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Abstract

Cellular signaling, crucial for biological processes like immune response and homeostasis,

relies on specificity and fidelity in signal transduction to accurately respond to stimuli amidst

biological noise. Kinetic proofreading (KPR) is a key mechanism enhancing signaling speci-

ficity through time-delayed steps, although its effectiveness is debated due to intrinsic noise

potentially reducing signal fidelity. In this study, we reformulate the theory of kinetic proof-

reading (KPR) by convolving multiple intermediate states into a single state and then define

an overall “processing” time required to traverse these states. This simplification allows us

to succinctly describe kinetic proofreading in terms of a single waiting time parameter, facili-

tating a more direct evaluation and comparison of KPR performance across different biologi-

cal contexts such as DNA replication and T cell receptor (TCR) signaling. We find that loss

of fidelity for longer proofreading steps relies on the specific strategy of information extrac-

tion and show that in the first-passage time (FPT) discrimination strategy, longer proofread-

ing steps can exponentially improve the accuracy of KPR at the cost of speed. Thus, KPR

can still be an effective discrimination mechanism in the high noise regime. However, in a

product concentration-based discrimination strategy, longer proofreading steps do not nec-

essarily lead to an increase in performance. However, by introducing activation thresholds

on product concentrations, can we decompose the product-based strategy into a series of

FPT-based strategies to better resolve the subtleties of KPR-mediated product discrimina-

tion. Our findings underscore the importance of understanding KPR in the context of how

information is extracted and processed in the cell.

Author summary

Kinetic proofreading (KPR) is mechanism often employed by cells to enhance specificity

of ligand-receptor. However, the performance of kinetic proofreading may be hampered

by noise and a low signal-to-noise ratio. By consolidating multiple kinetic proofreading

steps into a single state and assigning an associated waiting, or “processing time,” we

developed an analytic approach to quantify the performance of KPR in different biological
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contexts. Despite a trade-off between speed and accuracy inherent to a first-passage time

KPR strategy, we show that a signaling molecule-based discrimination strategy can

enhance the performance benefits of KPR. We further decompose the product-based dis-

crimination strategy into a set of first-passage times to different thresholds of signaling

molecules produced. Through this decomposition, we find that a threshold that adjusts

dynamically throughout the recognition process depends on the duration of the process.

We propose that this more nuanced product-based KPR-mediated recognition process

can be realized biologically. The precise structural basis for a dynamic threshold merits

further experimental exploration, as it may hold significant implications for understand-

ing biological mechanisms of information transmission at a molecular level.

Introduction

Various cellular processes require a high degree of specificity in order to function properly,

including DNA replication, gene expression, and cellular signaling. The degree of specificity

observed is often hard to justify by a simple binding-affinity argument, the specificity of which

is proportional to exp(−ΔΔG/RT), where ΔΔG is the difference in free energy between the cor-

rect and incorrect ligands [1]. For example, the estimated error probability per nucleotide in

DNA replication is estimated to be 10−9 [2], but the net free energy difference between mis-

matched and matched base pairs is only 0.5 kcal/mol [3], suggesting the theoretical error rate

would be * 10−3. Similarly, T cells need to specifically distinguish self-antigens from mutant

self-antigens, also known as neoantigens, which can differ by only one or a few amino-acids

[4].

Kinetic proofreading (KPR) [1, 5, 6] typically denotes a chemical reaction mechanism that

can significantly increase the specificity towards a desired ligand against competing ligands. In

the KPR context, “proofreading” is accomplished by introducing additional irreversible,

energy-consuming kinetic steps which individually may not distinguish desired ligands from

undesired ones. However, these steps impart a delay to final product release allowing for

“resetting” of the process and an overall lower final error rate (a multistep KPR mechanism is

illustrated in Fig 1A below and mathematical details are discussed in the Materials and

methods).

First proposed by Hopfield to explain the high specificity of DNA/protein synthesis [1], the

KPR mechanisms have been invoked to explain other biological processes such as T cell recep-

tor (TCR) signaling [6] and microtubule growth [7]. These first treatments of KPR described it

within the steady-state limit of deterministic mass-action models, comparing the steady-state

fluxes of the correct and incorrect product formation. Reactions inside the cell, however, are

often between small numbers of molecules and are thus stochastic. Stochastic aspects of KPR

have also been considered, emphasizing the statistics of first passage times (FPT) to product

formation [8–10].

Recently, Kirby and Zilman reported that adding more kinetic proofreading steps almost

always decreases the signal-to-noise ratio (SNR) defined by the ratio of the mean to the stan-

dard deviation of the output signal (the number of signaling molecules produced within a time

period), suggesting that KPR is not an optimal strategy for information processing due to

noise [11]. However, TCR signaling and T cell activation, the context that Kirby and Zilman

describe, is a highly specific process that does involve multiple kinetic proofreading steps, but

with adaptive variants of KPR used to model TCR signaling [12–16].
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In this paper, we reconcile the apparent contradiction between the high specificity of TCR

signaling and the low SNR of a longer-chain KPR process. The key theoretical insight involves

convolving the multiple intermediate irreversible steps into a single equivalent state in which

the system stays for time τ. Instead of explicitly treating a series of sequential states, we define a

single, equivalent waiting time or “processing” time τ which may be a random variable. In this

work, we will primarily take τ to be sharply peaked around its mean value, i.e., a δ-function

distribution, resulting in a “deterministic” processing time τ. A similar quantity was proposed

in the context of kinetic segregation in TCR signaling [17]. In our subsequent analyses, we also

need to define a contact time T that represents the duration in which the overall process can

occur, e.g., a cell-cell contact time. Values of Tmay also follow a modeled distribution. This

simple reduction reveals intriguing insights, allows us to analytically and systematically explore

different biological contexts of KPR, and provides an easier framework on which to test differ-

ent metrics of KPR performance. We will primarily focus on the TCR recognition process, but

we will also provide a short discussion on the simpler DNA replication problem, to illustrate

that our deterministic processing time approach precisely captures the essence of KPR.

We show that the apparent contradiction arises from different strategies of determining

whether a final output is correct. In the FPT-based scenario for both DNA replication and

TCR signaling, arriving at an activated state or a “product” state within a given time is inter-

preted as the output, as illustrated in Fig 1B. A longer processing time τ can exponentially

improve the accuracy of KPR at the cost of speed. The trade-off between speed and accuracy

has been reported in experimental studies [18–20] recently emphasized in Xiao and Galstyan

[21].

In an alternative strategy for TCR signaling implicitly used by Kirby and Zilman [11], the

maximum SNR, or mutual information between the input and output occurs at just two proof-

reading steps, with additional processing steps decreasing the performance of KPR. Here, the

implicit discrimination strategy detects the number of products (e.g., signaling molecules that

Fig 1. Schematic of the KPR process and different strategies of interpreting the output. (A) The complex of enzyme and substrate ES alone cannot produce the

final product P. It has to undergo a number of proofreading steps, represented here by phosphorylation (Pi), before the activated state E*S can produce the final

product. (B) The FPT-based discrimination strategy, simply reaching the activated state E*S is interpreted as the output. Xa(t) = 0 if the system has not reached the

activated state by time t, and Xa(t) = 1 otherwise. At t = 0, the reaction starts with the enzyme in the free state E. The dashed vertical line represents the termination of

entire process, e.g., the time T at which the T cell and antigen presenting cell (APC) separate. Xa(t) = 1 for some t< T is interpreted as a positive response. (C) The

product-based discrimination strategy. In this strategy, the number of product molecules P(T) produced within a given time T is interpreted as the output. Due to the

intrinsic noise, the number of product molecules is a random variable and their distribution is shown for correct and incorrect ligands.

https://doi.org/10.1371/journal.pcbi.1012183.g001
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lead to downstream processes) generated within a finite time T without explicitly resolving the

final response of the cell, as is illustrated in Fig 1C. While Kirby and Zilman also considered a

FPT-based strategy to support use of their metric and their conclusions, a recent communica-

tion by Xiao and Galstyan [21] suggested that the previous simulation of the FPT-based strat-

egy was not correctly implemented.

Mutual information has been used in recent studies to quantify the information flow in cel-

lular decision-making processes [22–24]. Here, we introduce mutual information and channel

capacity in order to compare the performance of the two strategies (FPT to a target state and

product counting) on equal footing. We also construct a decomposition of the product-based

strategy into a series of FPT-based strategies with different product molecule thresholds and

conclude that the product detection strategy is equivalent to a strategy that dynamically adjusts

the threshold according to the duration of the process. This dynamic thresholding strategy can

be shown to be more robust to fluctuations over the duration of the reaction. The effectiveness

of this strategy can be attributed to an additional layer of proofreading.

Our analysis and findings present a unified framework for analyzing KPR under different

biological scenarios. We also highlight the importance of understanding how different strate-

gies of information extraction can affect the performance and parameter tuning of KPR.

Materials and methods

In this section, we first describe the general model of KPR and then apply it to two specific bio-

logical contexts, DNA replication and TCR signaling.

Model settings

In the conventional setting of KPR, the complex E(0)S composed of receptor E and a “correct”

substrate (or ligand) S forms and dissociates with binding and unbinding rates k±1. A complex

with the “incorrect” ligand forms and dissociates with rates k0
�1

. In all of our subsequent analy-

ses and approximations, we will assume constant availability of substrate and define k1 as a

first-order reaction rate. Since an incorrect ligand unbinds faster than the correct, stronger

binding one, we will take k0
� 1
> k� 1. Both types of complexes can undergo multiple nonequi-

librium transitions or proofreading steps (e.g., sequential phosphorylation) traversing internal

states (E(0)S, . . ., E(m−1)S) before the final product P can be released or produced by the fully

activated state E*S.

Each internal state of the complex can dissociate with rate koff or proceed to the next step

with rate kf, as shown in Fig 2A. To simplify our subsequent analysis, we set koff = k−1 as in [1,

6, 10, 11], effectively assuming that the phosphorylation of the enzyme does not allosterically

alter the binding affinity between the enzyme and substrate. Additionally, for anm-step proof-

reading process, we set kf =m/τ. Under this scaling, the waiting time to reach the final acti-

vated state is a sum ofm independent exponential random variables with ratem/τ. In other

words, the waiting time to reach the final activated state follows an Erlang distribution with

shape parameterm and ratem/τ. The mean waiting time is kept fixed at τ asm increases, while

the variance τ2/m decreases asm increases. In the many-step limit (m!1), the waiting time

to reach the final activated state converges to a deterministic value τ due to the strong law of

large numbers. A general situation in which the activation steps are partially reversible is dis-

cussed in [9]. We can thus simplify the reaction diagram in Fig 2A by lumping the internal

states (E(0)S, . . ., E(m−1)S) into a single state ES as shown in Fig 2B. Because activation and dis-

assembly of each stage are independent, the transition of the aggregated state ES to the dissoci-

ated state E + S is still Markovian with the same rate k−1. The master equation of the simplified
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model and its relation to the original multi-step model are discussed in Appendix A1 of S1

Text.

As shown in Fig 2C, our simplified model has a similar structure to the classical Michaelis-

Menten reaction scheme but implicitly captures a crucial ingredient of kinetic proofreading.

In the Michaelis-Menten scheme, the waiting time τ in the complex state ES before converting

to product is exponentially distributed. In the KPR scheme, the waiting time τ in the state ES

before converting to the activated state E*S is assumed to be non-exponentially distributed. An

exponentially distributed waiting time reflects a memoryless process in which the evolution of

the system depends only on the current state. This memoryless property is the defining feature

of a Markov process. By contrast, memory in the KPR reaction process results in a non-expo-

nential distribution of the processing time τ, such as the Erlang distribution associated with an

m-step processing chain described above. In the simplification of the KPR we are considering,

the processing time is fixed to the value τ, i.e., its distribution is a Dirac-delta function at τ (the

m!1 limit of an Erlang distribution). In this case, the waiting time of activation does not

depend only on the current state, but also on the time elapsed since the initial formation of the

complex, which happened in the past. This non-Markovian step acts as a memory of the sys-

tem or a clock that keeps track of the time elapsed since the initial formation of the complex,

and can be achieved by, e.g., tracking the phosphorylation state of the complex ES. The biologi-

cal context in which KPR operates will determine the most informative and realistic KPR

model structure and the most appropriate performance metric.

Extensions to dynamic KPR schemes, including adaptive KPR models [12–16], force-

dependent signaling through catch bonds [25, 26], and KPR in the presence of a spatial gradi-

ent [27], have been introduced in the literature. While canonical KPR models [1, 6, 10, 11]

assume a homogeneous state independent activation rate kf and disassembly rate k−1 = koff,

more general models can incorporate heterogeneity in the activation or unbinding rates across

the processing steps. In such scenarios, we can still gain quantitative insight by using a mean-

Fig 2. Reaction schemes of different descriptions of the simple kinetic proofreading process. (A) The conventional

description of KPR explicitly incorporating multiple proofreading steps. (B) A reduced representation of KPR in which

multiple driven steps are lumped in a single proofreading step. Additionally, the state E*S can be taken to be a final

“product” state E + P, in which case, there is no disassembly (marked by dashed lines) and k∗
� 1
� 0. However, one may

be interested in products P that are constitutively produced (at rate kp) by the E*S state (gray). This latter scenario can

describe, e.g., TCR-mediated T cell activation. (C) For comparison, we show the classical Michaelis-Menten reaction

scheme in which the “product” state E + P can be identified as an activated complex E*S. The Michaelis-Menten

kinetics implicitly assumes values of τ are exponentially distributed. An internal proofreading process leads to a

nonexponentially distributed τ and equivalence to the scheme in (B) and describes the FPT-based DNA replication

setting (without any additional constitutive product formation). In our setting, substrate concentrations are held fixed,

and k1 will be defined as a first-order reaction rate with physical units of 1/time.

https://doi.org/10.1371/journal.pcbi.1012183.g002
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field approximation in which our deterministic processing time is taken to be the mean

unbinding time. For example, in the multistep KPR model, the unbinding rate k−1 of the initial

complex may differ from the unbinding rate koff of the intermediate complexes. But since the

complex spends most of the time in the intermediate states when the number of stepsm is

large, the contribution of the initial complex unbinding rate k−1 to the overall disassembly rate

is negligible. As a result, the assumption k−1 = koff can be interpreted as a mean-field approxi-

mation in which we substitute the disassembly rate of the intermediate complexes for the

unbinding rate of the initial complex. Additionally, depending on the specific pattern of the

activation rate and the disassembly rate, our approach can be extended by lumping together

connected states with similar activation or disassembly rates. Within each lumped state, the

internal “microstates” carry similar activation and disassembly rates. Thus, our overall

approach can also provide analytical and quantitative understanding of these more general

KPR models. Lastly, the key idea of our method is to convolve multiple waiting times into a

single, non-exponential waiting time, which carries “memory” of the past states. This idea can

also be applied to the unbinding process when the assumption k−1 = koff fails, although in that

case, analytical results may be more difficult to obtain. However, our method can still provide

a systematic way to quantitatively and numerically understand how the “memory” of the past

states affects the overall performance of KPR.

DNA replication setting

For completeness and to define a reference case, we consider the DNA replication scenario,

specifically a single nucleotide incorporation step catalyzed by DNA polymerase (E). We track

the system starting from an initial state where the enzyme is free. A correct substrate S refers to

the complementary nucleotide to the template strand, while an incorrect substrate S0 refers to

the other three nucleotides. The enzyme can bind to either substrate with rates k1 and k0
1
,

respectively. The enzyme can also unbind from either substrate with rates k−1 and k0
� 1

. This

two-branch reaction scheme is given by

Eþ SÐ
k1

k� 1

ES⇝1=t Eþ P; Eþ S0Ð
k0

1

k0
� 1

ES0⇝
1=t

Eþ P0; ð1Þ

where P and P0 denote the correct and incorrect products. We track the system until either

one of the products is produced, allowing repeated binding and unbinding of the enzyme

to the substrates. While there can be multiple replication forks in a cell, we focus on a sin-

gle DNA polymerase in this study. Thus, we can represent the stochastic system by a sim-

plified stochastic process with described by three transient states indicating the status of

the DNA polymerase; namely, unbound polymerase (E), polymerase bound to correct sub-

strate (ES), and polymerase bound to incorrect substrate (ES0). There are also two absorb-

ing states, namely, correct product (E + P) and incorrect product (E + P0). This simplified

stochastic scheme is shown in Fig 3 which is a two-branch version of Fig 2B in which we

identify the activated state E*S of E*S0 with final products E + P or E + P0, referring to

incorporation of the correct or incorrect nucleotide, respectively. Alternatively, Scheme 1

and Fig 3 can be though of as a two-branch version of Fig 2C but with a nonexponentially

distributed τ.
The performance of the KPR process in this setting is quantified by the probability Pðtp <

tp0 Þ that the FPT tp to the correct product state (E + P) is less than the FPT tp0 to the wrong

product (E + P0).
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Assuming that τ is a fixed value (a δ-function distribution) and using a standard approach

of conditioning on the next state, as detailed in Appendix A2 of S1 Text and [28], we find

Pðtp < tp0 Þ ¼
k1

k1 þ k01e
ðk� 1 � k0� 1

Þt
¼

k1e� k� 1t

k1e� k� 1t þ k0
1
e� k0� 1

t
: ð2Þ

The probability Pðtp < tp0 Þ represents the probability that the correct nucleotide is incorpo-

rated, i.e., the accuracy of the DNA replication process.

A critical feature of KPR is the sensitivity of accuracies to the unbinding rates k−1 and k0
� 1

.

In the DNA replication setting, the accuracy Pðtp < tp0 Þ has a similar form to the Hill function

xn
xnþan, except that the monomials are replaced by exponentials. Since the exponential function

changes more rapidly than the power function, the accuracy Pðtp < tp0 Þ has a sharp sigmoidal

dependence on the difference k� 1 � k0� 1
, as shown by the black curve in S1 Fig. Using the same

conditioning approach, we can also calculate (see Appendix A2 in S1 Text) the mean first pas-

sage time (MFPT) E½t� to either product starting from the free state E:

E½t� ¼
k1

k� 1
1 � e� k� 1tð Þ þ

k0
1

k0
� 1

1 � e� k0� 1
t

� �
þ 1

k1e� k� 1t þ k0
1
e� k0� 1

t

�
ek� 1t

k1

k1

k� 1

þ
k0

1

k0
� 1

þ 1

� �

;

ð3Þ

where the approximation holds if k1e� k� 1t � k0
1
e� k0� 1

t, which is typically the case in DNA repli-

cation, as Pðtp < tp0 Þ < 1.

T cell receptor signaling context

Next, we consider proofreading in the TCR signaling context. T cells form contacts with an

antigen presenting cells (APC) and scan the surface of the APC for the presence of a foreign

antigen (or epitope) (S). The TCR on the T cell membrane can bind to the epitope on the

APC membrane, initiating a signaling cascade that leads to T cell activation. The activated T

cell can then produce signaling molecules that trigger the immune response. If the APC does

not present an antigen that corresponds to the TCR, the T cell should not be activated within

the contact time T and disengages from the APC. There are three features of TCR signaling

that are distinct from the DNA replication process. First, the APC is likely not to carry a for-

eign antigen (the correct or “cognate” substrate (S)). Consequently, cognate and incorrect

(“noncognate”) peptide-MHC complexes (pMHC), defined as S and S0, are not present at the

Fig 3. The simplified model of KPR in DNA replication with only one enzyme. Here, the enzyme (e.g., DNA

polymerase) has three states, namely, free (E), bound to correct substrate (ES), and bound to incorrect substrate (ES0).

The transition rates between these states are specified in the model. When the enzyme is bound to substrate, it

produces the product (P or P0) after a waiting time τ.

https://doi.org/10.1371/journal.pcbi.1012183.g003

PLOS COMPUTATIONAL BIOLOGY Reliable ligand discrimination in multistep kinetic proofreading

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012183 June 10, 2024 7 / 26

https://doi.org/10.1371/journal.pcbi.1012183.g003
https://doi.org/10.1371/journal.pcbi.1012183


same time during an encounter and do not compete with each other for TCR binding. Sec-

ond, the APC and the T cell have a finite contact duration T. The recognition process can

only occur within this time window. Lastly, the activated states produce identical products,

i.e., downstream signals, regardless of whether the substrate (epitope) is the correct one or

not. Therefore, the cell needs a strategy to discriminate the correct (cognate) and incorrect

(noncognate) substrates based on the number of products generated within the contact time

T.

First, assume that T is fixed as in previous literature [10] (we will relax this assumption later

on).Within the time window T, the reaction diagram is represented by Eq (4).

Eþ SÐ
k1

k� 1

ES⇝1=tE∗S!kp E∗Sþ P;

E∗S!
k∗
� 1Eþ S:

ð4Þ

Typically, TCR recognition is fairly sensitive since a few correct substrates (or epitopes) S

on the APC membrane are able to activate the T cell. In the following, we will assume that each

APC contains only one type of epitope, S or S0, while there are multiple TCRs that can bind to

the substrate. Mathematically, the roles of substrate and TCR are equivalent. Tracking the state

of the single substrate gives a similar simple stochastic process as in the DNA replication set-

ting. This assumption allows us to reduce the number of possible states in the corresponding

stochastic process.

We first consider two possible discrimination strategies, the FPT-based strategy and the

product-based strategy, to quantify the output of the TCR recognition process.

FPT-based scenario. In this strategy, reaching the activated state E*S within time T is

interpreted as T cell activation. The output of this strategy can be represented using the FPT to

E*S state (ta) as Xa ¼ 1ta<T . The state Xa = 1 denotes an activated T cell while Xa = 0 indicates

no response by the T cell. In general, we can define XaðtÞ ¼ 1ta<t, and visualize the output as a

binary signal changing over time, as shown in Fig 1B. To justify the FPT strategy biologically,

we note that upon reaching the activated state, cofactors such as CD4 and CD8 stabilize the

TCR-pMHC interaction, significantly reducing the unbinding rate k∗
� 1

. Therefore, the acti-

vated complex can then steadily produce downstream signals (products) and trigger T cell

response.

Product-based scenario. This strategy, which is implicitly analyzed in [11], estimates the

pMHC-TCR “affinity” by counting the number of product or signaling molecules produced

within a given time. The output of this strategy is the number of products P(T) at time T,

which takes on values inN, as is shown in Fig 1C. Consequently, in this more graded strategy,

whether a T cell is activated is not described by a single, specific criterion.

Different strategies of interpreting the output requires us to define performance met-

rics that can compare different strategies on a common mathematical footing. We now

define the performance metric that can be used to compare our two discrimination

scenarios.

Performance metrics. In the case of FPT-based discrimination, it is natural to formulate

the recognition problem as a hypothesis testing problem. We denote the binary input ξ = 1 if S

is present and ξ = 0 if S0 is present. The competing hypotheses are thenH0: ξ = 0 andHa: ξ = 1.

The cell acceptsH0 if Xa = 0. There is a canonical definition of sensitivity and specificity, i.e.,
the true positive probability (TPP) and true negative probability (TNP). Given a fixed duration

T, varying the processing time τ gives a family of binary classifiers (solutions to the hypothesis

testing problem) corresponding to the KPR process. The receiver-operating characteristic

curve (ROC) and the area under the curve (AUC) can be used to evaluate the overall
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performance of this family of classifiers. For a single classifier, we define the accuracy A as an

average of specificity and sensitivity:

sensitivity � PðX ¼ 1 j x ¼ 1Þ; ð5aÞ

specificity � PðX ¼ 0 j x ¼ 0Þ; ð5bÞ

A � accuracy ¼
1

2
sensitivity þ

1

2
specificity: ð5cÞ

However, such metric only applies to strategies with binary output, but not the product-

based strategy, as the output P(T) is non-binary. Kirby and Zilman propose a Fisher linear dis-

criminant metric (ηFLD) based on signal-to-noise ratios [11]. However, ηFLD takes on values in

(0,1) and does not directly quantify the fidelity of transmission from the input ξ to the output

P(T).

In order to compare both strategies on a common footing and represent the fidelity of dis-

crimination directly, we propose using the mutual information I between the input and out-

put, and the associated channel capacity C. The mutual information between two random

variables ξ and X can be defined as [29]

Iðx;XÞ ¼ Sðx� XÞ � Sðx;XÞ; ð6Þ

where ξ� X is the joint random variable of ξ and X, assuming that ξ and X are independent,

while S(ξ, X) is the joint Shannon entropy of ξ and X. The mutual information Iðx;XÞ relies

on the input distribution of ξ. Hence, one can define the channel capacity C as the supremum

of the mutual information over all possible input distributions of ξ which only depends on the

conditional probability distribution of X given ξ,

CðX j xÞ ¼ sup
x

Iðx;XÞ: ð7Þ

There are two advantages of using mutual information and channel capacity over the Fisher

linear discriminant metric ηFLD. First, the mutual information is defined for both binary vari-

ables, as in the case of the first-passage time problem, and continuous variables, as in the case

of the product-based discrimination problem. Second, in the specific scenario of binary input

variables (cognate and noncognate substrates), the mutual information always takes values

between 0 and 1 when measured in bits (log 2). A mutual information of 0 means that the out-

put distribution is independent of the input, thus information of the output does not inform

anything about the input. In other words, the distributions of outputs corresponding to differ-

ent inputs are identical. By contrast, a value of 1 bit means that the output distributions corre-

sponding to two different but equally probable inputs do not overlap. Consequently, the

channel capacity provides a natural way to compare the product-based discrimination prob-

lem with the FPT problem and to quantify how well the system can distinguish correct sub-

strates from incorrect ones.

In the limit in which the accuracy A! 1 with binary input ξ and output X, we note that

the mutual information I is approximately A (measured in bits) when

Pðx ¼ 0Þ ¼ Pðx ¼ 1Þ ¼ 1
2
:

IðXa; xÞ � AðbitsÞ: ð8Þ

In this high accuracy limit, the channel capacity C is also close to the accuracy.
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Stochastic simulations. In cases where we need to rely on stochastic simulations of the

KPR processes to evaluate performance metrics, we implement the Gillespie algorithm [30] in

julia [31]. The Gillespie algorithm tracks the state transitions of a Markov chain with expo-

nential waiting times. In order to simulate the KPR process with a deterministic waiting time

τ, we explicitly track all waiting times at each step and the time elapsed, updating the state by

the smallest waiting time. After the state update, we re-evaluate all the waiting times and the

time elapsed. The implementation is available at github.com/hsianktin/KPR.

In order to obtain the mutual information and channel capacity, we record the FPTs during

the simulation, as well as the number of products produced by each simulation trajectory after

a given time T. We simulated 104 trajectories and use the empirical distributions of the FPTs

and the number of products as surrogates for the true distributions. This allows us to compute

the conditional probability distribution of output X given input ξ. Then, mutual information is

computed using Eq (6). The channel capacity is obtained by a numerical optimization proce-

dure with respect to the probability of ξ = 1, Pðx ¼ 1Þ in the interval (0, 1).

The exact parameters used in each simulation will be specified in the corresponding figures.

In general, we set k−1 = 1, k0
� 1
¼ 2, indicating that the unbinding rate of an incorrect substrate

is only twice as fast as that of a correct substrate.

Notation

We summarize the mathematical symbols and notation used in this study in Table 1. To distin-

guish similar symbols used in different contexts, we use context-specific subscripts. For exam-

ple, the subscript a denotes the quantity relevant for FPTs to the activated state, while the

subscript p refers to quantities relevant for FPTs to the product state and subscript th denotes

a threshold-based FPT strategy. We also use superscript o to denote the optimal value of a

quantity, e.g., Ao
denotes the maximal accuracy and τo denotes the optimal processing time

that achieves the maximal accuracy. Additionally, x̂ denotes an estimate of the quantity x.

Table 1. Notation and mathematical symbols.

Symbol Description

ξ binary input variable, correct (ξ = 1) or incorrect (ξ = 0) substrate

X binary output variable; activated (X = 1) or non-activated (X = 0)

T contact duration between T cell and APC

k1/k−1 binding/unbinding rates of correct substrate to enzyme

k0
1
=k0
� 1

binding/unbinding rates of incorrect substrate

kf activation rate of the multistep KPR process

kp production rate of product

koff unbinding rate of the intermediate complex (assumed to be k−1)

m number of proofreading steps in the multistep KPR process

τ processing time of the KPR process

ta first-passage time to the activated state

N number of binding-unbinding events in the KPR process

A accuracy of the KPR process

I mutual information between input and output

C channel capacity of the KPR process

Here, the KPR process refers to the kinetic proofreading process with a deterministic processing time τ. The

multistep KPR process refers to the original KPR process with multiple proofreading steps.

https://doi.org/10.1371/journal.pcbi.1012183.t001
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Results

Application of our approach to the DNA replication scenario is straightforward and character-

ized by the accuracy in Eq (2) and the MFPT in Eq (3). In particular, we show that our

approach exhibits the expected sensitivity of the accuracy to the unbinding rates k−1 and k0
� 1

,

as shown in S1 Fig. This sensitivity is a key feature of KPR in DNA replication. In this section,

we focus on analysis of the TCR signaling scenario using our deterministic waiting time

approach, with an emphasis on the comparison between the FPT-based and product-based

strategies.

Long processing time improves maximal accuracy in FPT-based strategy

For convenience, in FPT-based scenarios, we assume parameters k1 ¼ k01 < k� 1 < k0
� 1

, T� 1/

k1 and let N = Tk1, which allows us to treat the recognition process as N cycles of a one-shot

process. For each shot, an initial complex ES either unbinds with a probability of 1 � e� k0� 1
t or

1 � e� k� 1t, or activates. Then, N independent cycles of the process yields the geometric failure

(non-activation) probability (1−e−k−1τ)N and success (activation) probability ð1 � e� k� 1tÞ
N

when the substrate is correct. Similarly, we have the non-activation probability ð1 � e� k0� 1
tÞ
N

and activation probability 1 � ð1 � e� k0� 1
tÞ
N

when the substrate is incorrect. The specificity,

i.e., true negative probability, is given by ð1 � e� k0� 1
tÞ
N

, the non-activation probability when the

substrate is incorrect. The sensitivity, i.e., the true positive probability, is given by

1 � ð1 � e� k� 1tÞ
N

, the activation probability when the substrate is correct.

In the one-shot process (N = 1), the sensitivity and specificity are controlled by the process-

ing time τ, with a larger τ leading to a higher specificity and a lower sensitivity, as illustrated in

panel A in S2 Fig. The trade-off between sensitivity and specificity can be summarized by the

area under the ROC curve calculated to be AUC ¼ k0
� 1
=ðk� 1 þ k0� 1

Þ using Eq (9).

sensitivity ¼ e� k� 1t; ð9aÞ

specificity ¼ 1 � e� k0� 1
t; ð9bÞ

AUC ¼
Z 1

0

sensitivity dðspecificityÞ ¼
k0
� 1

k� 1 þ k0� 1

: ð9cÞ

The AUC is not sensitive to the unbinding rates k−1 and k0
� 1

, having a “Hill coefficient” of 1.

In the case where k0
� 1
=k� 1 ¼ 2, the AUC is only 0.67, indicating a failure to accurately discrim-

inate between the correct and incorrect substrates. This inability of one-shot process can be

overcome by increasing the number of cycles N in the process, illustrated by plot B in S2 Fig.

In a multi-shot process, the sensitivity and specificity are explicitly given by Eqs (10a) and

(10b) according to the prior discussion. However, no simple closed-form expression of the

AUC is available. Instead, we consider the accuracy A defined by Eq (5), where we assume

equal prior probabilities of the correct and incorrect substrates.

sensitivity ¼ 1 � ð1 � e� k� 1tÞ
N ð10aÞ

specificity ¼ ð1 � e� k0� 1
tÞ
N ð10bÞ

Aðt;NÞ ¼
1

2
�
ð1 � e� k� 1tÞ

N

2
þ
ð1 � e� k0� 1

tÞ
N

2
ð10cÞ
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The accuracy depends on both the number of binding events N (hence T) and processing time

τ, as illustrated in Fig 4A. For fixed contact duration T, the accuracy first increases with τ, then

decreases. In the long processing time limit τ!1, the T cell does not respond to any signal,

corresponding to A ¼ 1
2
.

For fixed processing time τ, there is a maximal accuracy Ao
ðtÞ ¼ supN Aðt;NÞ and a corre-

sponding NoðtÞ such that Aðt;NoÞ ¼ Ao
ðtÞ. A straightforward calculation yields

No �
ðk0
� 1
� k� 1Þtek� 1t

1 � e� ðk0� 1
� k� 1Þt

; k0
� 1
> k� 1

ð11Þ

and

Ao
ðtÞ �

1

2
þ

1

2
ð1 � e� k0� 1

tÞ

ðk0
� 1
� k� 1Þt

e� k� 1t � e
� k0
� 1

t
1 � e� ðk0� 1

� k� 1Þt
� �

; k0
� 1
> k� 1:

ð12Þ

The asymptotic behavior of Ao
in the τ!1 limit is

1 � Ao
asympðtÞ �

1
2
k0
� 1
� k� 1

� �
te� ðk0� 1

� k� 1Þt; k0
� 1
> k� 1: ð13Þ

As indicated in Eq (13) and Fig 4, for the TCR recognition scenario, the inaccuracy or error

probability scales with e� ðk0� 1
� k� 1Þt. The improvement in the accuracy comes at a cost of the

increased total times spent in the proofreading process. The optimal contact duration To

required for a specific τ is given by No/k1, with No given by Eq (12). There is a common ek� 1t

factor in both the inaccuracy and the optimal contact duration, indicating a trade-off between

the accuracy and the total time τ spent in the proofreading process [see Fig 4B]. This observa-

tion is consistent with the accuracy-speed trade-off emphasized by Xiao and Galstyan [21].

The trade-off arises from an inability to perfectly discriminate between cognate and noncog-

nate ligands in a one-shot process, which is constrained by the AUC of k0
� 1
=ðk� 1 þ k0� 1

Þ.

Under a fixed contact time T, maximization of the accuracy corresponds to maximizing the

average of the sensitivity and specificity by adjusting the processing time τ. The sensitivity and

Fig 4. Statistics of the FPT-based strategy in the TCR recognition scenario. (A) Accuracy A as a function of processing time τ and

contact duration T, evaluated using Eq (10). (B) The maximal accuracy Ao
(squares) as a function of processing time τ, evaluated

using Eq (12). The asymptotic behavior of Ao
in the τ!1 limit, evaluated using Eq (13), is shown by the dashed curve. In (A,B),

we set k1 ¼ k01 ¼ 0:1, k−1 = 1, and k0
� 1
¼ 2.

https://doi.org/10.1371/journal.pcbi.1012183.g004
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specificity under the optimal processing time should be balanced, as pushing one to the

extreme will reduce the other to zero. For example, specificity in Eq (10b) approaches 1 when

τ!1, while sensitivity in Eq (10a) approaches 0 in the same limit. Thus, by Eq (10c), the

accuracy Aðt!1;NÞ ! 1=2. Similarly, Aðt! 0;NÞ ! 1=2.

Channel capacity and Fisher linear discriminant agree qualitatively

We first show that the channel capacity metric and the Fisher linear discriminant metric show

qualitatively similar behavior. To obtain statistically accurate results, we simulate the TCR rec-

ognition process using the Gillespie algorithm and evaluate the channel capacity and the Fisher

linear discriminant metric from 104 realizations. The results shown in S3 and S4 Figs indicate

that both quantities increase with respect to cell-cell contact time T and are maximal at waiting

time τ* 0.6/k−1, regardless of T. We now establish the channel capacity as an appropriate

metric for comparing different discrimination strategies.

Invariant optimal processing time of product-based strategy for different

contact times

We now compare the channel capacity of FPT-based discrimination to that associated with

product-based discrimination. In Fig 5 we plot the channel capacity between the input ξ and

the outputs Xa ¼ 1ta�T (in the FPT-based discrimination) and P(T) (in the product-based dis-

crimination) as a function of cell contact time T when τ = 3 is fixed.

In Fig 6, we plot the channel capacity as a function of processing time τ for various contact

times T. As in Fig 5, we channel capacities associated with both FPT-based and product-based

discrimination. The channel capacity of the product-based strategy increases monotonically

with respect to cell contact time T while exhibiting a peak at toP � 0:6=k� 1, as is shown previ-

ously. By contrast, the channel capacity under FPT-based discrimination has an optimal pro-

cessing time toa that increases with respect to cell contact time T. The optimal contact time Toa

Fig 5. The channel capacity as a function of cell-cell contact time T for first-passage-time-based (FPT-based)

signaling and product-based signaling. The channel capacity is evaluated between the input ξ indicating correct (1)

or incorrect (0) substrate and the output Xa or P(T). We assumed k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ =

3, and kp ¼ 0:01 for a slow product formation rate.

https://doi.org/10.1371/journal.pcbi.1012183.g005
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also increases with respect to the processing time τ. The channel capacity-optimizing contact

times Toa ;T
o
P, and processing times toP; t

o
a shown in panels A and B of S5 Fig.

There are two noteworthy observations from Fig 6. First, in the product-based scenario, the

channel capacity for τ = 0 (no kinetic proofreading limit) does not differ significantly from the

optimal channel capacity at toP. This observation together with the T-independent optimal pro-

cessing time toP reflects the conclusion by Kirby and Zilman that KPR is ineffective due to

noise [11]. Second, under the same total contact duration T, the maximal channel capacity of

the product-based strategy is higher than that of the FPT-based strategy provided that the pro-

duction rate kp is sufficiently large. These two observations suggest that the product-based dis-

crimination is a superior strategy compared to the FPT-based one. In order to provide

mechanistic insight into the difference between these two strategies, we now introduce a

method to analytically characterize the product-based strategy.

Decomposition of the product-based strategy

We propose decomposing the product-based strategy into a series of first-passage-time-based

strategies using the FPT of the number of products P to different thresholds Pth. Let tk repre-

sent the first time the product P(t) exceeds the threshold k. Xth = 1 (triggering immune

response) if tPth � T and Xth = 0 otherwise. Being a FPT-based strategy, C(ξ; Xth) has a similar

dependence on T and τ to that of C(ξ; Xa), the channel capacity in FPT-discrimination we dis-

cussed earlier. In order to illustrate this point, we perform Gillespie simulations of the model

in Eq (4) with the same parameters as in Fig 6. The results are shown in Figs 7 and 8.

Since Xth is derived from P(T), C(ξ; P(T)) serves as an upper bound of C(ξ; Xth) for various

thresholds Pth, as is illustrated in Figs 7 and 8. No single threshold can reach the information

upper bound C(ξ; P(T)) at any T. A small threshold Pth can approach C(ξ; P(T)) for small T
and large τ, while a large threshold Pth can approach the information upper bound C(ξ; P(T))

Fig 6. The channel capacities in product-based (blue squares) and first activation time-based (red dots) discrimination as a function of

processing time τ for various cell contact times T. We evaluate the channel capacity using stochastic simulations (Gillespie algorithm) of the

model in Eq (4) with parameters k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, and kp = 1. The production rate was set higher for easier

simulation of the product concentration.

https://doi.org/10.1371/journal.pcbi.1012183.g006
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for large T and small τ. We thus introduce the approximation

bCðx;PðTÞÞ≔max
Pth

Cðx;XthÞ � Cðx;PðTÞÞ ð14Þ

for C(ξ; P(T)).

Mathematical analysis of the effects of τ in the product-counting strategy

Having established the approximation to the channel capacity of the product-based strategy in

Eq (14), we further analyze its dependence on the processing time τ under a fixed cell-cell

Fig 8. The channel capacity between the input ξ and the output Xa, P(T) or Xth as a function of processing time τ.

We assumed k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, T = 1000, and kp = 1. 10,000 independent Gillespie

simulations are conducted for each τ.

https://doi.org/10.1371/journal.pcbi.1012183.g008

Fig 7. The channel capacity between the input ξ and the output P(T) or Xth as a function of cell-cell contact time

T. Here, k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ = 3, and kp = 1.

https://doi.org/10.1371/journal.pcbi.1012183.g007
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contact time T. We use the equivalence between channel capacity and accuracy in the high

accuracy limit, as shown in Eq (8) to evaluate C(ξ; P(T)). We first introduce a Gaussian distri-

bution approximation to the original distribution of P(T) with matched mean and variance

E½PðTÞ j x ¼ 1� � var½PðTÞ j x ¼ 1� � kpTKe� k� 1t; K �
k1

k1 þ k� 1

: ð15Þ

The ξ = 0 case is similar. The above steady-state approximation is justified in Appendix A1 of

S1 Text.

Generating Pth in time tPth < T is equivalent to P(T)� Pth. Thus, by approximating the dis-

tribution of P(T) by a normal distribution with mean E½PðTÞ� and variance var[P(T)], we can

estimate the conditional probabilities of Xth ¼ 1PðTÞ>Pth given ξ by the integral

sensitivity ¼ PðXth¼ 1 j x ¼ 1Þ �

Z 1

Pth � kpTKe
� k� 1t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpTKe

� k� 1t
p

e� x2=2 dxffiffiffiffiffiffi
2p
p ;

specificity ¼ PðXth¼ 0 j x ¼ 0Þ �

Z Pth � kpTK
0e
� k0
� 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpTK0e

� k0
� 1

t
p

� 1

e� x2=2 dxffiffiffiffiffiffi
2p
p ;

ð16Þ

where K 0 � k0
1
=ðk0

1
þ k0

� 1
Þ. Under the assumption that E½PðTÞ j x ¼ 1� > Pth and

E½PðTÞ j x ¼ 0� < Pth, we can rewrite Eq (16) as

PðXth¼ 1 j x ¼ 1Þ �
1

2
þ

1

2
erf

kpTKe� k� 1t � Pth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kpTKe� k� 1t

q

0

B
@

1

C
A;

PðXth¼ 0 j x ¼ 0Þ �
1

2
þ

1

2
erf

Pth � kpTK 0e� k
0
� 1
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kpTK 0e
� k0
� 1
t

q

0

B
@

1

C
A:

ð17Þ

In the high accuracy limit, the mutual information C(ξ; Xth) between binary uniform input

and binary output is approximated by the accuracy A as in Eq (8). We can then obtain the

optimal threshold Poth that maximizes the accuracy Ath ¼ PðXth ¼ 1 j x ¼ 1Þ þ PðXth ¼ 0 j x ¼

0Þ for given T and τ to be

Poth � kpT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke� k� 1tK 0e� k0� 1

t
p

½1þ OðT � 1Þ�: ð18Þ

The exact optimal threshold Poth can be analytically solved, but we keep the above asymptotic

form for simplicity when T!1. The maximal accuracy Athðt; Pth ¼ P
o
thÞ is then used to

approximate the maximal channel capacitymaxPthCðx;Xth jPthÞ, which is an approximation of

the channel capacity C(ξ; P(T)) of the product-based discrimination. Upon substituting the

zero-th order term of Eqs (18) into (17), we find

Ĉðx;PðTÞ j tÞ ≔Athðt;Pth ¼ P
o
thÞ

�
1

2
þ

1

2
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kpTKe� k� 1t

2

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kpTK 0e� k
0
� 1
t

2

s0

@

1

A; k0
� 1
> k� 1:

ð19Þ

In Fig 9, note that Eq (19) generally matches the simulation results well. Slightly higher values

PLOS COMPUTATIONAL BIOLOGY Reliable ligand discrimination in multistep kinetic proofreading

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012183 June 10, 2024 16 / 26

https://doi.org/10.1371/journal.pcbi.1012183


of Eq (19) arise from the Gaussian approximation used to map discrete output to continuous

output.

The choice of optimal processing time t̂oP that maximizes the accuracy in Eq (19) is inde-

pendent of T and is given by

t̂oP �
2

k0
� 1
� k� 1

log
ffiffiffiffiffi
K 0

K

r
k0
� 1

k� 1

 !

: ð20Þ

Note that the optimal processing time t̂oP is obtained by taking Pth ¼ P
o
thðTÞ and is independent

of the cell-cell contact time T. Under the parameter settings where k1 ¼ k01 ¼ 0:1, k−1 = 1, and

k0
� 1
¼ 2, we find that t̂oP is approximately 0.6/k−1, which is consistent with the optimal process-

ing time toP obtained from the simulation results, as illustrated in S5 Fig.

As we have discussed and illustrated in Fig 6, the product-based discrimination strategy

seems to be superior to the FPT-based strategy in the sense that the optimal processing time toP
is independent of the cell-cell contact time T and the optimal channel capacity at a given T is

higher than that of the FPT-based strategy. Through the decomposition of the product-based

strategy by different thresholds, the first advantage of the product-based strategy, i.e., invariant

optimal τ, can be explained by the implicit assumption of the variability of the threshold Pth.

When T is small, a small threshold Pth is optimal, while a large threshold Pth is optimal when T
is large. Changes in the threshold Pth allow the product-based strategy to adapt to different

cell-cell contact times T without changing the processing time τ. By contrast, if the threshold

Pth is fixed, then the dependence of the channel capacity on T and τ is similar to that of the

FPT-based strategy, illustrated by the red curves in Figs 7 and 8. The importance of variability

on the threshold Pth is even more pronounced when the total contact time T is random, as dis-

cussed in the next subsection.

Dynamic thresholds under random cell-cell contact times

In the previous sections, we have assumed that the cell-cell contact time T is deterministic. In

reality, the cell-cell contact time T is random and vary from cell to cell [32–34]. To evaluate the

effects of a random cell-cell contact time, we consider a simple model where the cell-cell

Fig 9. Comparison between the simulated channel capacity C(ξ; P(T)) and the corresponding estimate using Eq

(19). (A) C(ξ; P(T)) as a function of cell-cell contact time T; (B) C(ξ; P(T)) as a function of processing time τ. Here, we

took k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, and kp = 1. τ = 3 in (A) and T = 1000 in (B).

https://doi.org/10.1371/journal.pcbi.1012183.g009
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contact time T is uniformly distributed in the interval [0, Tmax], where Tmax is the maximal

cell-cell contact time.

In the previous section, we conclude that the T-independent optimal processing time toP is a

result of fixing the threshold Pth to PothðTÞ given by Eq (18). In the case of a random cell-cell

contact time T, choosing a universally optimal threshold Poth is difficult. We can, however,

choose a dynamic threshold PothðtÞ that increases with the time t passed since the initial contact

to maximize the channel capacity, where Poth is still given by Eq (18), with T replaced by t. A

comparison of a dynamic threshold PothðtÞ and a static threshold Pth is shown in Fig 10A. The

numerical results of the maximal mutual information between the input and output Xth under

different contact times T and different thresholds Pth are shown in Fig 10B. In the case of a

fixed contact time T, the maximal mutual information of both static and dynamic thresholds is

close to 1, indicating perfect discrimination. In the case of a uniformly distributed contact

time T between 0 and Tmax, the maximal mutual information of the dynamic threshold is close

to 1, while that of the static threshold is close to 0.4, indicating poor discrimination.

The experiments in Fig 10 suggest that the dynamic threshold PothðtÞmaintains a high chan-

nel capacity when the total contact time T is random.

A nested single-binding KPR scheme

We have provided a mechanistic explanation for the different qualitative behavior between the

channel capacities of first-passage-time-based and product-based strategies, in particular, why

the optimal processing time toP is independent of the cell-cell contact time T in the product-

based discrimination.

Fig 10. (A) Illustration of discrimination using a dynamic threshold Poth as a function of time T since initial contact. The blue trajectories

represent the number of products P with correct substrates. The red trajectories represent that of incorrect substrates. (B) A dynamic-

threshold-based discrimination strategy maintains a high channel capacity when the total contact time T is uniformly distributed

between 0 and Tmax. Filled bars represent the mutual information between input ξ and output Xth with a fixed contact time T and

patterned bars represent the mutual information with a uniformly distributed contact time T between 0 and Tmax. The green bars

indicate the maximal mutual information over all possible contact times T� Tmax and all possible static thresholds Pth. The input ξ is

assumed to be uniformly distributed on {0, 1}. We assumed k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ = 3, and kp = 1. Tmax is set

to 106. To filter out noisy transients, we additionally mandate that when the dynamic threshold PothðtÞ is smaller than 10 products, no

response is initiated.

https://doi.org/10.1371/journal.pcbi.1012183.g010
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It is also of interest to understand the high channel capacity in the product-based discrimi-

nation problem that arises even in the τ! 0 limit, as shown by the blue curve of C(ξ; P) in Fig

8. Specifically, why does the product-based strategy carry a higher maximal channel capacity

than the FPT-based strategy for a given T (as shown in Fig 6)? To provide simple mechanistic

intuition, we can describe the production and accumulation of product by a sequence of events

(e.g., phosphorylation) within an effective KPR scheme:

APC þ T!
~kþ1APC � Tð0Þ !

~k f APC � Tð1Þ! � � � !APC � TðPthÞ;

APC � TðkÞ⇝1=TAPCþ T; k 2 f0; 1; � � � ;Pthg:
ð21Þ

Here, “APC” represents the antigen-presenting cell and “T” denotes a T cell. The super-

script (i) represents the number of products generated by the T cell. The T cell initiates

responses when the number of products exceeds a threshold Pth.

Although there are processing steps within each successive product state APC-T(i), the over-

all nested scheme is structurally similar to the traditional KPR scheme shown in Fig 2A pro-

vided effective rates that incorporate the “internal” proofreading states are appropriately

defined. The waiting times in state APC-T(i) before transitioning to state APC-T(i+1) can be

approximated by effective, correct and incorrect “phosphorylation” rates ~kf � kpKe� k� 1t and

~k0f � kpK
0e� k0� 1

t. This assignment of ~kf ; ~k 0f are appropriate in the quasi-steady state limit within

each group of KPR processing steps, leading to an approximately exponentially distributed

waiting time 1=~kf between successive phosphorylations or synthesis of products. In addition,

disassembly of each state occurs over a cell-cell contact time T, which is typically sharply (not
exponentially) distributed since the APC-T cell unbinding process involves multiple steps and

collective effects of adhesion membrane proteins. Finally, also note that the activation time of

the TCR signaling process, given by the FPT tPth to generate a number of products Pbeyond the

threshold Pth is also approximately a constant when Pth is sufficiently large. Consequently, the

competition between two processes with almost fixed timescales allows highly informative out-

puts compared to the traditional KPR scheme and Michaelis-Menten kinetics, as indicated in

Eq (22), where⇝ and⇜ represent a (near) deterministic waiting time τ.

Michaelis � Menten : Eþ S ES! E∗S;

KPR : Eþ S ES⇝ E∗S;
nested KPR : Eþ S⇜ES⇝ E∗S:

ð22Þ

To further illustrate the role of a deterministic waiting time in the accuracy of the above

process, we compare it with an exponential waiting time, i.e., standard Michaelis-Menten

(MM) kinetics in Appendix A3 of S1 Text. As for a comparison between the traditional KPR

scheme and the nested KPR scheme, we note that in the limit of deterministic processing time,

the nested KPR can achieve exact discrimination In other words, the product-based discrimi-

nation strategy introduces an additional layer of kinetic proofreading illustrated in Eq (21).

Distinct from conventional kinetic proofreading, the unbinding and activation of this extra

layer of kinetic proofreading are both nonexponential, carrying more information or “mem-

ory” of the previous events. This allows the product-based discrimination strategy to achieve

higher channel capacity than the FPT-based strategy.
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Discussion and conclusions

In this paper, we have considered kinetic proofreading schemes for two classes of biological

processes, DNA replication process and T cell signaling. Through a deterministic processing

time assumption, we are able to analytically characterize the accuracy and speed of the kinetic

proofreading process in both cases. This simplification captures the essential features of the

kinetic proofreading process, i.e., the accuracy of the process depends critically on the unbind-

ing rates ðk� 1; k0� 1
Þ of the correct and incorrect substrates, exemplified by Eqs (2), (13) and

(19). In all cases, k−1 and k0
� 1

impacts the accuracy of the process exponentially through terms

like e� k� 1t and e� k0� 1
t. The curves plotting accuracy versus incorrect substrate degradation rate

are shown in S1 Fig and exhibit switch-like behavior. Overall, our analysis indicates that how

the output of a kinetic proofreading process is used to make a decision is crucial to the perfor-

mance of KPR. We have shown that in the case of DNA replication, the specificity of the pro-

cess is always exponentially dependent on the processing time τ and increasing specificity

comes at the cost of replication speed.

In the case of TCR signaling, the trade-off between specificity and sensitivity shown in

panel A of S2 Fig can be mitigated by increasing the number of allowed failed attempts N
which is proportional to the cell-cell contact time T. The overall accuracy A of the signaling

process is still exponentially dependent on the processing time τ, as illustrated by Eq (13). For

longer processing time τ, the higher accuracy can only be achieved at the cost of the signaling

speed by exponentially increasing the cell-cell contact time T, or equivalently, the number of

allowed failed attempts N to the optimal value No indicated by Eq (11). Since the DNA replica-

tion process also compares one first-passage time to another, the trade-off between speed and

accuracy shares very similar characteristics with the FPT strategy in the TCR signaling process,

despite their different biological contexts (see S6 Fig).

A variant of the FPT-based strategy, extracting the extreme FPT in the presence of multiple

substrates (antigens), has also been proposed [10]. The main goal in [10] is to determine sensi-

tivity and specificity of TCR recognition of foreign antigens when also exposed to a sea of self-

antigens. The self-antigens in [10] are assumed to bind much more weakly to the TCR than

the foreign antigens. While we are primarily interested in discrimination between correct and

incorrect substrates with similar binding affinities. This is a typical situation as T cells need to

identify cancer cells that present mutated self antigens on their surface. In this case, the affinity

of the corresponding TCR to the self antigen is expected to be similar to the affinity to the for-

eign antigen. The densities of the self and foreign antigens are also expected to be similarly

low.

The amount of product produced can also be used to distinguish correct and incorrect sub-

strates. To compare the performance of product-based discrimination to that of FPT-based

discrimination, we introduced a channel capacity between the input ξ 2 {0, 1} (incorrect, cor-

rect substrate) and the output X, which can be either Xa ¼ 1ta�T or the number of products

generated P(T). We established the connection between the channel capacity and the accuracy

of the discrimination problem in the high accuracy limit in Eq (8). Thus, the dependence of

the first-passage-time-based discrimination on the processing time and the cell-cell contact

time both exhibit a single peak associated with the optimal processing time toa and the optimal

cell-cell contact time Toa , respectively, as illustrated in Figs 5 and 6. The optimal values are

obtained by maximizing the channel capacity, which implicitly assumes equal prior probabili-

ties of correct and incorrect substrates. To maximize the channel capacity, the sensitivity and

specificity can be neither too high nor too low, as pushing either to the extreme will reduce the

channel capacity.
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By contrast, the product-counting discrimination problem has a distinct monotonic

increase of the channel capacity with respect to the cell-cell contact time T and the optimal

processing time toP is independent of T. We find analytic approximations of the channel capac-

ity by decomposing the product-based discrimination problem into a series of first-passage-

time-based discrimination problems with different thresholds. This observation allows us to

analytically approximate toP by Eq (20). The higher maximum channel capacity (under fixed T)

of product-based discrimination compared to FPT-based discrimination shown in Fig 6 can

be understood by an extra layer of single-shot kinetic proofreading, in which the disassembly

and activation of the extra layers of kinetic proofreading are both nonexponential and carry

more information or “memory” of previous events.

The channel capacity of the product-based discrimination strategy in our work shows quali-

tatively similar behavior as the Fisher linear discriminant (FLD) used by Kirby and Zilman

[11], which is defined by the ratio of squared difference between the means of the products

with correct and incorrect substrates to the sum of their variances. In this case, the channel

capacity is peaked at a short processing time, then decreases with increasing processing time.

This observation led Kirby and Zilman to conclude that more proofreading steps decreases the

specificity of the TCR signaling process. However, Kirby and Zilman also investigated an alter-

native metric, the ratio of false positive rate to total activation rate, where the activation is

defined by the number of products exceeding a threshold, i.e., our FPT-based discrimination

with a threshold Pth. In our work, the ratio of false activation to total activation decreases with

increasing processing time τ, while Kirby and Zilman’s result suggested that the ratio increases
with more processing steps [see their Fig 4c in [11]], which is a contradiction. Recently, Xiao

and Galstyan [21] suggested a mistake in Kirby and Zilman’s computation of the false activa-

tion/total activation ratio. Correcting this mistake, Xiao and Galstyan found that the ratio of

false activation to total activation decreases with increasing processing time, consistent with

our results. However, a mistake in the ratio of false positive rate to total activation does not

negate the FLD, which remains a useful metric for the product-based discrimination strategy.

As discussed in our work, the discrepancy between the FLD and the false activation rate to

total activation rate ratio arises from different strategies of discriminating between correct and

incorrect substrates.

Our TCR signaling model is a simplified scenario that assumes a deterministic cell-cell con-

tact time T and a deterministic processing time τ. However, we conducted additional simula-

tions that relaxed the deterministic processing time assumption by explicit modeling of the

irreversible phosphorylation process in Appendix A4 of S1 Text. The results show qualitatively

similar behavior as the simplified model. Additionally, we fixed the mean processing time and

varied the number of processing stepsm to explore the effect of the number of processing

steps in KPR on the channel capacity. The results suggest that largerm increases the channel

capacity of the FPT-based discrimination scheme, while the channel capacity of the product-

based discrimination remains effectively unchanged, as shown in S7 Fig.

A random cell-cell contact time Tmay also impair the performance of the T cell in distin-

guishing correct ligands from incorrect ones. The dynamic threshold Pth may rescue this

impaired performance by allowing the T cell to effectively adjust the threshold in time. This

rescue is illustrated in Fig 10. However, implementing a dynamic threshold requires the T-cell

to keep track of the duration since the initial contact with the APC to adjust the threshold Pth

accordingly. The duration may be tracked by another series of similar mechanical or biochem-

ical reactions on the membrane-membrane interface that are triggered by the membrane-

membrane contact, as discussed in [35]. Experimentally, the presence of such a dynamic

threshold can be detected by simultaneously measuring the number of products P(T), the total
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contact time T until full activation, and other markers indicating whether the T-cell is activated

or not.

From a historical perspective, the Hopfield strategy was originally proposed to explain the

high fidelity in DNA replication [1]. The strategy is similar to the product strategy but consid-

ers only the mean value of the product (production rate) under the steady state. The ratios of

the mean production rates of the incorrect product to the correct product are used to estimate

the probability of making an error in the DNA replication. In other words, Hopfield implicitly
used the steady-state rate to compare the first passage times of the correct and incorrect sub-

strates. The original treatments claim that the error probability can be at most the squared

ratios of the dissociation rates of the correct to incorrect substrates, in steady state with one

proofreading step. In our model for DNA proofreading, we need not reference the nonequilib-

rium steady state since the dynamics are described entirely by first passage times. This allows

us to extract arbitrarily high accuracy by increasing the processing time τ, at an expense of the

replication rate.

McKeithan [6] also described the TCR recognition process as a steady-state strategy. While

the ratio of the mean production rates of the incorrect product to the correct product can be

used as a performance metric, in the TCR recognition setting, it is not explicitly related to an

error probability. McKeithan noted that larger ratios of mean production rates are associated

with lower signal strength, but did not specify how their relationship determines T cell

response. This was only recently addressed by Kirby and Zilman [11] through their signal-to-

noise ratio. Our work provides a comprehensive set of metrics, including mutual information

and accuracy, to assess how reaction rates determine signal strength and how different dis-

crimination strategies contribute to antigen recognition. The setting and results presented by

Kirby and Zilman represent a specific case of our theory, i.e., the scenario of the product-based

discrimination strategy.

The main observation that motivated our introduction of different strategies for discrimi-

nation is that TCR signaling is not an isolated process but is an integral component of a cellular

reaction network. An analysis using ideas of information theory and transport could provide

insight into a long-standing but often overlooked question: what type of information is trans-

ferred from the signaling process to the downstream pathways? Our work assumes that infor-

mation is primarily transmitted as a binary signal that decides whether a T cell response is

triggered, while Kirby and Zilman [11] assumed that the information is a continuous signal

that reflects the strength of binding affinity between ligands and receptors. Further work is

needed to identify the most appropriate information-theoretic framework for TCR signaling.

On a theoretical level, kinetic signaling schemes represent stochastic, biological implemen-

tations of the classical Maxwell’s demon [36], where the receptor is the demon that measures

the affinity of the ligand to the receptor and sorts the ligands accordingly. The canonical Max-

well demon needs memory to measure both the position and time of a particle. In the case of a

stochastic demon and the measurement of binding affinity, a memoryless exponential process-

ing time seems to be able to provide a nonzero channel capacity to distinguish the correct and

incorrect ligands. However, additional memory as provided by the nonequilibrium kinetic

proofreading process (and non-exponentially distributed waiting time τ) enhances the channel

capacity significantly. While previous literature has explored the idea of a Maxwell’s demon

[37, 38] and energy-accuracy bounds in generalized KPR processes [39], the quantitative inter-

play between energy cost, memory, and information processing still lacks a suitable language

and awaits future elucidation. In particular, we have not considered energy cost which may

influence the preference in cells for different strategies of discriminating correct substrates

from incorrect substrates.
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Supporting information

S1 Text. Mathematical appendices. Appendix A1: Master equation for the stochastic KPR

model. Appendix A2: Derivation of accuracy in the DNA replication scenario Appendix A3:

Information transmitted by KPR and Michaelis-Menten schemes. Appendix A4: Multistep

binding model.

(PDF)

S1 Fig. Accuracy as a function of k0
� 1

. The variation in accuracy as the dissociation rate k0
� 1

of

the incorrect product changes for both the DNA and TCR settings, with k−1 = 1. The accuracies

are calculated using Eqs (2), (10) and (19) of the manuscript. The value ofN in Eq (10) is deter-

mined by the optimal value given in Eq (11). We set k1 ¼ k01 ¼ 0:1, τ = 5, kp ¼ 0:01, and T = 106.

(EPS)

S2 Fig. Performance characteristics of one-shot and multi-shot KPR. (A) The receiver oper-

ating characteristic (ROC) curve for the one-shot and multishot KPR model with k−1 = 1,

k0
� 1
¼ 2, k1 ¼ k01 ¼ 0:1. (B) The area under the curve (AUC) as a function of the number of

KPR rounds N.

(EPS)

S3 Fig. Dependence of the ξ-P channel capacity C and the Fisher linear discriminant ηFLD

on the processing time τ for different values of T. Both C (open squares) and ηFLD (filled cir-

cles) are evaluated via numerical simulations from 104 trajectories. We assumed

k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ = 3, and kp = 1 for a fast product formation

rate.

(EPS)

S4 Fig. Dependence of the ξ-P channel capacity C and the Fisher linear discriminant ηFLD

on the cell-cell contact time T. Both the channel capacity (circles) and the Fisher linear dis-

criminant (squares) are evaluated via numerical simulations from 104 trajectories. We

assumed k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ = 3, and kp = 1 for a fast product

formation rate. For ηFLD, when T> 103, their values are too high to be shown in the figure.

We cropped the values of ηFLD to (0, 1) for better visualization.

(EPS)

S5 Fig. Relationship between optimal contact and processing times. Symbols represent

results from simulations over a total time horizon of 106, while the dashed curves represent

analytic approximations. (A) Dependence of optimal cell contact times ToP and Toa on process-

ing time τ under product-based and FPT-based strategies. Since C(ξ; P) is nondecreasing with

respect to T, the maximizing ToP value is given as the upper limit of the simulation period. The

approximation for Toa , T̂
o
a ¼ N

o=K1, is given by Eq (11). (B) Dependence of optimal processing

times toP and toa on cell contact time T. The analytic approximation t̂oP is given by Eq (20). The

parameters used are the same as those in Fig 6.

(EPS)

S6 Fig. Mean total system lifetime as a function of inaccuracy Pðtp � tp0 Þ. The total duration

(MFPT to any absorbing state) of the DNA replication process as a function of inaccuracy is

evaluated using Eq (3) and is shown by the blue circles. The optimal contact duration To in the

TCR recognition scenario as a function of inaccuracy 1 � Ao
(red squares) is evaluated using

Eq (12) and the definition N = k1T. Here k1 ¼ k01 ¼ 0:1, k−1 = 1, and k0
� 1
¼ 2.

(EPS)
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S7 Fig. Dependence of the channel capacity between input ξ and different outputs on the

number of proofreading steps m. Channel capacities are obtained from numerical simula-

tions of the multistep binding model with 105 trajectories for each set of parameters. We

assumed k1 ¼ k01 ¼ 0:1, k� 1 ¼ k∗� 1
¼ 1, k0

� 1
¼ ½k0

� 1
�
∗
¼ 2, τ = 3, and kp = 1. T is fixed at 1000.

Dashed lines represent the channel capacities in the deterministic processing time (m!1)

limit.

(EPS)
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