development as the total number of 
cells in the embryo increases and the number of cell divisions con
tinues to increase as well. Thus, to evaluate embGAN’s suitability 
to a range of lineage tracing tasks requiring identifying terminally 
divided cells in the late embryo, we tracked the 24 neurons of the 
amphid sensory organs in the 4 test embryos. These neurons are 
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born in either the final 9th or 10th generations of the AB lineage 
(Fig. 3a and b). We tracked the 8 neurons born in the 10th gener
ation up until the birth of their parents, since their terminal div
ision sometimes occurs after the beginning of rapid embryo 
movement, which prevents reliable tracking using StarryNite. We 

counted all tracking errors in the lineage history of these cells, find
ing that most errors occur due to cell divisions, either the cell’s own 
or a nearby cell’s, such that a similar proportion of errors occurred 
in each generation of the AB lineage. Since the length of the cell cy
cle of each generation also increases, this results in a decrease in 

Fig. 2. a) Schematics of common detection and tracking errors. Circles represent cell detections; gray circles show FN and red circles show FP. Lines show 
tracked edges between detections across time points. Dashed lines show FN edges and red lines show FP edges. b) Detection and c) tracking performance 
measured on 4 embryos. Each point shows the measurement of accuracy (blue), precision (orange), and recall (gray). Lines connect measurements 
between StarryNite performance on fluorescence imaging (left) or embGAN-processed DIC imaging (right) of the same embryo. Tracking performance in 
embGAN images as a function of d) developmental time and e) axial position within the image volume. Accuracy (blue), precision (orange), and recall 
(gray) shown as in b) and c), with the performance over time smoothed using a 10-frame moving average.
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the per-frame error rate at later generations compared to earlier 
generations starting at 3% in the early embryo and dropping to 
∼1% (Fig. 3c).

embGAN generalizes well to new strains, images 
from different microscopes, and cell fate 
transformations
We next tested embGAN’s ability generalize to images of animals 
from different strains and to images acquired on a different micro
scope than the training set. For this, we imaged the laboratory-raised 
wild-type strain N2 and applied embGAN to these images (Fig. 4a). 
We imaged N2 embryos using 2 different brands of microscope 
(Leica DM6000 vs Olympus IX83), different objectives and immersion 
media (63× oil vs 60× silicone oil immersion), and different cameras 
(Leica K5 vs Hamamatsu C14440-20UP). Both sets of images, includ
ing those acquired of N2 embryos on the second microscope show 
excellent correspondence between the predicted location of nuclei 
and observed nuclei in the DIC images (Fig. 4b). Based on these re
sults, we set out to use embGAN to perform a quantitative compari
son of embryonic cell cycle timing in the canonical laboratory 
wild-type strain N2 and JIM113, a commonly used transgenic strain 
for lineage tracing by fluorescence imaging. Complete lineage dia
grams of all N2 and JIM113 embryos analyzed here are provided in 
Supplementary File S1, including the fully edited diagrams for 
each embryo and the initial, raw output of StarryNite for each em
bryo. We further tested the generalizability of our embGAN model 
by applying it to the analysis of an abnormal lineage phenotype by 
characterizing the effects of cdc-25.1 RNAi on the specification of 
the E lineage. cdc-25.1 encodes a CDK phosphatase that promotes 
cell cycle progression by removing inhibitory phosphates. Loss of 
cdc-25.1 expression is known to cause loss of endodermal fate in 

the E lineage (Du et al. 2015). The lineage of an RNAi-treated embryo 
shows an overall increase in cell cycle duration, changes in the struc
ture of the MSp lineage, and dramatic shortening of cell cycle dura
tions in the E lineage (Fig. 5a and b). The E lineage normally 
undergoes gastrulation at the E2 stage (Lee and Goldstein 2003). In 
the orientation shown (Fig. 5c), gastrulation occurs in-plane with 
the imaging. Disruption of E’s fate due to cdc-25.1 RNAi prevents gas
trulation with the E4 cells remaining at the embryo surface as appar
ent in the lateral and transverse slices (Fig. 5d). In wild-type embryos, 
the E8 stage normally produces a clear 2 × 4 planar arrangement of 
cells (Fig. 5e) but the 3D organization of this tissue is also lost in 
cdc-25.1 RNAi (Fig. 5f).

N2 embryos exhibit greater inter-embryo 
variability in cell cycle duration
Using embGAN and StarryNite, we tracked all cells through the 6th 
round of division of the AB blastomere and a similar corresponding 
stage for all other sublineages of the embryo in 10 N2 embryos im
aged using the Olympus microscope and one of the N2 embryos im
aged using the Leica microscope. Lineages for each embryo were 
reconstructed using AceTree (Katzman et al. 2018; Fig. 6). We used 
the branch distance, a metric we previously developed to compare 
lineage-aligned phenotypic measurements between cell lineages 
(Natesan et al. 2023), as a summary statistic to compare the 
lineage-aligned distribution of cell cycle durations between the 
same cells in N2 and a set of transgenic JIM113 embryos (Fig. 7a). 
The embryo imaged using the Leica microscope was a clear outlier 
here due to a difference in ambient temperature during imaging 
(∼23 °C vs 21 °C) causing a change in the global rate of development 
(Fig. 7b).

Fig. 3. a) 3D rendering of amphid cell positions traced using embGAN images. b) Image of DIC and embGAN (red) image with annotations showing 
positions of amphid cells. Cells present at the focal plane are circled with dots showing the XY position of cells present at different depths in the volume. 
c) Accuracy of lineaging cells born late in embryogenesis. Mean (blue line) and per-embryo (red circles) error rates for lineaging amphid neurons in 
embGAN processed images.
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Interestingly, N2 embryos exhibited ∼2× more intrastrain vari
ability in the branch distance than JIM113 embryos. This increased 
variability reflects differences in cell cycle timing between N2 em
bryos and originates consistently from specific lineages (Fig. 7c). 

Examination of lineage trees show that this increased variability ori
ginates from diverse individual cells within these lineages but pre
dominantly from later-born generations. N2 embryos are more 
heterogeneous than JIM113 among all lineages with significant 

Fig. 5. Generalizability of embGAN model to lineage tracing in genetically perturbed embryos. Lineage diagrams of the EMS lineage in a) wild-type N2 and 
b) cdc-25.1 RNAi-treated embryos. The vertical scale shows time elapsed in minutes. DIC (gray) and embGAN predictions (red) of the E2 and E4 stages 
when E cells (cyan circles) normally gastrulate in c) wild-type and d) cdc-25.1 RNAi-treated embryos. Insets show xz-axis slices through the volumes at the 
position marked by dash lines showing no evidence of gastrulation in cdc-25.1 RNAi embryos. 3D renderings of E8 cell positions in e) wild-type and d) cdc- 
25.1 RNAi-treated embryos.

Fig. 4. a) Generalizability of embGAN model across multiple source microscopes. Images of early and mid-stage N2 embryos shown in DIC, embGAN 
output, and merged channels acquired on the same microscope as the embGAN training data (Olympus IX83) and b) a second microscope using different 
hardware (Leica DM6000).
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interstrain differences in the median branch distance between em
bryos of the same strain except for 1—ABalp. Previous studies of cell 
division timing consistency of N2 embryos using manual lineage 
tracing noted a similar variability (Schnabel et al. 1997), and our 
comparisons with JIM113 highlights interesting but as yet unex
plained differences in timing variation between this transgenic 
strain derived from N2 and N2 itself.

Discussion
Automated pipelines for cell detection and tracking in 3D time- 
lapse fluorescence microscopy have advanced by leaps and bounds 
in recent years. These efforts have principally focused on improving 
performance on image sets of organisms too large to generate large 
amounts of manual annotation for deep learning (Sugawara et al. 
2022; Malin-Mayor et al. 2023). Label-free imaging remains an at
tractive technology for the study of early development as it does 
not require transgenic or stained samples. The approach we employ 
in embGAN makes it possible to achieve the performance required 
for high-throughput automated lineage tracing using label-free 
images. The multiscale loss function we adopted in embGAN based 
on prior work (Xue et al. 2018) allows us to combine the widely char
acterized advantages of adversarial training using discriminative 
features that are learned by the critic network during the training 
process with the attention-focusing effects of limiting both the in
put and segmentation predictions to regions of the image 

containing cell nuclei using segmentation masks generated from 
the fluorescence channel acquired in the training dataset.

We anticipate that this strategy could be extended in the future 
using multiple strategies to better capture different features of cel
lular morphology, for example, by generating masks based on 3D 
segmentations of cell morphology and not just the nucleus (Cao 
et al. 2020). Using higher information content imaging modalities 
such as quantitative phase imaging (QPI), larger and more diverse 
training sets, or higher performance fluorescence segmentation 
models for training data annotation will likely further improve 
embGAN performance. We prototype a novel potential application 
for embGAN as a tool for comparative embryology between strains 
of distinct genetic backgrounds.

Despite the penalty in detection and tracking accuracy compared 
to the use of fluorescence images, embGAN achieves tracking ro
bust enough to perform a wide range of common lineage tracing 
tasks. From our experience using embGAN for lineage tracing 
thus far, we estimate that the reduced accuracy carries a qualitative 
effort burden of ∼2.5× in terms of the time required to manually 
curate the automated results produced by StarryNite as compared 
to a similarly experienced user working with fluorescence images. 
Perhaps a more salient comparison, starting from embGAN and 
StarryNite-generated lineages and manually correcting errors re
sults in a 95% or more reduction (in other words, a ≥20× difference) 
in the total number of user interventions required to produce an 
empirically accurate lineage relative to fully manual lineage 

Fig. 6. Tree diagrams of the C and ABprp lineages sampled from 4 examples of N2 and JIM113 lineages. Each tree is scaled uniformly, and gray dashed 
lines are provided for visual reference to compare cell cycle consistency across lineages.
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tracing (estimated based on the rate of errors that would require 
correction as a proportion of the total number of expected cells 
per frame).

This proportion is a conservative estimate as many individual 
edits would simultaneously correct 2 lineage errors as we have clas
sified them. Over the test set, 64% of tracking errors were caused by 
detection errors, suggesting that future improvements in embGAN 
prediction performance is the most promising route toward more 
robust overall performance. Other methods to attempt to improve 
tracking performance, such as increasing temporal sampling, is un
likely to have a dramatic impact on performance as frame-to-frame 
cell movement is generally much smaller than a nuclear radius ex
cept for during cell divisions. The decreased accuracy of embGAN in 
detecting cells during cell divisions is most likely caused by a mis
match during training between the geometry of the segmentation 
mask generated from histone fluorescence (compact pronuclei) 
and the informative features of DIC images during cytokinesis (a lar
ger swatch of the cell, locally smooth in texture and without a sharp 
boundary).

As a proof-of-concept of the potential utility of automated lin
eage tracing in nontransgenic C. elegans embryos, we traced the 
early lineage of N2 embryos, something previously only possible 
using fully manual approaches (Schnabel et al. 1997). We further ex
amined the generalizability of embGAN by tracing the lineage of N2 
embryos treated with RNAi against cdc-25.1, a CDK phosphatase 
that plays a major role in cell cycle regulation. Loss of cdc-25.1 re
sults in an average increase in cell cycle duration and is known to 
induce dramatic cell fate transformations, one of which results in 
the E lineage losing its endodermal identity. This transformation 
shortens the cell cycles of the E lineage and blocks its gastrulation, 
disrupting the organization of the embryo. Despite this drastic 
change in the spatial distribution of cells within the embryo, 
embGAN can reliably identify cell nuclei and enable the identifica
tion of the lineage transformation caused by RNAi treatment.

As a proof-of-concept for the characterization of interstrain dif
ferences using embGAN, we thought to compare the topology of 
N2 lineages against those produced for JIM113, a strain that has be
come established as a workhorse for automated lineage tracing by 

Fig. 7. a) Heatmap showing the pairwise branch distance comparing lineage-aligned cell cycle lengths between all N2 and JIM113 embryos. The single N2 
embryo imaged using the second microscope is highlighted at the boundary between N2 and JIM113 embryos. b) Comparison of global rate of 
development between all N2 (black bar) and JIM113 (white bar) embryos calculated pairwise using the first principal component as a nonparametric 
estimate of scaling between embryos. Each square represents a single pairwise comparison where the color reflects the fold-difference in cell cycle 
durations of the embryo indicated by the x-coordinate of the square relative to the embryo indicated by the y-coordinate of the square. c) Distribution of 
pairwise branch distances between specific lineages within N2 (blue) and JIM113 (orange) embryos. Vertical black line shows the interquartile range.  
***P < 0.001 and **P < 0.01 by the rank sum test.

10 | M. Waliman et al.

https://identifiers.org/bioentitylink/taxonomy:6239?doi=10.1093/genetics/iyae135
https://identifiers.org/bioentitylink/WB:WBGene00000386?doi=10.1093/genetics/iyae135
https://identifiers.org/bioentitylink/WB:WBGene00000386?doi=10.1093/genetics/iyae135


fluorescence microscopy. We were surprised to note dramatic dif
ferences in the consistency of cell cycle timing between these 
strains and that these differences themselves appear patterned 
such that more posterior lineages in the embryo (MS, E, C, D, and 
many posterior AB-derived lineages) exhibit both statistically and 
qualitatively clear differences in variability between the strains. 
This general observation, that N2 exhibits clear variability in cell 
cycle timing in many lineages, is consistent with prior studies 
(Schnabel et al. 1997), but an explanation for the lack of such vari
ability in JIM113 remains unclear. JIM113 is itself a transgenic strain 
derived from N2 via biolistic bombardment; it was likely passaged 
through single worm population bottlenecks for several generations 
during the selection process and was subsequently outcrossed 
against N2 for 2 generations, which would have necessitated further 
passaging by picking single worms. Whether this type of population 
bottleneck could have such a homogenizing effect on developmen
tal variability and whether this is somehow specific to the N2 genet
ic background or might be a general phenomenon across diverse 
C. elegans genotypes might warrant future investigations into the 
origins of variability in the dynamics of embryogenesis.

embGAN makes high-throughput cell lineage analysis possible 
for a wider range of sample types than was previously possible 
and introduces useful experimental flexibility by removing the 
need for a fluorescent marker for semi-automated lineage tracing. 
It generalizes well across C. elegans strains and imaging conditions.

Data availability
To accelerate continued improvements in this area, we are making 
our full training image set freely available (https://datadryad.org, 
DOI: 10.5061/dryad.zcrjdfnkz) alongside the codebase and trained 
model weights for embGAN (https://github.com/shahlab-ucla/ 
embGAN; DOI: 10.5281/zenodo.10535870). Supplementary Material
is available via Figshare https://doi.org/10.25386/genetics.25979614.
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