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SUMMARY

The functional state of cells is dependent on their microenvironmental context. Prior studies 

described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we 

characterized the functional responses of 6 differentially polarized macrophage populations by 

measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 

stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: 

(1) machine learning on time-series data revealed losses of stimulus distinguishability with 

polarization, reflecting canalized effector functions. (2) Informative trajectory features driving 

stimulus distinguishability (“signaling codons”) were identified and used for mapping a cell state 

landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic 

parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping 

of cell states and correctly predicted biochemical findings. Together, this work demonstrates 

that a single analyte’s dynamic trajectories may distinguish the functional states of single cells 
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and molecular network states underlying them. A record of this paper’s transparent peer review 

process is included in the supplemental information.

In brief

Cellular functions are modulated by their microenvironment but are typically characterized by 

static molecular profiles. We quantified how macrophage dynamic signaling responses to 8 

immune stimuli are affected by 6 polarizing cytokines. Measuring the dynamics of a single analyte 

revealed distinct stimulus-discrimination patterns and informed new maps of functional cell states.

Graphical Abstract

INTRODUCTION

Powerful new experimental single-cell measurement modalities have motivated the 

development of a number of analytical approaches for data-driven cell state characterization. 

In particular, single-cell RNA sequencing (scRNA-seq), which provides thousands of 

data points for each cell, prompted the development of dimensionality reduction and 

visualization workflows that reveal the heterogeneity of cell types and cell states within 

a given sample.1 However, functional cell states may involve kinetic information that is not 

captured by scRNA-seq measurements of mRNA abundances at a single time point. Using 

live-cell imaging, pioneering work examined the response dynamics of calcium signaling 

to ATP exposure and showed different cellular states within a heterogeneous population 
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of epithelial cells.2 Similarly, differences in extracellular signalregulated kinase (ERK) 

signaling dynamics in the mitogen-activated protein kinase (MAPK) pathway reflected 

spatial variability in the tumor microenvironment.3 Thus, high-throughput measurements 

of single-cell signaling dynamics may offer a more complete or at least alternative means 

for characterizing the states of cells in a population. However, given the complexity of 

signaling dynamics data, it remains unclear what strategies are best suited for revealing 

and visualizing heterogeneous cell states and rendering insights about how cells differ 

from their dynamic signaling responses to stimuli. Here, we addressed these questions 

using macrophages as a model system. Macrophages not only need to detect different 

pathogen or host stimuli but also need to mount a response that is appropriate to the 

stimulus encountered.4,5 The signaling system that controls macrophage responses to 

pathogens, tissue injury, or cytokines activates a handful of effectors, including the central 

immune response transcription factor, nuclear factor κB (NF-κB). NF-κB activation shows 

stimulus-specific activation dynamics6–8 that can control the expression of immune response 

genes9–13 and reprogram the epigenome.14 A recent set of single-cell studies in primary 

macrophages characterized a temporal signaling code that consists of 6 dynamical features, 

termed “signaling codons,” that are deployed stimulus-specifically.15 Upon recognition of 

an activating stimulus, macrophages perform a wide range of tasks from the phagocytosis 

of pathogen components and cellular debris, antigen presentation, recruitment of other 

immune cells to sites of infection, and activation of system-wide immune responses.16 The 

functional responses elicited depend not only on the identity of the activating stimulus 

but also on the microenvironmental context of the macrophage.17 More specifically, 

the microenvironmental cytokine milieu polarizes macrophages into different biological 

functional states to accentuate specific functional stimulus-specific responses over others.18

Macrophage polarization was first described in terms of a M1 versus M2 dichotomy.19 M1 

macrophages found in inflamed microenvironments defined by the presence of interferon 

(IFN)γ play critical roles in defending the host from pathogens, such as in bacterial, 

viral, and fungal infections. M2 macrophages have anti-inflammatory function and regulate 

wound healing and repair functions.20,21 However, it is now recognized that these M1 

and M2 states are representative of a larger spectrum of macrophage states in vivo.22–

26 Many previous studies have characterized differences in polarization states based on 

transcriptomic,27–29 epigenomic,30,31 or proteomic32,33 profiling, with recent advances in 

single-cell technologies revealing heterogeneity within these states.34–37 However, such 

snap-shot measurements of molecular abundances (that may or may not be at steady-state) 

merely provide markers for the actual functional states of macrophages. A quantitative 

characterization of macrophages in different polarization states based on their functional 

responses at single-cell resolution has not yet been reported.

Many studies have described molecular mechanisms by which polarizing cytokines affect 

NF-κB activation.38–42 Here, we examined how macrophage polarization affects the 

stimulus-specific dynamics of NF-κB activity and developed computational workflows to 

utilize these complex temporal trajectories to characterize the functional signaling cell states 

induced by microenvironmental cytokines. We leveraged a live microscopy workflow to 

generate a large dataset of single-cell nuclear NF-κB time course trajectories in response to 

8 stimuli and 6 polarization conditions. We applied machine learning (ML) approaches to 

Singh et al. Page 3

Cell Syst. Author manuscript; available in PMC 2024 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantitatively compare NF-κB response specificity across polarization states and decompose 

NF-κB responses into informative dynamic trajectory features (signaling codons). Applying 

machine-learning classifiers either directly to the time-series data or the derived signaling 

codons, we found that stimulus-response specificity was diminished with polarization. 

However, which specific stimulus responses were less distinct and which signaling codons 

were driving these losses in distinction varied with polarization state. Given the observed 

differential effects of polarization on NF-κB response dynamics, we used the single-cell 

signaling trajectories to generate mappings of macrophage polarization states. The first 

mapping was based on a dimensionality reduction via functional principal-component 

analysis (PCA). The second mapping was based on decomposing trajectories into signaling 

codons and was used to predict the cell states of macrophages conditioned by an unrelated 

fatty acid. The third mapping was based on biochemical parameters inferredfrom an 

established mechanistic mathematical model of the NF-κB signaling network. These 

inferred biochemical parameters constituted an alternative dimensionality reduction of the 

trajectory data and give insight about the state of the molecular network.

RESULTS

An experimental pipeline for studying NF-κB dynamics in polarized macrophages

To study how polarization of macrophages by microenvironmental cytokines may affect NF-

κB signaling responses to various pro-inflammatory stimuli, we generated a large dataset 

with mVenus-RelA knockin macrophages that were polarized in 6 different conditions and 

then stimulated with 8 different pro-inflammatory stimulation ligands. Generating this large 

dataset with 48 experimental conditions was made possible by producing macrophages 

from a HoxB4-transduced myeloid precursor line43 derived from the mVenus-RelA knockin 

mouse strain. Macrophages produced in this manner showed responses that were close 

to indistinguishable from those observed in bone marrow-derived macrophages in terms 

of NF-κB signaling dynamics and endotoxin-induced gene expression in contrast to the 

often-used Raw264.7 cell line (Figures S1A–S1C). Importantly, cell cultures initiated with 

the myeloid precursor line may be more reproducible than when bone marrow is used, 

as the latter contains macrophage precursor cells at different stages of maturity and in 

variable relative abundances. In addition, control experiments were performed to ensure 

that Hoechst as nuclear marker did not cause signaling artifacts (Figure S1D) and that 

potential photobleaching did not affect the time course measurement of nuclear mVenus-

RelA fluorescence (Figures S1E and S1F).

Within our experimental workflow, differentiated macrophages were exposed to interferons, 

IFNβ or IFNγ, to polarize toward M1, interleukin (IL)-10, IL-13, or IL-4 for M2 

polarization, or unexposed for naive (M0) polarization for 24 h, and then stimulated 

with agonists for different toll-like receptors such as R848 (Toll-like receptor [TLR]8), 

poly(I:C) (TLR3), Pam3CSK (TLR1/2), CpG (TLR9), Flagellin (TLR5), FSL1 (TLR2/6), 

or lipopolysaccharide (LPS) (TLR4) as well as the pro-inflammatory cytokine tumor 

necrosis factor (TNF) (Figure 1A). The resulting single-cell nuclear NF-κB trajectories 

were captured by an established live-cell microscopy workflow and quantified by a robust 

image analysis pipeline15 (Figure S2A). For each experimental condition, we obtained two 
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biological replicates, with hundreds of single-cell NF-κB trajectories that passed quality 

control metrics (see STAR Methods) in each dataset (Table S1). This dataset encompasses a 

total of 68,056 cells, each characterized by a trajectory derived from 98 microscopy images.

We examined the replicates by focusing on previously identified informative trajectory 

features, termed signaling codons,15 for quality control (Table S2; Figure 1B). Using the 

Jensen-Shannon distance (JSD) of these quality control metrics between each population 

of cells as a measure of dissimilarity, we found that the maximum JSD between replicates 

was in general much smaller than between cells stimulated in different conditions. This 

assured us that the biological differences of interest are larger than the technical variability 

associated with the experimental and image analysis workflow. We used the JSD as a 

measure of dissimilarity between distributions since it is a distance metric and observes 

properties such as symmetry and the triangle inequality. A more detailed analysis revealed 

that some polarization and stimulus combinations to be more similar than most (Figure 

1C), such as responses to R848 in cells polarized with IL-13 and IL-4 or responses to 

Flagellin and CpG in cells polarized with IFNβ. Visual inspection of heatmaps that depict 

the actual time course measurements (Figure 1D), as well as visualizations of the trajectories 

in aggregate44–46 (Figure S2B), confirmed that stimulus-specific signaling characteristics are 

preserved in each replicate, while the precise fraction of seemingly non-responding cells 

varied between some replicates.

These preliminary visualizations demonstrate differences in NF-κB activation dynamics 

under different polarizing cytokine treatments. Given the importance of NF-κB for 

orchestrating immune responses, these differences in activation likely underlie functional 

differences between polarization states rather than being simply indirect effects of 

polarization. Indeed, building a linear model from our measurements of total NF-κB activity 

to predict gene expression data from polarized human macrophages following stimulation47 

(see STAR Methods), we find for a majority of stimulus-responsive genes that better 

model fits are achieved with the original versus permuted data (Figure S3A), indicating 

NF-κB signaling dynamics can carry information about differences in gene expression 

related to polarization state. These predictions perhaps unsurprisingly can be improved 

if measurements of baseline chromatin accessibility for each polarization state are also 

included (see STAR Methods; Figure S3B), suggesting chromatin accessibility can add 

information to NF-κB signaling dynamics to better inform differences in gene expression 

related to polarization state. Considering this functional relevance of NF-κB activation, we 

then turned to computational data analysis methods that respect the single-cell nature of 

the data to characterize the effect of polarization on the stimulus-response NF-κB signaling 

dynamics.

An ML classifier characterizes stimulus-response specificity

Given that polarization appears to alter NF-κB stimulus responses, we asked whether 

polarization may affect the degree of stimulus-response specificity in NF-κB dynamics. 

To quantify stimulus distinguishability based on NF-κB trajectories, we first implemented 

a long short-term memory (LSTM)-based ML classifier.48 LSTM is a recurrent neural 

network (RNN) architecture developed to handle the vanishing/exploding gradient problem 
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frequently encountered when training RNN’s. LSTM networks are well suited to perform 

classification or prediction tasks on time-series data because of their ability to learn long-

term dependencies in input sequences.49 This motivated our choice to leverage an LSTM-

based model, as we could reasonably utilize the time-series data directly as input without 

needing to find an appropriate transformation of the data into features first.

The classifier was trained on different ligand identification tasks using 80% of the stimulus-

response trajectories from all polarization states as input data (Figure 2A; see STAR 

Methods). By comparing the output model’s classification performance on the remaining 

20% of the data, which was unseen during training, we were able to quantify how stimulus 

distinguishability was affected by polarization (Figure 2A). For each classification task, 

the data were resampled, and the training procedure was repeated 15 times to estimate 

uncertainty in the obtained performance metrics. To quantify classification performance, two 

metrics were used. First, the F1 score, the harmonic mean of the accuracy and precision for 

each class, is a measure of classification performance and hence stimulus distinguishability. 

Second, the confusion fraction, the mean incorrect prediction probability between pairs of 

classes, quantifies the convergence of the NF-κB trajectories associated with two stimuli. 

We observed that the LSTM-based classifier achieved better performance than a random 

forest classifier and a simple feedforward network classifier using the time-series data across 

all polarization states as input (Figure S4A).

We first applied the LSTM-based classifier to the tasks of discriminating individual ligands. 

We found that macrophages showed higher macro-averaged F1 scores in unpolarized naive 

conditions than any of the five polarization conditions, suggesting naive macrophages have 

greater stimulus-response specificity than their polarized counterparts (Figure 2B). This 

remained true even when using different classifier models and when separate models were 

trained for each polarization state (Figures S4B and S4C). We then considered ligand source 

classes: we combined NF-κB trajectories from poly(I:C) and R848 under the “viral” label, 

Pam3CSK, Flagellin, CpG, FSL1, and LPS under the “bacterial” label, and considered 

TNF as “host.” Naive macrophages still showed the greatest macro-averaged F1 score for 

the task of classifying ligand sources as well (Figures S4D–S4F), confirming the loss of 

stimulus-specificity with polarization.

Examining the performance of each ligand individually, however, we found that the 

decrease to stimulus-response specificity with polarization was caused by different ligand 

identifiability losses depending on the state (Figure 2C). For example, the ability to 

distinguish host cytokine TNF was maintained across polarization states, whereas other 

pathogen-associated molecular pattern (PAMP) distinguishability like Pam3CSK dropped 

with IL-10 polarization and Flagellin dropped with IFN polarization. We then asked what 

caused the diminished identifiability by inspecting the confusion fractions between ligands 

(Figure 2D). Confusion with unstimulated cells (0.21 ± 0.01, 0.22 ± 0.01) suggested the 

most diminished responses to poly(I:C) with IL-13 and IL-4 polarization. Confusion among 

bacterial ligands was common across polarization states; however, pairs such as FSL1 and 

LPS (0.2 ± 0.01) were particularly elevated with IFN conditioning. Overall, the ML analysis 

revealed losses in the stimulus-specificity of NF-κB signaling with all polarizers, but each 

polarization condition affected different ligand responses differentially.
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Specific dynamical trajectory features are informative for distinguishing stimuli

While the LSTM-based ML classifier revealed that the distinguishability of stimulus-

response NF-κB trajectories was affected by polarization, we next wanted to describe how 

alterations in NF-κB response trajectories induced by polarization drove these changes 

in stimulus identifiability. Hence, we sought to first identify trajectory features that are 

important for stimulus-response specificity. Refining a previously established strategy,15 we 

generated a library of 190 trajectory features derived from the NF-κB time-series data, 

which was further reduced to 71 features after filtering for highly correlated features (Table 

S3; see STAR Methods). These 71 features were then used as input for an XGBoost ML 

classifier (Figure 3A), a model comprised of an ensemble of decision trees built in an 

additive manner through boosting.50,51 The XGBoost model had similar performance to the 

LSTM-based model and recapitulated the loss in performance with polarization when tasked 

with discriminating the individual ligands across the polarization states (Figure 3B).

To identify trajectory features informative for response specificity, we then trained an 

XGBoost model for each polarization state separately. We utilized the Shapley additive 

explanations (SHAP) method52 that was developed to provide interpretability to ML models 

to assess feature importance (see STAR Methods). Comparing the SHAP-derived feature 

importance values between polarization states did reveal some differences; for example, 

“time to ½ max” and “max amplitude < 2 h” were more important for classification 

of IL-10 and IL-4 responses, respectively, compared with M0 responses (Figure 3C). 

Overall, however, comparisons across polarization states demonstrated similar utilization 

of trajectory features in model predictions (Figure 3D; Table S4).

To define a minimal subset of informative features to utilize in subsequent analyses, we 

started with the top 20 most important features identified through the SHAP method for each 

polarization state (Table S4) and then iteratively removed features from this set until model 

performance declined (see STAR Methods). The average F1 scores of the resulting models 

did not greatly deteriorate until 14–15 features had been removed from the original set of 20, 

resulting in 6 or 7 features retained for each polarization state (Figure 3E). Using the union 

of the selected feature subsets (18 features total) for training a model across the polarization 

states resulted in performance not much less than that of using all features (Figure 3F). 

The selected features (Table S5) describe early, peak, and late activation speeds (EAS, PAS, 

and LAS), range of amplitudes (ROA), early phase activity (EPA), duration (DUR), and 

oscillations (OSC). As they convey information about extra-cellular stimuli to the nucleus, 

these seven features have been dubbed signaling codons.15

To further reduce the dimensionality of these informative features, we used linear 

discriminant analysis (LDA) to find a linear combination of a representative subset of 

signaling codons that attempts to discriminate all TNF from all PAMP responses in 

our dataset (Figure 4A). Prior work has suggested that the level of immune threat a 

macrophage encounters (host cytokine versus PAMP) is encoded by responsive NF-κB 

signaling dynamics,53 and we wondered how this may be achieved via signaling codons. 

Examining the coefficients of the LDA model, we found increased immune threat was 

associated with reduced EAS, PAS, and OSC but increased ROA, EPA, and DUR (Figure 

4B). The analysis provided a ranking of experimental conditions by relative immune threat, 
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where, for example, maximal macrophage activation is elicited by LPS plus IFNγ8,15,39 

(Figure 4C). Overall, M2 polarizers were associated with lower immune threat values and 

M1 polarizers with higher values; however, examining each stimulation condition separately, 

the relative ordering of individual polarization conditions varied (Figure 4D).

Polarizing cytokines have distinct effects on NF-κB stimulus-response specificities

We could now investigate how polarization affects the stimulus-specific deployment of 

signaling codons and how these changes drive losses in stimulus-response specificity. We 

first examined the increased confusion of host cytokine TNF with polarization. For IL-4 

polarization, which had the lowest discrimination of TNF (Figure 2C), increased confusion 

was evident with R848, poly(I:C), CpG, and LPS (Figure 5A). IL-4 polarization caused 

R848 deployment of signaling codons, such as EPA and DUR to become more TNF-like 

(Figures 5B and 5C). In other polarization states, we found that confusion of PAMPs with 

TNF was partially driven by a reduction of the EAS and OSC of TNF responses, rendering 

them more “pathogen-like” (Figures S5A–S5F).

Next, we further investigated the convergence of distinct pathogen response signals 

with polarization. Confusion between viral and bacterial ligands was elevated across all 

polarization states, particularly IFNβ (Figure S4F). We found that poly(I:C) and LPS 

deployment of signaling codons became more similar with IFNβ polarization (Figure 

5D), with the convergence driven most by decreased PAS upon LPS stimulation and 

decreased OSC upon poly(I:C) stimulation (Figures 5E and 5F), corresponding to an 

increase in immune threat for both ligands. Inspecting EPA and OSC in other polarization 

states (Figures S5G–S5L) supported the notion that IFNβ or IFNγ polarization converged 

responses to diverse PAMPs into a more monolithic or stereotyped pathogen-like response, 

whereas IL-10 and IL-13 polarization diminished these pathogen-like features.

We then examined the ability of macrophages to distinguish particular PAMPs within 

a pathogen class. We examined the confusion fraction between the two viral ligands 

and the average confusion fraction between all pairs of bacterial ligands across all 

polarization conditions. Confusion fractions normalized to the naive condition scores 

revealed polarization had a greater effect on viral PAMPs distinguishability compared with 

bacterial, particularly with IL-13 and IL-4 polarization (Figure 5G). A large decrease in the 

response DUR for R848 and poly(I:C) responses with IL-13 polarization, as well as increase 

in OSC for R848, drive the convergence of these two viral PAMPs with polarization (Figures 

5H and 5I).

NF-κB stimulus-response dynamics can map macrophage polarization states

The fact that NF-κB stimulus-response dynamics are affected by polarization suggests that, 

conversely, polarization states may be identifiable by the dynamical NF-κB response to 

a specific stimulus. To investigate this, we trained an XGBoost model using the library 

of 71 features to identify the polarizing cytokines across stimulation conditions (Figure 

6A) and identified the ten features most important for this model’s predictions, using the 

SHAP values (Table S6). We found that the classifier had the greatest macro-averaged 

F1 score with Pam3CSK stimulation, suggesting this stimulation condition best separates 
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the polarization states. In particular, responses to Pam3CSK stimulation provided greater 

discrimination of IFNγ and IL-10 polarization (Figures 6B and 6C). To independently 

corroborate the discrimination of polarization states, we trained an LSTM classifier that also 

had a greater macro-averaged F1 score with Pam3CSK stimulation (Figure S6A).

Examining the top 3 identified trajectory features revealed how polarizers differentially 

alter NF-κB dynamics in response to Pam3CSK, particularly among M1 and M2 type 

polarizers, thereby permitting distinguishability of cell states. IL-10-polarized responses to 

Pam3CSK differ from those polarized with IL-13 and IL-4 due to their increased OSC, 

and IFNγ-polarized responses differ from those polarized with IFNβ due to their increased 

DUR (Figure 6D). Finally, we used the top ten important features for uniform manifold 

approximation and projection (UMAP) to display the 6 polarization states. To provide some 

orientation, we first examined how the values of the trajectory features varied over this 

map (Figure 6E), which revealed distinct regions of increased OSC and DUR and decreased 

ROA. Visual inspection of the UMAP colored by polarization states indicated Pam3CSK 

stimulation did indeed best separate the six polarization states compared with other 

stimulation conditions (Figure 6F). In parallel, we also used functional principal-component 

analysis (PCA)54 to directly dimensionality-reduce the single-cell NF-κB trajectories and 

used the top ten principal components for UMAP visualization (Figures S6B and S6C); 

these revealed similar discrimination patterns but do not identify signaling features that are 

responsible.

To explore the utility of characterizing macrophage polarization states with NF-κB signaling 

dynamics, we employed our analysis to characterize an additional cell state. Deficiency of 

docosahexaenoic acid (DHA) has been associated with several diseases, and studies have 

reported health benefits of dietary supplementation.55,56 These effects might be partially 

explained by DHA promoting an anti-inflammatory response, and indeed, DHA has been 

described in recent studies as being able to induce a M2-like macrophage polarization 

state.57,58 Given Pam3CSK stimulation demonstrated the greatest identifiable distinction 

between polarization conditions, macrophages pretreated with DHA were stimulated with 

Pam3CSK, resulting in 350 single-cell NF-κB trajectories (Figure 6G). The top ten features 

identified from the polarization distinguishability task were then used to train an XGBoost 

model on the Pam3CSK-stimulated trajectories and then predict the polarization states 

of the DHA-pretreated cells. A majority of the DHA pretreated cells had the highest 

prediction probability for an M2 polarization state, with very little prediction probability for 

naive or M1 polarization states (Figure 6H). Finally, UMAP visualization of the Pam3CSK-

stimulated responses across the polarization states plus pretreatment with DHA reveals 

IL-10 and IL-4 polarization states in closer proximity to the DHA pretreatment (Figure 6I).

Inferred biochemical parameters distinguish polarizers, similar to signaling dynamics

Differential NF-κB signaling responses to stimulation among polarization states are due 

to differential kinetic rate constants that control the dynamics of NF-κB signaling. 

Such biochemical parameters define the molecular network state that underlies what is 

phenomenologically described as “cell state.” We therefore asked whether we could use 

an established mathematical model of the NF-κB signaling network to derive biochemical 
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parameter distributions for each polarization condition based on the single-cell NF-κB 

trajectory data and thereby characterize the cell state not merely based on phenomenological 

features but molecular network features. We leveraged a mechanistic ordinary differential 

equation (ODE) model that connects upstream ligand-receptor interactions to downstream 

NF-κB nuclear translocation via IκB kinase (IKK) activation and negative feedback via 

inhibitor of NF-κB alpha (IκBα) production.15

We focused on NF-κB activation following Pam3CSK stimulation since these data 

demonstrated the greatest distinction among polarization states and hence utilized only the 

upstream TLR1/2 module of the mechanistic model (Figure S7A). We selected a subset of 

biochemical parameters from this model to optimize that spanned across the topology and 

demonstrated greater sensitivity when varied (Figure S7B). From each polarization state, 

300 single cells were randomly sampled, and parameter fits for each cell were obtained. 

Briefly, for each cell, a local optimization procedure was repeated 100 times, each time 

initialized at a different set of biochemical parameter values. This optimization procedure 

aimed to minimize the deviation between the experimental and model NF-κB trajectories 

and the deviation of the optimized parameter values from the published parameter values. 

The top ten parameter fits among the 100 iterations based on this objective were retained for 

downstream analysis (Figure 7A; see STAR Methods).

Visualizing the model simulations corresponding to the top parameter fit alongside the 

experimental trajectories demonstrates good agreement (Figure 7B). Quantifying the root-

mean-square deviation (RMSD) between the top 10 model fits and the corresponding 

experimental trajectory for all cells sampled within each polarization state reveals average 

RMSD values below 0.03 across all states. For comparison, the average RMSD between 

the model simulation using the published baseline parameter values and the experimental 

trajectories was greater than 0.06, and randomly shuffling the parameter fits across the 

experimental trajectories gave an average RMSD greater than 0.04 (Figure 7C), highlighting 

the improvements obtained by the optimization procedure.

Examining the distribution of fit biochemical parameters demonstrates differences in values 

across polarization states (Figure S7C). Utilizing a cell-cell dissimilarity measure based on 

the average JSD between the retained parameter fits (see STAR Methods), we generated a 

UMAP visualization of the sampled Pam3CSK-stimulated cells (Figure 7D). Similar to the 

prior analysis of Pam3CSK responses based on NF-κB trajectory features, distinguishability 

of polarizers appears to be driven by IL-10-polarized cells separating from other M2 

polarized cells and IFNγ cells separating from other M1-polarized cells. For a more 

quantitative assessment, we compared the pairwise cell dissimilarity matrix based on the 

fit parameter values and the pairwise cell distance matrix based on the previously identified 

top 10 informative trajectory features. We found a significant positive Pearson correlation 

between corresponding cell-cell parameter dissimilarity and feature distance values (Figure 

7E; see STAR Methods). Finally, we utilized these matrices to define the k-nearest 

neighbors (KNN) for each cell. These KNN graphs are the input ultimately visualized in the 

UMAP illustrations. For each polarization state, we report the average composition of their 

neighborhoods, revealing similarities between the parameter and feature KNN (Figure 7F). 

We found with both the parameter and feature KNN, IL-10-polarized cells have on average 
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the greatest proportion of their own polarization state in their neighborhoods, followed by 

IFNγ cells, which have a greater proportion of their neighborhoods occupied by IFNβ cells.

Finally, we asked what biochemical parameter perturbations might be associated with 

specific polarization treatments. For IL-10 polarization, we observed an increased predicted 

Km for NF-κB-induced transcription of IκBα (Figure 7G), suggesting a potential reduced 

sensitivity of IκBα transcription in response to NF-κB activity. A Kolmogorov-Smirnov 

test performed between the IL-10 and naive parameter distribution found a statistically 

significant difference (p = 1.32e–71). The model-inferred free IκBα degradation rate was 

increased among IFNγ polarized cells (IFNγ versus M0 p = 3.40e–16), which is consistent 

with prior experimental observations of IFNγ induction of proteasome activators, which 

accelerate IκBα degradation.39 We also observed increased TLR2 synthesis rates predicted 

for M1 type polarizers and decreased synthesis rates predicted for M2 type polarizers, 

especially IL-13 and IL-4 (IL-4 versus IFNγ p = 3.71e–148). This finding is consistent 

with recent scRNA-seq measurements of polarized hMPDMs,59 which demonstrates reduced 

expression of TLR2 with IL-4 polarization (Figure S7D). These studies demonstrate the 

feasibility of using phenomenological stimulus-response data to infer kinetic biochemical 

parameters that may provide a molecular-mechanistic characterization of distinct functional 

cell states.

DISCUSSION

The “cell states” of macrophages induced by polarizing cytokines have been profiled via 

steady-state measurements of the transcriptome or epigenome. However, these snap-shot 

profiles may not fully describe the dynamic functions of macrophages. One functionally 

important indicator of the dynamic response of macrophages is the transcription factor NF-

κB, for which we recently developed a fluorescent reporter mouse that allows tracking of its 

nuclear activity in single cells by live-cell imaging. Here, we explored the ability to utilize 

NF-κB stimulus-responsive activation dynamics to characterize the functional states of 

macrophages exposed to different polarizing cytokines. We first generated an unprecedented 

dataset of single-cell NF-κB response trajectories associated with a wide array of polarizing 

cytokines and stimulating ligands and then developed analytical workflows for interpreting 

these complex datasets. Our analyses revealed polarization-specific effects on the dynamics 

and specificity of NF-κB signaling that could be traced to specific stimuli and specific 

trajectory features. Thus, our results revealed that, for a given stimulus, NF-κB dynamics 

contain information about the polarization state of the macrophage. This allowed us to 

use stimulus-response NF-κB dynamics to map distinct macrophage functional states onto 

a multi-dimensional landscape and infer alterations to the molecular signaling network 

underlying these states.

Given the unprecedented quantity and quality of dynamic single-cell signaling data, 

appropriate considerations for trajectory data were essential for their analysis. First, simply 

treating a n-time point trajectory as a n-dimensional vector disregards the relationship 

between time points. For example, quantifying the distinction between trajectories as the 

Euclidean distance between time points can fail to capture differences of highly dynamic 

or oscillatory trajectories appropriately. Two single-cell trajectories with similar dynamical 
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patterns but slightly displaced in time could be computed to be highly distinct.60 Secondly, 

although summary statistics of time-series data are easy to compute, they are often 

insufficient. For example, taking the time point by time point mean of single-cell trajectories 

can obscure asynchronous oscillatory dynamics observed at the single-cell level.61 Average 

behavior descriptions furthermore mask the heterogeneity of single-cell responses and the 

overlap between distributions from distinct conditions.62 Employing measures of spread or 

shape that are used to characterize distributions is also not fully informative if taken from 

time series because they also do not recognize the inter-time point correlations and so risk 

overestimating the dispersion.

We addressed these challenges using two approaches. The first is applying an ML approach 

that allowed for trajectory distinguishability to be explored in a feature-free manner. Indeed, 

the LSTM classifier performed with higher accuracy than alternative classifiers trained 

on the time-series data. The LSTM architecture allows direct analysis of time-series data 

as its underlying RNN-type architecture treats time points in a sequence rather than as 

discrete features by considering the output of previous time points in calculating the output 

of the current time point.63 Furthermore, ML classification permits an interrogation of 

distinguishability at a single-cell resolution as it samples distinct single cells in its training, 

and unique classification predictions can be made for each cell in testing. We used the 

LSTM-based ML classifier for a quantitative assessment of stimulus-response specificity. 

We found that classifier performance dropped for the polarized responses, suggesting 

broadly a loss of response specificity with polarization. Examining the confusion fractions 

across the polarization states revealed however that different stimulus responses contributed 

to the losses in specificity for each polarization state.

Our second approach to address the challenges of time-series data analysis was to reduce 

these data into informative trajectory features. These signaling codons,15 sufficiently 

describe the stimulus-specific dynamical NF-κB trajectories, and their values are more 

robust to the temporal shifts previously discussed. In essence, signaling codons constitute a 

lower dimensional representation of the data, thereby expanding the range of analysis tools 

that can be used and provide greater interpretability. Although our previous study presented 

a method based on maximizing mutual information to select dynamical features that 

correlate with the stimulus, this approach is computationally impractical as more features 

are to be considered because of the combinatorial explosion. Here, we explored an ML 

approach for this purpose. Classifiers based on the XGBoost architecture have been shown 

to outperform other ML methods64 and SHAP analysis on these trained models provides a 

way of quantifying feature importance that accounts for feature interactions. After training 

an XGBoost ML classifier on the stimulus-response data from each polarization state and 

SHAP analysis to give an initial feature ranking, we used a recursive feature elimination 

approach to select a subset of 6–7 informative features per polarization state, totaling 

a combined set of 18 dynamical features. Using these selected dynamical features, or 

signaling codons, for classification resulted in models nearly as accurate as models trained 

on all 71 features. Further analysis of these features associated them with elevated or 

reduced immune threat, and comparison of these features across polarization states revealed 

that convergence of several stimulus responses in M1 polarization states was facilitated by a 

gain in pathogen-like features, whereas in M2 polarization states the opposite was observed.
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These findings emphasized that NF-κB trajectories not only contain information about the 

stimulus but also about the microenvironmental context of the cell. Thus, we explored 

methods to extract that context-specific information from NF-κB response trajectories that 

result from a particular stimulus. We used the aforementioned ML approaches to identify 

with which stimulation condition the greatest distinction among polarization states could be 

achieved. We then utilized two methods to map the polarization states, which consistently 

demonstrated Pam3CSK as the stimuli that could best distinguish them. Functional PCA, 

which uses a basis of trajectories for decomposition, allowed for dimensionality reduction 

of the time-series data directly. However, using a set of informative trajectory features as 

input for a UMAP visualization allowed for greater interpretability of differences between 

polarization states. Ultimately, we can leverage these data and analyses to characterize 

macrophages exposed to novel polarizing substances, and here, we demonstrated our ability 

to predict DHA pretreatment as an M2-like polarizer, consistent with recent findings.57

Stimulus-response NF-κB dynamics ultimately reflect the expression levels and kinetic 

reaction rates of signaling mediators within that network, such as rates of synthesis, 

degradation, complex association and dissociation, and catalysis. Leveraging an established 

mechanistic model of the NF-κB signaling network, we inferred how polarization modifies 

these biochemical parameters. Focusing on Pam3CSK single-cell responses, we determined 

the distribution of biochemical parameters for each polarization state. The resulting 

biochemical parameters represent in effect a dimensionality reduction of the complex 

dynamic trajectories based on known molecular mechanisms. That mapping revealed similar 

discrimination patterns among polarizers as the mapping based on trajectory features. 

However, this analysis additionally suggests potential biochemical alterations to the NF-

κB signaling network state that underlie the observed phenotypic changes in signaling 

dynamics. For example, NF-κB activation dynamics in IFNγ polarized macrophages 

separate from other states likely due to increased degradation of free IκBα and synthesis of 

TLR2, in line with prior biochemical analyses.39,65

Mapping cells onto a multi-dimensional cell state landscape using dynamic measurements 

of a single analyte is remarkable. Snap-shot measurements of multiple cell surface makers 

are often used to distinguish one cell type from another.66,67 scRNA-seq and multiplexed 

single-molecule fluorescence in situ hybridization (FISH) allow for an even larger number 

of analytes to be measured achieving finer, or unbiased mapping of cell types or cell 

states.68,69 NF-κB RelA expression is ubiquitous and not cell-type-specific. Instead, it is 

NF-κB’s nuclear translocation dynamics that reflect the state of the signaling network when 

stimulated with a specific ligand that allow for discrimination of cell states. Signaling 

network dynamics may also capture information not contained in mRNA abundance 

measurements at steady-state.70 Importantly, the biological functions of macrophages are 

their dynamic immune responses, and these are only deployed in response to stimulus. 

Future studies will undoubtedly explore the relationship between alternative cell state 

mapping strategies. This study demonstrates that mapping cell states based on dynamical 

responses to a perturbation is possible and provides workflows that may be transferrable to 

other cells, analytes, and perturbations.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Alexander Hoffmann 

(ahoffmann@ucla.edu).

Materials availability—All resources generated in this study are available from the lead 

contact.

Data and code availability—RNA-seq data have been deposited at SRA under 

BioProject: PRJNA819468 and GEO: GSE246566 and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table. Trajectory 

data generated from microscopy experiments have been deposited at Mendeley Data: https://

doi.org/10.17632/gkxzb5hcmk.1 and are publicly available as of the date of publication. 

Available on GitHub is software used for image analysis (https://github.com/brookstaylorjr/

MACKtrack), code to calculate trajectory features (https://github.com/signalingsystemslab/

polarized_macs_NFκB_response_dynamics), and code for mathematical modeling and 

inferred parameter fits (https://github.com/michaeliter/nfκB_param_fitting). Any additional 

information required to reanalyze the data reported in this paper is available from the lead 

contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Macrophage Cell Culture and Stimulation—Myeloid precursor cells were prepared 

from RelA-mVenus mouse strain15 by HoxB4-mediated transduction (hMP).43 hMP-Derived 

Macrophages (hMPDMs) were prepared by culturing hMPs in L929-conditioned medium 

using standard Bone-Marrow Derived Macrophage (BMDM) culture method.15 hMPDMs 

were re-plated in imaging dishes on day 6 at 20,000 cells/well in an 8-well ibidi SlideTek 

chamber, for imaging at an appropriate density on day 10 or day 11. hMPDMs were treated 

with polarization reagents (IL4 (10 ng/mL) (PeproTech), IL13 (50 ng/mL) (PeproTech), 

IL10 (20 ng/ML) (PeproTech), IFNγ (10 ng/mL) (PeproTech), IFNβ (100 U/ML) (PBL 

Assay Science)) or left untreated (M0) 24 hours before stimulation. Stimulation was done 

with the toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS) (10 ng/mL) (Sigma 

Aldrich), TLR3 agonist, polyinosine-polycytidylic acid (Poly(I:C) (50 μg/mL) (InvivoGen), 

TLR9 agonist, CpG B ODN (100 nM) (InvivoGen); TLR2 agonists, Pam3CSK4 (100 

ng/mL) (InvivoGen) and FSL1 (3 ng/mL) (InvivoGen), TLR8 agonist, R848 (1 μg/mL) 

(InvivoGen), TLR5 agonist, Flagellin (10 ng/mL) (InvivoGen), or cytokine TNF (1 ng/mL) 

(R&D Systems) without media replacement. Doses were selected to give maximal response. 

For the experiment with DHA pretreatment (docosahexaenoic acid, 200 μM (Sigma 

Aldrich)) and Pam3CSK stimulation, replating was performed on day 5 and imaging 

performed on day 10.

METHOD DETAILS

RNA Isolation and Sequencing—Bone-Marrow Derived Macrophages (BMDMs) were 

cultured with standard methods, L929-conditioned medium.15 Raw 264.7 cells were cultured 
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in DMEM 10 % FBS media. After stimulation, cells were harvested at desired time points. 

For PolyA+ RNA, cells were harvested in TRIzol reagent (Life Technologies, Carlsbad, 

CA). Then, DNA-free RNA was extracted from cell using DIRECTzol kit (Zymo Research, 

Irvine, CA) according to manufacturer’s instructions. After RNA extraction, libraries for 

polyA+ RNA were prepared using KAPA Stranded RNA-Seq Kit for Illumina Platforms 

(KAPA Biosystems, Wilmington, MA) according to the manufacturer’s instructions. 

Resulting cDNA libraries were single-end sequenced with a length of 50bp on an Illumina 

HiSeq 2000 (Illumina, San Diego, CA).

Analysis of RNA-seq data—After adapter trimming with cutadapt,71 sequences 

were preprocessed with PRINSEQ72 using the “dust” method to filter low complexity 

sequences with the maximum allowed score set to 7 and sequences with more than 

10% ambiguous bases were removed. Single-end reads were mapped to reference mouse 

genome (mm10) using STAR73 with the following options: –outFilterMultimapNmax 

20–alignS JoverhangMin 8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax 999 

–outFilterMismatchNoverLmax 0.04 –alignIntronMin 20 –alignIntronMax 1000000 –

alignMatesGapMax 1000000 –seedSearchStartLmax 30. Only primary mapped reads with 

alignment score (MAPQ)>30 were then selected by Samtools.74 Ribosomal RNA was 

filtered out using the intersect function in bedtools with a minimal overlap fraction of 

0.1 and finally reads mapped to the Y chromosome or mitochondria were removed for 

downstream analysis. Transcript abundance was quantified based on GENECODE M4 

annotation using featureCounts75 using option ‘-t exon -g gene_id. For analysis, genes with 

no counts across all experiments were filtered out. An average pseudocount of 2 was added 

to the raw counts, where the exact value added to each library was proportional to the library 

size. The counts were then normalized for differences in library size by calculating the 

counts per million (CPM) and then the base 2 log fold changes were calculated from those 

values. Genes induced by LPS were determined to be those that had a log2 Fold Change 

greater than or equal to 1 after 3 hours post LPS stimulation in two replicate experiments of 

BMDM’s.

Live-cell imaging—Macrophages were stained with nuclear staining dye, Hoechst 33342 

(5 ng/mL) two hours prior to imaging within ibidi chambers. Cells were imaged at 5-minute 

intervals on a Zeiss AxioObserver platform with live-cell incubation, using epifluorescent 

excitation from a Sutter Lambda XL light source. The first three images collected (pre-

stimulation) were used to determine the baseline activity of NFκB for each cell. After 15 

minutes of the start of imaging, conditioned culture media containing stimulus was injected 

into the respective well of ibidi chamber in situ. Images were recorded on a Hamamatsu 

Orca Flash 2.0 CCD camera for 12.5 hours.

Image processing and quality control—Microscopy time-lapse images were exported 

for single-cell tracking and measurement in MATLAB R2018a,used in earlier work.15 

Briefly, cells were identified using DIC images, then segmented, guided by nuclear staining 

from the Hoechst image. Segmented cells were linked into trajectories across successive 

images, then nuclear and cytoplasmic boundaries were defined and used for measurement in 

fluorescent channel for mVenus-NFκB. Nuclear NFκB levels were quantified on a per-cell 
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basis, normalized to image background levels, then were baseline-subtracted. The first three 

images collected (pre-stimulation) were used to determine the baseline activity of NFκB for 

each cell. The mean fluorescence value from these three frames was subtracted from the 

complete trajectory to normalize each cell. For downstream analysis and visualization, the 

third timepoint corresponds to time = 0 and 97 timepoints after that were included (~ 8 hour 

trajectories). Mitotic cells, as well as cells that drifted out of the field of view, were excluded 

from analysis. The code (MACKtrack) used for this analysis are publicly available at GitHub 

(https://github.com/brookstaylorjr/MACKtrack).

To quantify the 6 quality control (QC) metrics, 11 features were obtained from the NFκB 

trajectories (Table S2). For quality control metrics formed by more than one trajectory 

feature, the trajectory features were z-scored and the mean of the z-scores was taken to 

get the QC metric value. During quality control analysis to determine biological replicates, 

z-scoring was performed over cells in the experimental condition of interest. Additionally, 

for the quality control analysis, the trajectory features from only “responding” cells were 

considered. A cell was deemed a responder if its trajectory exceeded three times the 

standard deviation of the baseline for at least 5 consecutive time points. Experiments were 

finally deemed biological replicates if the Jensen-Shannon distance (JSD) between each of 

their quality control metric distributions were below a pre-specified threshold, 0.3. This 

threshold was selected based off a set of pilot experiments containing replicates for several 

conditions and visual inspection of the trajectories. For the visualizations presented in Figure 

1, z-scoring was performed over all cells in all experimental conditions listed in Figure S3A 

to calculate quality control metrics.

To calculate the Jensen-Shannon distances (JSD) between quality control metric 

distributions, the Freedman-Diaconis rule86 was first used to select a bin width for each 

quality control metric. Using this bin width and the extremum quality control metric values, 

a histogram that approximates the probability density function for each experiment can be 

constructed and used to calculate the JSD (the square root of the Jensen Shannon Divergence 

using the base 2 logarithm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Relating NF-κB dynamics to Gene Expression in polarized macrophages—
RNAseq and ATACseq data was obtained from a prior study of human macrophages.47 

Briefly this study conditioned human macrophages 64 hours prior to stimulation with 

either 10 ng/ml IFNγ, 200 U/ml INFβ, or left untreated (naïve condition). Macrophages 

were stimulated with 100 ng/ml Lipid A, 5 ng/ml TNFα, 100 ng/ml Pam3CSK, 20 μg/ml 

poly(I:C), or 200 U/ml IFNβ. ATACseq was performed on the conditioned macrophages 

prior to stimulation and RNAseq was performed on both unstimulated and stimulated 

macrophages (1.5, 3, 5.5, and 10 hours). Genes with less than 4 RPKM across all 

samples were eliminated from the RNAseq dataset76 and genes with significant upregulation 

(adjusted (BH) pVal <= 0.05, log2FC >= 2) upon stimulation at any time-point from any 

precondition-stimulation treatment were detected with edgeR77 (2299 genes) and retained 

for downstream analysis. For each condition, the total gene expression over the time course 

(integral of normalized CPM values76 with unstimulated value deducted) was calculated for 
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each replicate. NFκB trajectory data was utilized from the naïve, IFNβ, and IFNγ polarized 

hMPDMs treated with LPS (paired with Lipid A RNAseq data), TNF, Pam3CSK4, and 

Poly(I:C). For each condition, the total activity (integral of baseline deducted values) was 

averaged over the single cells of each replicate.

First a linear model (stats package in R4.1.178) was constructed to predict gene expression 

activity from the NFκB total activity averaged over replicates. More specifically the formula 

GE ~ LPS_NA + TNF_NA + P3K_NA + PIC_NA was used, where GE is the average 

gene expression activity for the gene of interest and NA are the average NFκB total activity 

with the stimulations specified. Each stimulation condition has a separate variable as genes 

respond to multiple transcription factors and stimuli activate these transcription factors 

differently. NA values are only nonzero for data where that stimulation was used. For each 

gene model, 12 data points were fit (3 polarization conditions x 4 stimulation conditions). 

Next the linear models were constructed after permuting the gene expression activity across 

polarization states. NFκB signaling dynamics can carry information about the polarization-

induced changes in gene expression if the model fits on the original data outperform those 

on the permuted data. In the next analysis, peaks overlapping with the region ± 1 kilobase 

of the transcription start site of each upregulated gene were identified from the ATACseq 

dataset. 947 genes had at least one peak and these were retained for downstream analysis. 

Now the linear model to predict gene expression activity used both NFκB total activity and 

the ATAC peak values (normalized by size factors76) averaged over the replicates. Genes 

containing more than one peak within the promoter region had these ATAC values summed. 

The formula GE ~ LPS_NA + TNF_NA + P3K_NA + PIC_NA + LPS_CA + TNF_CA + 

P3K_CA + PIC_CA was used, where CA are the average chromatin accessibility. These data 

do not vary with stimulation condition, however their effect on gene expression might. CA 

values are only nonzero for data where that stimulation was used. The Akaike Information 

Criterion (AIC) was used to compare the models constructed from only NFκB signaling 

dynamics to the models constructed with additional chromatin accessibility information.

LSTM-based ML Classifier—The LSTM-based Machine Learning (ML) Classifier 

was implemented in TensorFlow 2 79 using the Keras API.80 The classifier utilized 

the trajectories from time = 0 to 8.083 hours for a total of 98 timepoints. Trajectories 

with missing (nan) values were excluded from this analysis. For each classification task 

described, the data was split 60% for training, 20% for validation, and 20% for testing. 

The trajectories were sampled such that for each combination of ligand stimulation 

and polarization state the number of trajectories were equivalent. More specifically, for 

each combination of ligand stimulation and polarization state the trajectories were either 

downsampled or resampled to reach the mean number of trajectories across the ligand 

stimulation and polarization state combinations (1329 cells per condition with tasks with 

unstimulated cells, 1338 without). A standard scaling, fit from the training data, was 

additionally applied across each time point. For each classification task, the data was 

shuffled and resplit 15 times to estimate uncertainty in output performance metrics. The 

confidence intervals reported were two-sided and used a T-distribution with degrees of 

freedom one less than the sample size (n-1).
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The architecture of the machine learning classifier consisted of a LSTM layer with the 

dimensionality of the output set to the number of timepoints, 98, followed by a fully 

connected layer with the dimensionality of the output set to the number of classes. A 

softmax activation function was finally applied to the output of the fully connected layer. 

The weights of the classifier were optimized by minimizing the categorical cross-entropy 

loss objective function with the Adam algorithm using the following default parameters: 

learning rate=0.001, beta 1=0.9, beta 2=0.99, epsilon = 1e-08, batch size=32. With 

increasing number of training epochs, the value of the loss function over the training 

data will continue to decrease whereas eventually the value of the loss function over 

the validation data (data unseen during optimization) will begin to increase. This signals 

overfitting, as the trained model loses generalizability of its performance on new data. We 

employed a simple early stopping technique to address this. For each classification task, 

the validation loss was monitored during training and the epoch number corresponding 

approximately to the start of the rise in validation loss was determined. Training was then 

terminated just prior to this epoch.

The testing data held out during training was finally used to evaluate the performance of the 

trained model. The output of the classifier is the probability that a trajectory belongs to each 

class. To assign the trajectory to a class, the class with the highest prediction probability 

for each trajectory gave the assignment. These output prediction probabilities and class 

assignments from the testing data were then used to calculate the performance metrics as 

described.

A random forest classifier and feedforward neural network classifier were also 

trained and tested in the same manner for comparison. The random forest 

model was implemented using the scikit-learn Python package81 with default 

parameters (n_estimators=100, criterion=‘gini’, max_depth=None, min_samples_split=2, 

min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features= sqrt(n_features), 

max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, max_samples= 

X.shape[0]). The feedforward network model was implemented identically to the LSTM 

network model, except the LSTM layer was replaced with a Dense layer with output set to 

the number of timepoints, 98, and a ReLU activation function. All machine learning models 

were run in the Google Colaboratory environment.87

Feature Library and XGBoost ML Classifier—An initial library of 190 trajectory 

features was further reduced to a size of 71, eliminating features that contributed to high 

pairwise correlations based off of Kendall’s Tau (maximum pairwise correlation reduced to 

0.76 from 0.91, Table S3). The code to calculate these features are provided on the GitHub 

site. The XGBoost model was implemented using the XGboost Python Package51 (version 

0.90). Once again, trajectories with missing (nan) timeseries values were excluded from 

this analysis. For each classification task, the data was sampled as previously described 

for the LSTM-based models and similarly the training was repeated 15 times to estimate 

uncertainty in output performance. A standard scaling, fit from the training data, was also 

applied to each feature.
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All XGBoost models used a ‘multi:softmax’ objective and up to 1000 estimators. An 

early stopping criterion was applied to prevent overfitting, where if the multiclass log loss 

(cross-entropy) value did not improve after 10 rounds, training was terminated. All other 

parameters were set to the package defaults (max_depth = 6, max_leaves = 0, grow_policy 

= depthwise, eta(learning_rate) = 0.3, tree_method = auto, gamma = 0, min_child_weight 

= 1, max_delta_step = 0, subsample = 1, sampling_method = uniform, colsample_bytree 

= 1, colsample_bylevel = 1, colsample_bynode = 1, reg_alpha = 0, reg_lambda = 1, 

scale_pos_weight = 1).

To assess feature importance in model predictions, the SHAP package (version 0.41.0) 

was used.82 The function TreeExplainer was run on the trained models and the resulting 

“shap_values” were saved. An importance score for each feature was then obtained by 

taking the absolute value of the “shap_values”, averaging them across all instances, and 

then summing them over all classes. Uncertainty in these importance scores was once again 

obtained by repeating this measure for the 15 trained models. To further select features 

from the top 20 features identified as most important for each polarization state, a recursive 

feature elimination procedure was pursued. Starting with the original 20 features, each 

feature was trialed for removal (i.e. a model was trained using the 19 remaining features and 

the resulting performance was recorded, taking the average over three samplings to account 

for variability). The feature whose removal resulted in the best model performance (hence 

this feature was the least essential for maintaining performance) was removed from the set 

and the process began again with this set of 19 features. The procedure was repeated until 

only one feature remained in the set. Best model performance was monitored as features 

were removed to identify at what point feature removal resulted in a substantial loss in 

performance and the features remaining beyond this point defined the selected minimal set.

For LDA and PCA calculations using the trajectory features, the scikit-learn Python 

package81 (version 1.0.2) was used, cells with missing values were excluded, and the 

standard scaler was applied. The confidence intervals reported were two-sided and used a 

normal distribution with associated z-scores.

Functional Principal Component Analysis—Functional principal component analysis 

of the NFκB response trajectories across all stimulation and polarization conditions was 

performed using scikit-fda83 (version 0.7.1). An equal number of samples from each 

experimental condition was used. This analysis operated directly on the centered raw data 

(discretized FPCA) without first converting the data using a basis representation. The first 

ten principal components were then utilized to create a UMAP projection of the data using 

the Uniform Manifold Approximation & Projection package84 (version 0.5.3) with default 

parameters.

Mathematical Modeling of NFκB Signaling—The NFκB signaling network and 

ordinary differential equation (ODE) mechanistic model was adapted from prior work.15 

Biochemical parameters relevant to Pam3CSK stimulation were selected from the model 

topology (Figure S7A). To evaluate their sensitivity, each parameter was varied across 

a constraint region centered around their published values (Figure S7B). Seven sensitive 

parameters were chosen for optimization: IκBα protein degradation rate, IκBα mRNA 
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synthesis Km, IκBα transcriptional delay, NFκB initial abundance, TLR2 synthesis rate, 

ligand-receptor complex degradation rate, and TAK1 inactivation rate. The constraint 

region utilized was 0.1x-10x the baseline value for IκBα protein degradation rate, IκBα 
mRNA synthesis Km, TLR2 synthesis rate, ligand-receptor complex degradation rate, and 

TAK1 inactivation rate. The IκBα transcriptional delay parameter was constrained between 

0.5x-2x the baseline value and NFκB initial abundance was constrained between 0.04 to 0.3 

μM.

Experimental nuclear NFκB trajectories (A.U.) were converted to μM to permit comparison 

with model simulations. A scaling factor of 0.0313 was applied that was previously 

derived by considering the experimentally measured macrophage volume and expected 

range of NFκB nuclear concentration following maximum stimulation with LPS. From 

each of the six polarization states, 300 single cells were sampled from the Pam3CSK 

responses. For each cell, the optimization process was repeated 100 times. Each time, 

the optimization process was initialized at a different biochemical parameter set from a 

collection of 100 randomly sampled parameter sets. The MATLAB (version R2020b)85 

function, fminsearch, was utilized for optimization. This function implements the Nelder-

Mead simplex method, a gradient-free local optimization algorithm which excels at quickly 

optimizing complex multi-dimensional functions.88 The parameter ‘MaxIter’ was set to 

100 with all other parameters set to default values. This MATLAB implementation of the 

Nelder-Mead simplex method does not natively support lower and upper bound constraints 

on optimization variables, so the biochemical parameter constraint regions were enforced 

by utilizing transformations to map between each biochemical parameter constraint region 

and the real line. More specifically, the following function was applied to the optimization 

variables to project them into the constraint region of the corresponding parameter during 

each iteration of the optimization procedure. Here, a and b are the lower and upper bounds of 

parameter p, and v is the corresponding optimization variable:

p = (b − a) ev
ev + 1

+ a

The objective function that was minimized by this optimization process has two main 

components: trajectory RMSD and parameter distance penalty. The trajectory RMSD value 

refers to the root-mean-square deviation between a cell’s experimental and model-simulated 

nuclear NFκB time series. Due to the increased biological relevance of capturing the first 

few peaks of these trajectories, the first four hours of the time series are weighted two 

times more in the RMSD calculation. The parameter distance penalty refers to the root-

mean-square (RMS) value of the ratio between the altered parameters and their published 

values in log space. The base of the logarithm applied depended on the constraint region for 

each parameter. For example, the penalty for parameters with a 0.1x-10x constraint would 

be base 10. This penalty value was scaled by 0.1 to weigh it equally against the trajectory 

RMSD in the objective function. For every cell, the optimized parameter sets associated with 

the 10 lowest objective function values were retained for subsequent analyses. The objective 

function (F) can be summarized as follows:
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F(params) = RMSD(model simulation, experimental measurment) + 0.1 ∗ RMS(log(params/publisℎed
values)))

After completion of the parameter fitting pipeline, the difference between parameter 

distributions across polarization states was evaluated using the two-sample Kolmogorov-

Smirnov test (kstest2, ‘unequal’ alternative hypothesis) in MATLAB.85 Next, the pairwise 

cell dissimilarities were computed using the parameter distributions composed of the top 10 

model fits. For each pair of cells, the Jenson-Shannon distance (JSD) was calculated for each 

set of parameter distributions. The parameter distribution JSD values were then averaged 

to produce the calculated dissimilarity measure between two cells. This dissimilarity 

calculation can be summarized as follows, where pi(C) is the parameter distribution for 

parameter i in cell C:

disimilarity(cell A, cell B) = 1
7 ∑

i = 1

7
JSD pi(A), pi(B)

These distances formed the parameter-based dissimilarity matrix that was utilized in 

the UMAP visualizations. In the subsequent correlation analyses, the parameter-based 

dissimilarity matrix was compared to a feature-based distance matrix, which was obtained 

by calculating the Euclidean distance between the 10 trajectory features for each pair of 

cells. The Pearson correlation coefficient was calculated by flattening the upper triangles of 

each matrix into a 1D vector.
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Highlights

• Polarization of macrophages affects stimulus-response NF-κB dynamics

• Signaling codons reveal how NF-κB dynamics are changed by polarizers

• NF-κB stimulus-response dynamics define a landscape of macrophage 

functional states

• Model-inferred biochemical parameters define underlying molecular network 

states
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Figure 1. Single-cell NF-κB trajectories across 6 polarization states following 8 different 
stimulations
(A) Experimental pipeline for obtaining single-cell NF-κB responses in different 

polarization and stimulation conditions to study the effect of polarization on stimulus 

responses.

(B) Histogram of maximum Jensen-Shannon distance (JSD) between distributions of quality 

control (QC) metrics from experiments, with distances between replicate experiments in 

orange and distances between different experimental conditions in blue.
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(C) Along the diagonal of the distance matrix are the maximum QC JSD between replicates 

for each experimental condition. Experimental conditions are ordered by stimuli and further 

sub-ordered by polarization state. The off-diagonal elements are the maximum QC JSD 

between replicates of different experimental conditions. Maximum of color bar set to 0.4 to 

focus on smaller distances.

(D) Example replicate NF-κB trajectory datasets in M0, M:IFNγ, and M:IL-4 polarization 

states with TNF, poly(I:C), and LPS stimulation. Each row in a heatmap corresponds to a 

single macrophage in the experiment, and the color corresponds to the amount of nuclear 

(active) NF-κB.

Singh et al. Page 29

Cell Syst. Author manuscript; available in PMC 2024 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. An LSTM-based ML classifier reveals decreased stimulus-response specificity with 
macrophage polarization
(A) For each classification task, data were sampled from all polarization states to train and 

test the LSTM ML model. Input data were split into training (60%), validation (20%), and 

testing sets (20%), where validation loss was used to monitor model overfitting.

(B) Macro-averaged class F1 score for the task of classifying each ligand (including 

unstimulated) across polarization states demonstrates loss of stimulus-response specificity 

with polarization.

(C) Class F1 scores across polarization states from the same model as in (B).
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(D) Confusion fractions across polarization states for different ligand stimulations 

reveal polarization-dependent patterns in stimulus-response specificity. Error bars in (C) 

correspond to 95% confidence intervals with n = 15.
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Figure 3. A feature-based ML classifier recapitulates LSTM results and reveals features 
informative for specificity
(A) A set of features was derived from the NF-κB trajectories, and the resulting feature 

library was used to train and test XGBoost classifiers on ligand discrimination tasks.

(B) Comparison of macro-averaged class F1 scores for the task of classifying ligands across 

polarization states for XGBoost and LSTM models reveals similar drop in performance with 

polarization.

(C) Comparison of mean absolute SHAP values summed over classes for M0 model versus 

IL-10 and IL-4 models from XGBoost models trained independently for each polarization 

state on the task of classifying ligands (Amp., amplitude; Deriv., derivative; Int., integral; 

Osc., oscillatory).

(D) Pearson correlation of mean absolute SHAP values summed over classes between 

different polarization models.

(E) Maximum macro-averaged F1 score obtained as features are removed from the set of top 

20 features returned by the SHAP analysis for each polarization state. Model performance 

deteriorates once 14–15 features are removed; hence, 6–7 features are retained. Solid line 
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with increased transparency displays threshold of 90% macro-averaged F1 score using all 

features for training.

(F) Comparison of XGBoost model macro-averaged F1 score when trained across all 

polarization states using all features (same model as in B) versus union of the selected 

features. Error bars in (E) correspond to 95% confidence intervals with n = 15.
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Figure 4. Characterization of informative features by immune threat
(A) The subset of signaling codons is calculated from the single-cell NF-κB trajectories, and 

then LDA finds a linear combination that best distinguishes threat level (host TNF versus 

PAMP responses). Upsampling the smaller host TNF class to balance the classes gave an 

overall accuracy of approximately 68% for this binary classifier (Deriv., derivative; Amp., 

amplitude; Int., integral; Act., activity).

(B) Coefficient applied to each informative feature to obtain the LDA projection, hence 

characterizing immune threat: decreased 5-min derivative, increased time to max, increased 

5-min amplitude, increased 2nd half-hour integral, increased time to quarter total activity, 

and decreased oscillations.

(C) Comparing mean LDA projection of host TNF versus pathogen (PAMPs) responses; this 

axis quantifies immune threat as pathogen responses are more positive along it.

(D) Comparing mean LDA projection of different polarizer responses for each stimulation 

condition shows more M1-polarized responses with positive LDA values and more M2 

polarized responses with negative LDA values.
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Figure 5. Macrophage polarization affects ligand distinguishability uniquely
(A) Confusion fraction derived from both the LSTM and XGBoost models between the host 

ligand (TNF) and the pathogen ligands (R848, poly(I:C), Pam3CSK, Flagellin, CpG, FSL1, 

and LPS) in the IL-4 and M0 polarization states shows larger increase with R848, poly(I:C), 

CpG, and LPS stimulation.

(B) PCA projection of the 18 signaling codons from the single-cell responses to TNF and 

R848 with M0 and IL-4 polarization; dispersion measure in red (average pairwise distance 
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between classes divided by average pairwise distance within classes) illustrates convergence 

of stimulus responses with IL-4 polarization.

(C) Decreased early phase activity and duration feature distributions of R848 responses with 

IL-4 polarization contribute to convergence; log2 fold reduction in Jensen-Shannon distance 

between ligand responses with polarization in red.

(D) Confusion fraction derived from both the LSTM and XGBoost models between the viral 

ligands (R848, poly(I:C)) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, and 

LPS) in the IFNβ polarization state; illustrates greatest confusion between poly(I:C) and 

LPS.

(E) PCA projection of the single-cell responses to poly(I:C) and LPS with M0 and IFNβ 
polarization illustrates convergence with IFNβ polarization.

(F) Decreased peak activation speed of LPS and decreased oscillations of poly(I:C) (PIC) 

contribute to convergence of stimulus responses with polarization.

(G) Average confusion fraction within viral and bacterial ligands normalized to M0 

performance from the same LSTM and XGBoost models shows greater relative viral ligand 

confusion with polarization compared with bacterial.

(H) PCA projection of the single-cell responses to R848 and poly(I:C) with M0 and IL-13 

polarization illustrates convergence of stimulus responses with IL-13 polarization.

(I) Decreased duration and increased oscillations of R848 responses contribute to 

convergence of stimulus responses with polarization.
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Figure 6. Mapping macrophage polarization states with NF-κB signaling response dynamics
(A) Macro-averaged class F1 scores from an XGBoost model trained (using the library of 

71 features) for the task of classifying each polarizer across stimulation conditions provide a 

quantification of polarizer distinguishability for each stimulus.

(B) F1 scores for Pam3CSK stimulation responses reveal identification of IFNγ and IL-10 

drive distinguishability.

(C) Confusion fractions highlights distinguishability of IL-10.
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(D) Distributions for top 3 informative feature from the single-cell responses to Pam3CSK 

across all polarization conditions. Oscillatory values separate IL-10 from other M2 

polarizers and M1 polarizers from the other states. Duration values separate IL-13 and 

IL-4 from other states and slightly separate IFNβ from IFNγ. Minimum amplitude separates 

IL-13 from IL-4.

(E) Uniform manifold approximation and projection (UMAP) of all NF-κB responses 

(sampled such that number of cells per condition is equivalent, 1,338) using the top 10 

features identified by SHAP analysis colored by feature values.

(F) UMAP of the NF-κB responses (same as in E) split by each stimulus colored by 

polarization state.

(G) Single-cell nuclear NF-κB trajectories from hMPDMs pretreated with docosahexaenoic 

acid (DHA) and stimulated with Pam3CSK.

(H) Single-cell classification probabilities for DHA-pretreated Pam3CSK-stimulated 

macrophages from XGBoost model trained on polarized Pam3CSK responses defined by 

the top ten features identified in the polarization classification task.

(I) UMAP of Pam3CSK-stimulated response colored by polarization states (colors same as 

F) or pretreated with DHA.
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Figure 7. Characterizing macrophage polarization states with inferred biochemical parameters
(A) General pipeline for obtaining model parameter fits for a single-cell NF-κB response 

to Pam3CSK consists of randomly initializing the optimization procedure 100 times and 

retaining the ten fits with the minimum objective value. This objective function is composed 

of a root-mean-square deviation (RMSD) term that captures the discrepancy between the 

experimental (exp.) and model (mdl.) NF-κB trajectory and a penalty term that captures 

deviation of the parameters (param.) from the published baseline values.
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(B) Experimental NF-κB trajectories of 300 sampled cells per polarization state alongside 

the model simulations corresponding to their best parameter fits.

(C) RMSD between the model simulations resulting from the top 10 parameter fits and 

the corresponding experimental trajectory across the polarization states (left) and the 

RMSD between the experimental trajectories and the best-fit parameter model simulations, 

the baseline published parameter model simulation, and shuffled fit parameter model 

simulations (right).

(D) UMAP visualization based on biochemical parameter fits of sampled single cells colored 

by polarization states.

(E) Pearson correlation between cell-cell parameter dissimilarities and feature distances (red 

dashed line) compared with null distribution of Pearson correlation values computed from 

permuting the data 100 times.

(F) Average neighborhood composition for each polarization state based off the parameter 

dissimilarities (left) and feature distances (right). The 15 nearest neighbors were chosen to 

define the neighborhood for each cell (equivalent to UMAP).

(G) UMAP visualization (as in D) with cells colored with average parameter value across 

the top ten fits.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

lipopolysaccharide (LPS) Sigma Aldrich, B5:055 L2880

Murine TNF Roche 11271156001

Pam3CSK4 InvivoGen tlrl-pms

polyinosine-polycytidylic acid 
(Poly(I:C))

InvivoGen tlrl-picw

Synthetic CpG ODN 1668 InvivoGen tlrl-1668

Recombinant flagellin (FLA) InvivoGen tlrl-flic

FSL1 InvivoGen tlrl-fsl

R848 InvivoGen tlrl-r848

Recombinant Mouse-IFNβ PBL Assay Science 12401–1

Recombinant-Murine-IFNg PeproTech 315–05

Recombinant-Murine -IL10 PeproTech 210–10

Recombinant-Murine-IL13 PeproTech 210–13

Recombinant-Murine-IL4 PeproTech 214–14

Docosahexaenoic acid Sigma-Aldrich D-2534

TRIzol reagent Invitrogen 15596018

Hoechst 33342 dye Thermo Fisher 62249

Critical commercial assays

Direct-zol RNA isolation kit Zymo Research R2060

KAPA Stranded RNA-Seq Kit KAPA Biosystems KK8421

Deposited data

Single cell NFκB signaling dynamics This paper Mendeley Data: https://doi.org/10.17632/gkxzb5hcmk.1

RNA-seq data of hMPDM, BMDM, 
and RAW 264.7 cells stimulated with 
LPS

This paper GEO: GSE246566

Experimental models: Cell lines

RelA-mVenus hMPs This paper hMPs

RAW 264.7 ATCC TIB-71

Experimental models: Organisms/strains

RelAmVenus/mVenus (C57BL/6) Adelaja et al.15 JAX stock 38987

Software and algorithms

MACKtrack - Image Analysis (single 
cell tracking and measurement)

Adelaja et al.15 https://github.com/brookstaylorjr/MACKtrack
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REAGENT or RESOURCE SOURCE IDENTIFIER

NFκB trajectory feature calculations This paper https://github.com/signalingsystemslab/
polarized_macs_NFkB_response_dynamicshttps://doi.org/10.5281/
zenodo.11099125

NFκB math model and parameter 
inference

This paper https://github.com/michaeliter/nfkb_param_fittinghttps://doi.org/
10.5281/zenodo.11099470

Cutadapt Martin71 https://github.com/marcelm/cutadapt

PRINSEQ Schmieder and Edwards72 https://sourceforge.net/projects/prinseq/files/

STAR Dobin et al.73 https://github.com/alexdobin/STAR

Samtools Danecek et al.74 https://github.com/samtools/samtools

featureCounts Liao et al.75 https://subread.sourceforge.net/

DESeq2 Love et al.76 https://github.com/thelovelab/DESeq2https://doi.org/10.18129/
B9.bioc.DESeq2

edgeR Robinson et al.77 https://bioinf.wehi.edu.au/edgeR/https://doi.org/10.18129/
B9.bioc.edgeR

stats-package (R4.1.1) R Core Team78 https://www.r-project.org/

Tslearn Tavenard et al.46 https://github.com/tslearn-team/tslearn/

TensorFlow 2 Abadi et al.79 https://github.com/tensorflow/tensorflowhttps://doi.org/10.5281/
zenodo.4724125

Keras API Chollet80 https://github.com/keras-team/keras

scikit-learn Pedregosa et al.81 https://scikit-learn.org/stable/

Google Colaboratory Google https://colab.google/

XGboost Chen and Guestrin51 https://github.com/dmlc/xgboost

SHAP (SHapley Additive 
exPlanations)

Lundberg et al.82 https://github.com/shap/shap

scikit-fda Suárez et al.83 https://github.com/GAA-UAM/scikit-fda

Uniform Manifold Approximation & 
Projection (UMAP)

McInnes et al.84 https://github.com/lmcinnes/umap

MATLAB ODE simulation & 
optimization

The MathWorks Inc.85 https://www.mathworks.com/
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