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Abstract

Systems serology aims to broadly profile the antigen binding, Fc biophysical features,

immune receptor engagement, and effector functions of antibodies. This experimental

approach excels at identifying antibody functional features that are relevant to a particular

disease. However, a crucial limitation of this approach is its incomplete description of what

structural features of the antibodies are responsible for the observed immune receptor

engagement and effector functions. Knowing these antibody features is important for both

understanding how effector responses are naturally controlled through antibody Fc structure

and designing antibody therapies with specific effector profiles. Here, we address this limita-

tion by modeling the molecular interactions occurring in these assays and using this model

to infer quantities of specific antibody Fc species among the antibodies being profiled. We

used several validation strategies to show that the model accurately infers antibody proper-

ties and then applied the model to infer previously unavailable antibody fucosylation infor-

mation from existing systems serology data. Using this capability, we find that COVID-19

vaccine efficacy is associated with the induction of afucosylated spike protein-targeting IgG.

Our results also question an existing assumption that controllers of HIV exhibit gp120-tar-

geting IgG that are less fucosylated than those of progressors. Additionally, we confirm that

afucosylated IgG is associated with membrane-associated antigens for COVID-19 and HIV,

and present new evidence indicating that this relationship is specific to the host cell mem-

brane. Finally, we use the model to identify redundant assay measurements and subsets of

information-rich measurements from which Fc properties can be inferred. In total, our

modeling approach provides a quantitative framework for the reasoning typically applied in

these studies, improving the ability to draw mechanistic conclusions from these data.

Author summary

Antibodies play an important role in our immune response by binding to pathogens and

engaging other immune cells to eliminate threats. Mounting evidence points toward the

importance of which immune cells are being engaged by antibodies in determining the
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effectiveness of an immune response. While sophisticated experimental methods such as

systems serology have been developed to broadly profile the engagement activities of anti-

bodies, determining the presence of antibody structural features relevant to immune

engagement remains challenging. Our study addresses this gap by developing a computa-

tional model that interprets data from systems serology, allowing us to infer detailed,

engagement-relevant structural information about antibodies that are difficult to measure

directly. We applied our approach to existing data from COVID-19 and HIV studies,

revealing new insights into how antibody structure relates to vaccine efficacy and disease

progression. For instance, we found that COVID-19 vaccine effectiveness is linked to the

production of certain antibodies lacking a sugar residue called fucose. Our model also

helps identify which measurements in systems serology are most informative, potentially

streamlining future studies. This work enhances our ability to understand antibody func-

tion in disease and may guide the development of more effective antibody-based

therapies.

Introduction

Antibody-mediated protection is central to immunity and important in autoimmunity, infec-

tion, therapeutic vaccination, and administered antibody therapies. Therapies are often opti-

mized primarily considering the binding to foreign antigens via the fragment antigen-binding

(Fab) region of the antibody, as measured through antibody titer, Fab-antigen binding affinity,

and neutralization capability. However, antibody-mediated protection also arises through sec-

ondary interactions with immune cells via the fragment-crystallizable (Fc) region of the anti-

body [1]. While more challenging to quantify and identify as the mechanism of protection,

these downstream immune system responses (i.e., effector functions), such as antibody-depen-

dent cellular cytotoxicity [2,3], complement deposition [4], and cellular phagocytosis [5] often

hold equal or greater importance than antibody neutralization.

Systems serology jointly profiles the antigen-binding and Fc properties of antibodies [6].

In such assays, antibodies are first captured based on their binding to bead-coupled antigen,

leaving antibodies that are specific to that antigen on the bead [7,8]. Next, the binding of

those antigen-specific antibodies to a panel of immune receptors—commonly Fc receptors

(FcRs)—is quantified. Other molecular properties of the antigen-specific antibody popula-

tion that influence effector response induction, such as Fc glycosylation, may be quantified

in parallel [7–9]. Overall, the binding of several types of biomolecules—such as FcRs and

subclass-specific detection antibodies—to this antibody fraction may be measured, here

referred to as “detections”. By accounting for both necessary events for effector response—

antigen and immune receptor engagement—these measurements have proven to be highly

predictive of effector cell-elicited responses and antibody-mediated immune protection

[10–12].

Systems serology has excelled at identifying Fc feature correlates relevant to disease

response. Unsupervised machine learning (ML) approaches, such as PCA, UMAP, network

analysis, and tensor decomposition, have found coordinated changes in groups of detections

that define subsets of patients with distinct disease outcomes [10,11,13,14]. Supervised ML

approaches, such as logistic regression and partial least squares regression (PLSR) have found

groups of detections that separate subjects by disease status [10,11,14]. There have also been a

very limited number of mechanistic modeling approaches to this data [15]. Their main advan-

tage over ML approaches is their ability to propose quantitative and concrete approaches to

PLOS COMPUTATIONAL BIOLOGY Inferring antibody Fc species in systems serology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012663 December 23, 2024 2 / 27

have archived it on Zenodo (DOI: 10.5281/zenodo.

13942366).

Funding: This work was supported by NIH U01-

AI148119 to A.S.M. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012663
https://doi.org/10.5281/zenodo.13942366
https://doi.org/10.5281/zenodo.13942366


achieving counterfactual effector response profiles (e.g., to increase FcγRIIIa binding by X,

one could increase the IgG1 concentration by Y) [15]. However, while the extrapolation capa-

bilities made possible by such mechanistic approaches have been valuable, these approaches

have not attempted to infer structural Fc features (such as glycosylation) that aren’t already

explicitly available in systems serology data. Overall, structural and mechanistic inferences of

antibody Fc features driving immune effector responses has largely been limited to manual

interpretation of these model outputs.

Mechanistically defining the molecular features that drive outcomes in disease, or therapeu-

tic effectiveness, would enable engineered and personalized interventions. There are a few

structural characteristics of the antibody Fc domain that have substantial effects on the binding

affinity of the antibody to immune receptors, and thus are particularly influential to effector

response induction. These include antibody type (IgG, IgM, IgA, IgD, and IgE), subclass

(IgG1, IgG2, IgG3, IgG4), and glycosylation [16,17]. While isotype- and subclass-specific

detections provide a direct measure of certain molecular features, antibody glycosylation is

usually only indirectly assessed through interaction with Fc receptors [10,11,14,18]. Addition-

ally, while certain Fc species may be quantified in this matter, immune receptor binding is

dependent on convoluted and nonlinear changes of several Fc species, which limits the explan-

atory capacity of these species-specific measurements. Previous mechanistic modeling studies

have helped identify antibody Fc features relevant to disease outcomes, but they have ignored

the dramatic contribution of glycosylation and multivalent binding to these measurements,

which will be essential for accurate inferences [15].

Here, we address this limitation by mechanistically modeling the multivalent binding inter-

actions that occur in systems serology measurements and then using this model to quantify

specific antibody Fc species. The model can infer the abundance of antibody Fc features that,

at present, lack a straightforward means of quantification by systems serology. For example,

the binding model can infer Fc glycosylation with higher throughput, greater antigen breadth,

and weaker instrumentation requirements than other measurement techniques such as capil-

lary electrophoresis and LC-MS. We apply these capabilities to derive new observations

regarding the properties of SARS-CoV-2 and HIV infection. Additionally, the model allows

for the evaluation of the information content of types of detections commonly used in systems

serology and, consequently, ways to optimize these assays.

Results

A multivalent binding model for quantifying antibody Fc species in

systems serology

In systems serology assays, an immune complex consisting of a bead, antigen, and antibodies

is incubated with a panel of fluorescently tagged Fc receptors, subclass-specific antibodies, or

other binding reagents (“detections”) which each bind in a manner dependent on the bound

antibody composition. Consequently, the amount of signal observed for a given sample across

all the detection wells is a function of the properties and abundance of each antibody Fc species

immobilized by the antigen. Our model aims to observe these detection signals as inputs and

output the quantity of each antibody Fc species in the antigen-bound immune complex (Fig

1A). The model provides a general interface whereby an arbitrary set of detections and Fc spe-

cies is provided, along with their binding affinities to one another, which allows a mode of

exploratory analysis similar to systems serology itself.

Interpretation of systems serology experiments is complicated by the importance of mul-

tivalent binding; valency is critical to both antibody function generally and enabling opera-

tion of the assay. Low-affinity FcRs only bind in a multivalent context, where there are

PLOS COMPUTATIONAL BIOLOGY Inferring antibody Fc species in systems serology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012663 December 23, 2024 3 / 27

https://doi.org/10.1371/journal.pcbi.1012663


multiple antigen-bound, FcR-binding antibodies on an immune complex. Thus, to enable

the detection of FcR interactions, they are tetramerized using streptavidin [7,8]. One must

therefore model the binding of each FcR to antibodies based on their known affinity to each

Fc species, and their capacity to bind multivalently, for accurate inferences (Fig 1B). To

quantify arbitrary binding configurations, the model uses the equilibrium constant for each

binding event leading up to that configuration (Fig 1C). To quantify steric effects, we intro-

duce a crosslinking constant, K∗
x , which scales the known monovalent binding affinity to

produce the equilibrium constant for binding events involving an already-bound detection.

To tie these quantities of binding configurations (microstates) to the overall detection signal

(macrostate) we see, we sum over binding configurations. We have previously applied this

formulation extensively to model immune complex binding and subsequent effector

responses [19,20].

There are a few additional parameters, known with varying degrees of certainty, that help

describe a particular experiment. First, the model requires the total concentration of each

detection, which is provided in each of the datasets we analyzed here. As mentioned, the

model also requires the crosslinking constant, K∗
x . Because K∗

x has not been explicitly measured

for streptavidin-based multivalent complexes, we estimated this quantity based on a previous

estimate of K∗
x for multivalent immune complexes consisting of antibody-coated antigen.

Additionally, the valency of each detection is required, and this information is available in

each study (typically 4 for FcR detections and 2 for subclass detections).

Detection signals
(fluorescence)

Fc species 
abundances

a

b

Ka,1,1 Ka,1,2

Ka,1,3

Ka,1,2 Ka,1,3Kx
* Ka,1,1Kx

* Ka,1,2Kx
*

c

Binding model

Assume predominant Fc 
species

(e.g. IgG1, IgG1-fucose, ...)

Antibody Fc species abundances are unknown. 
Detections indirectly characterize Fc species.

Binding model uses detection signals 
to directly quantify Fc species.

Fig 1. Binding model usage and implementation. (a) In systems serology, antibodies are first captured with antigen-coated beads, resulting in the complexes

shown on the very left. These complexes are then separated into wells and incubated with different fluorescently tagged detection reagents, each of which leads

to a certain amount of bead-associated fluorescence proportional to the amount of binding. The binding model takes these detection signals and infers the

abundance of each antibody Fc species immobilized in the complexes. (b) Each detection has a known or fit binding affinity to each antibody Fc species, which

can be directly used to quantify the equilibrium constant for the initial monovalent binding event. (c) To model multivalent binding, we consider all binding

events which lead to a particular binding configuration. The monovalent binding event is quantified with the monovalent binding affinity, and subsequent

binding events for the same detection are quantified using the monovalent binding affinity multiplied by a crosslinking constant, K∗
x , which encapsulates steric

and local concentration effects.

https://doi.org/10.1371/journal.pcbi.1012663.g001
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Binding model accurately infers antibody Fc species abundances and is

robust to noise

Given that our goal is to infer the abundance of specific Fc species, in part because they are dif-

ficult to quantify directly, a straightforward approach to validating these quantities is challeng-

ing. Therefore, we instead devised several approaches to indirectly corroborate model

inferences.

We first verified that, with synthetic data, we could exactly infer randomly generated start-

ing antibody abundances. Briefly, random abundances were generated for each Fc species by

sampling from a log-normal distribution based on that of the subclass detection signals (S1 Fig

and S1 Text), and these were used as inputs to the antibody-to-signal function to infer the

detection signals. These detection signals were then used as inputs to the signal-to-antibody

function to infer the antibody abundances, which were compared to the starting quantities

(Fig 2A). This is a useful test because the antibody-to-signal function has been validated and

utilized in previous work [19,20]; verifying that the signal-to-antibody function is its inverse

supports its accuracy. We found exact agreement between these values (R2 = 1.0), supporting

that our implementation could reconstruct these quantities (Fig 2B).

We next tested to what extent noise disrupted accurate inference. With the same method

described above, we added noise to the generated detection signals before antibody inference

(Methods). This noise emulates error in the detection measurements during systems serology

itself. Our model is not designed as a noise-removal tool, and thus we should not test it as

such. Instead, our question here is whether the model performs acceptably in the presence of

noise (e.g., by verifying that the model does not amplify the noise). We found that our fitting

strategy continues to generate accurate inferences even in the presence of noise (Fig 2C and

2D).

The binding model uses the binding affinities between each Fc species and FcR to generate

inferences. These quantities have been measured in previous work (Table 1) [21–23]. There is

uncertainty in these measurements owing to experimental error and the difficulty of preparing

pure solutions of individual species, reflected by their variation across studies. Consequently,

we sought to evaluate how this uncertainty impacts the performance of our model. Using the

same method, we instead applied noise to the binding affinities only when computing the anti-

body-to-signal function. We observed accurate inferences even with this error in the affinities

(Fig 2E). The run-to-run variation was much larger when adding noise to certain binding

affinities as compared to the synthetic detection signals, indicating that certain binding affini-

ties are more sensitive to perturbation. Indeed, when evaluating the sensitivity of the accuracy

of the inferences for each Fc species to variation in the binding affinities, we see a sparse rela-

tionship (Fig 2F). In other words, most binding affinities have little effect, while a few binding

affinities, such as that between IgG3 and FcγRIIIa, have a relatively large effect.

As previously mentioned, our model requires a crosslinking constant parameter, K∗
x , which

we estimated based on previous experimental data. We used our synthetic validation setup to

determine how much the inaccuracy of our K∗
x estimate might affect the accuracy of our model

(S2 Fig). We found the model to be robust when provided K∗
x estimates which differed from

the ground truth by up to 2 orders of magnitude in either direction, which convinced us that

our approach to estimating K∗
x was likely acceptable.

To validate our inferences further, we performed a cross-validation experiment to test the

model’s ability to infer masked detection signals in real systems serology data. We first chose a

detection (such as α-hIgG1 IgG or FcγRIIa) and then masked the signal for that detection in a

randomly selected subset of sample-antigen pairs (Fig 3A). We then used this incomplete data

to infer the antibody abundances, and in turn predict the masked signals (Fig 3B). In other
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Fig 2. The binding model accurately infers antibody Fc abundances from synthetic data. (a) Each Fc species was assigned a random abundance. These abundances

were used to generate synthetic detection signals which were then used to infer the original antibody abundances. (b), (c) Initial versus inferred antibody abundance (b)

without and (c) with added detection signal noise. (d), (e) The coefficient of determination between the initial and inferred antibody abundances versus the amount of

noise added to the (d) detection signals or (e) binding affinities. (f) Each binding affinity was individually perturbed by 30% up and down. The set of affinities with this

perturbed affinity was used when computing synthetic signals for randomly generated initial antibody abundances, and the set with the unperturbed affinity for inferring
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words, the model infers the quantities of the antibodies in the complex based on a subset of the

detections, which it then uses to simulate how much of the left-out detection would bind to the

complex. We assume that this capability reflects accurate inferences of the underlying antibody

abundances.

We ran these imputation tests on systems serology data from a SARS-CoV-2 study by

Zohar et al. [11] (Fig 3C). The study involved profiling the antibodies of 193 patients hospital-

ized with COVID-19, ranging from moderate to severe cases. To contextualize the imputation

performance of the binding model, we compared it to that of principal components analysis

(PCA). PCA uses the assumption that the input data is a combination of one or more linear

components, or patterns, to impute missing values. We masked 10% of the measurements cor-

responding to a single detection and evaluated each method’s ability to impute these values

(Fig 3C, 3D and 3E). We first determined the optimal PCA rank for imputation, which was 1

(S3 Fig), and used this optimal rank to compare to the binding model. We saw that the binding

model imputes well when measured by the Pearson correlation. However, the accuracy mea-

sured by the coefficient of determination was lower. Together, this indicates that the binding

model’s inferences are linearly related to the ground truth, but that there is a consistent bias.

Indeed, this is apparent when plotting the inferences directly (Fig 3C). Interestingly, the α-

hIgG1 IgG signal is poorly imputed by both methods, indicating that this information is diffi-

cult to infer from the other detection signals. It should be reemphasized that these tests are pri-

marily to indirectly verify the underlying antibody inferences of the binding model, for which

an imputation performance roughly on par with PCA is sufficient.

The binding model can additionally impute values for an entirely unobserved detection

(Fig 3F), so long as the binding affinities of that detection to each Fc species are known. This

capability is not shared by PCA. We tested this capability by incrementally masking values for

a single detection and evaluating imputation accuracy at each step (Fig 3G and 3H). We also

measured how the imputation performance depends on dataset size at a fixed fraction of miss-

ing values and found that the performance is largely invariant to total dataset size (S4 Fig). We

see that the model accurately imputes each detection even when 100% of the measurements

are masked. However, both FcγRIIa and FcγRIIb gain a significant bias in their predictions as

the number of masked values is increased, as indicated by the increasing R2. This likely indi-

cates that the signals of these two detections point, in consistent directions, to conflicting levels

of the same Fc species. This would cause the model to infer quantities of those contested Fc

species that best accommodate the two detections if both of those detections are fit during

optimization; but, if one conflicting detection were left out, the model could infer Fc species

abundances that agree with the included detection without prediction penalties from the left-

antibody abundances from the synthetic signals. The sensitivity of the inferences to perturbations of this binding affinity was computed as one minus the agreement (R2)

between the inferred and initial antibody abundances, shown separately for each species.

https://doi.org/10.1371/journal.pcbi.1012663.g002

Table 1. Binding affinities (Ka in units of M-1) between each antibody Fc species and detection [22].

IgG1 IgG1f IgG3 IgG3f

FcγRIIA-131H 5.20E6 5.20E6 8.90E5 8.90E5

FcγRIIA-131R 3.50E6 3.50E6 9.10E5 9.10E5

FcγRIIB 1.20E5 1.20E5 1.70E5 1.70E5

FcγRIIIA-158V 2.01E6 0 9.80E6 0

FcγRIIIA-158F 1.17E6 0 7.74E6 0

FcγRIIIB 2.00E5 0 1.10E6 0

https://doi.org/10.1371/journal.pcbi.1012663.t001
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Fig 3. The binding model effectively imputes unseen measurements. (a) To measure the binding model’s imputation performance, we start with a real systems

serology dataset and then mask measurements corresponding to a particular detection and use the model to impute them. (b) The model imputes detection signals by

using the incomplete data to infer the antibody abundances, which are then used to infer the left-out signals. (c) Imputed versus actual measurements. The metrics

shown on the plot relate the log10 of each of the plotted values. ‘r’ signifies the Pearson correlation and ‘R2’ signifies the coefficient of determination. (d) Pearson

correlation and (e) coefficient of determination between actual and imputed values for binding model and PCA when 10% of values are dropped. (f) Dataset schematic

for imputation at 100% missingness for a single detection. (g) Pearson correlation and (h) coefficient of determination between actual and imputed values for the

binding model at various percentages of missing values.

https://doi.org/10.1371/journal.pcbi.1012663.g003
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out detection. This would then cause a consistent bias in the model’s imputations of the left-

out detection.

Note that we don’t examine the imputation accuracy of the subclass detections, α-hIgG1

and α-hIgG3, at variable percentages of missing values. We found that in some studies, such as

this one, different concentrations of serum were used for each of these detections [11,14], pre-

venting use of a binding model since the antibody compositions on the beads would almost

certainly differ. Instead, we decided to model these detections with logistic curves that are fit

on a dataset-by-dataset basis. This flexible modeling approach prompted by uncertainty in

experimental conditions means that the subclass detection parameters will be determined by

their specific experimental conditions, and thus cannot be compared across datasets. This is

not a severe limitation, however, because there are relatively few such dataset-specific parame-

ters (so they can be determined from a small number of samples) and because the Fc species

quantities, which is what we’re ultimately after, represent biological qualities of only the sam-

ple (i.e., no batch effects), and thus can be compared across datasets.

The binding model can also infer the number of antibodies with various glycan modifica-

tions, such as fucosylation. The presence of fucose on the Asn-297 N-linked glycan of IgG sig-

nificantly reduces its binding affinity to FcγRIIIA, but has little effect on the affinity to other

FcRs, such as FcγRIIA (Fig 4A) [22,24,25]. This suppresses IgG effector responses, particularly

antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells, and so is of par-

ticular interest in antibody therapeutics [24,26]. Because the reduction in binding affinity to

FcγRIIIA caused by IgG fucosylation is well-characterized, we can separate fucosylated and

afucosylated IgG as different Fc species to the model and quantify them (Fig 4B). One explana-

tion for the model’s capability to infer fucose is that Fc fucosylation is expected to have signifi-

cant and isolated effects on the FcγRIII signal in the systems serology assay, which is distinct

from the effects of other types of Fc variation. For example, changes in subclasses are generally

expected to affect the signals for a broader set of detections, given their broad binding affinity

differences to the detections relative to changes in fucosylation.

We sought to validate our model’s IgG fucosylation inferences by comparing them to real,

experimental measurements of both detection signals and effector functions to verify the pres-

ence of expected mechanistic relationships. In the SARS-CoV-2 data [11], we see a negative

correlation between inferred IgG fucosylation and the FcγRIIIA to FcγRIIA signal ratio (Fig

4C), as well as a positive correlation between the abundance of afucosylated IgG and antibody-

dependent natural killer cell activation (a proxy for ADCC) (Fig 4D and 4E), as expected.

These relationships indirectly support our IgG fucosylation inferences.

We claim that the binding model infers antibody Fc features that better explain down-

stream effector response than existing antibody Fc characterizations. One reasonable predic-

tion based on this claim is that effector responses are more accurately predicted by the

antibody Fc features predicted by our model than they are by antibody Fc measurements that

are already commonly available in systems serology assays. The class of commonly occurring

systems serology measurements that most directly characterizes antibody Fc features is the set

of IgG subclass detections (and other isotype detections). Indeed, other groups have previously

attempted to relate these subclass detection measurements to effector response measurements

[18], for example by using linear regression with the subclass detection measurements as

regressors and the effector function measurements as response variables. In this same fashion,

we benchmark the accuracy of regressing effector response against our Fc species inferences

or, alternatively, subclass measurements (Fig 4F and 4G). We see that our model’s inferences

vastly outperform the subclass measurements in predicting effector responses. This prediction

performance is likely attributable in large part to our model’s separate inference of fucosylated

and afucosylated IgG which, as previously stated, bind differentially to FcR.
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Fig 4. Binding model infers IgG fucosylation, improving prediction of downstream effector response. (a) IgG fucosylation blocks binding to FcγRIIIA with little effect

on binding to the other FcRs, such as FcγRIIA. (b) Higher fucosylation of bead-bound antibodies leads to a lower FcγRIIIA signal relative to FcγRIIA signal. The binding

model uses this information to infer how many antibodies are fucosylated. (c) Inferred IgG fucosylation versus measured FcγRIIIA signal / FcγRIIA signal. (d), (e)
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One previous systems serology study directly measured fucosylation by capillary electro-

phoresis (CE). While at first this seemed like an opportunity to directly validate our fucosyla-

tion inferences, the CE measurements were inconsistent with both the detection binding data

and effector function measurements, suggesting challenges in accurately measuring glycan fea-

tures in this manner (S5 Fig and S2 Text).

Binding model reveals novel patterns of IgG fucosylation in SARS-CoV-2

and HIV infection

We next applied the model with the aim of discovering new patterns in natural antibody

responses. While the model is generic to any antibody Fc species and detection for which bind-

ing affinities are known, we focus on using the model to infer antibody Fc fucosylation because

(1) Fc fucosylation is difficult and expensive to measure directly, (2) we possess some prior

knowledge about Fc fucosylation which allows us to further validate our model on real systems

serology data, and (3) because Fc fucosylation causes well-characterized and sparse effects on

Fc-FcR affinity and this simplicity makes it a suitable first domain of model application.

We first analyzed the same systems serology data from SARS-CoV-2 patients [11]. We used

the binding model to infer the percentage of fucosylated antibodies targeting each antigen (Fig

5A–5C). As this dataset, like many others, contained no antibody glycosylation measurements,

these fucosylation inferences are new information made available by our model. Antibodies

targeting the SARS-CoV-2 nucleocapsid protein (N) were inferred to be more fucosylated

than antibodies targeting the spike protein (S) (Fig 5A). This relationship holds when consid-

ering antibodies targeting all the antigens associated with the spike protein, compared with

those targeting the nucleocapsid protein (Fig 5B). Furthermore, antibodies targeting the S1

subunit of the spike protein are inferred to be more fucosylated than antibodies targeting the

S2 subunit (Fig 5A). We also found that all the SARS-CoV-2 antigen responses were inferred

to be less fucosylated in patients with acute respiratory distress syndrome (ARDS) compared

to patients without ARDS (Fig 5C).

We further explored the relevance of antibody fucosylation in subjects who received the

ChAdOx1 SARS-CoV-2 (AZD1222) vaccine [14]. This data was collected 2 weeks after the

booster, and each subject was followed up with later to determine whether they tested positive

for SARS-CoV-2 at any point since vaccination. Vaccine protection was correlated with

inferred afucosylation of antibodies targeting spike protein antigens from the wild type (WT)

and beta variant SARS-CoV-2 (Fig 5D).

As an application to data with more complex antibody compositions, we examined systems

serology data previously collected in a separate study from HIV patients. This study includes

CE IgG fucosylation measurements for the gp120.SF162 HIV antigen [10]; we used our model

to infer IgG fucosylation for the remaining antigens. We first analyzed these anti-HIV IgG

fucosylation inferences across four patient categories: elite controllers, who suppressed the

virus to the extent that there was no longer evidence of viremia; viremic controllers, who sup-

pressed the virus to barely transmissible levels; untreated progressors, who were chronically

Inferred abundance of afucosylated IgG versus antibody-dependent natural killer cell activation (ADNKA), measured by two markers: (d) CD107a and (e) MIP1b. (f), (g)

Effector function measurements were predicted with two sets of regressors: binding model-predicted abundances of antibody Fc species IgG1, IgG1f (fucosylated IgG1),

IgG3, IgG3f and subclass detection measurements (with the set of subclasses varying by dataset). Repeated 8-fold cross validation with 10 repeats was used, and the

coefficient of determination (R2) on the validation sets is shown on the y-axis. (f) The regression performance for each set of regressors for the Zohar et al. SARS-CoV-2

data [11]. In this dataset, the available subclass detections used as regressors were α-hIgG1 and α-hIgG3 IgG. (g) The regression performance for the Alter et al. HIV

dataset [10]. The available subclass detections used as regressors were α-hIgG1, α-hIgG2, α-hIgG3, and α-hIgG4 IgG. The Mann–Whitney U-test was used to define

differences and the Benjamini–Hochberg method was used to adjust for multiple comparisons, with an adjusted

PðPadjÞ : ∗∗∗∗P � 1� 10� 4; ∗∗∗P � 1� 10� 3; ∗∗P � 0:01; ∗P � 0:05.

https://doi.org/10.1371/journal.pcbi.1012663.g004
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progressive; and treated progressors, who were also chronically progressive, but were treated

with anti-retroviral therapy and thus had no evidence of viremia (Fig 6A). We see large varia-

tion in antibody fucosylation across both antigens and subject classes. In the hopes of isolating

differences relevant to effective immune response, we compared fucosylation between elite

controllers and the other groups (Fig 6B). Elite controllers possess IgG that is more fucosylated

against most antigens, particularly gp120.Du151, gp120.Du156.12, and gp120.ZM109F. This

correlation between HIV infection severity and IgG afucosylation is like the correlation we

found between COVID-19 severity and IgG afucosylation.

There are also significant differences in antibody fucosylation across antigens, most promi-

nently between pr55Gag and the others (Fig 6A). We investigated these differences across all

subjects directly (Fig 6C) by grouping the antigens into three categories: pr55Gag is a polypro-

tein containing units for intra-envelope structures, Env is the envelope spike protein, and p24

forms the viral capsid. IgG targeting pr55Gag is indeed more fucosylated than IgG targeting the

other two groups of antigens. We also looked at the relationship between Fc afucosylation and

HIV severity across these antigen groups (Fig 6D). From this, we extend the observations

Fig 5. In COVID-19, inferred IgG fucosylation varies by target antigen, symptom severity, and vaccine efficacy. Inferred fucosylation of IgG by (a) target antigen,

(b) target antigen type, (c) target antigen and presence of ARDS. (d) SARS-CoV-2 vaccine protection is associated with inferred afucosylation of IgG targeting spike

protein antigens. The Mann–Whitney U-test was used to define differences and the Benjamini–Hochberg method was used to adjust for multiple comparisons, with an

adjusted PðPadjÞ : ∗∗∗∗P � 1� 10� 4; ∗∗∗P � 1� 10� 3; ∗∗P � 0:01; ∗P � 0:05.

https://doi.org/10.1371/journal.pcbi.1012663.g005
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made in Fig 6B; the relationship between Fc afucosylation and HIV severity is exclusive to Env

trimer antigens.

We also sought to understand the variability in IgG fucosylation by antigen. Because tech-

niques for directly measuring IgG fucosylation, such as CE or LC-MS, have lower throughput

than measurement of detection binding, measurements of IgG fucosylation, when available,

are typically only collected for at most one or two antigens [10,27], in contrast to the large pan-

els of antigens against which multiplexed binding is measured. We wanted to understand to

what degree the fucosylation of IgG targeting one antigen is representative of the fucosylation

of IgG targeting other antigens associated with the same pathogen. This would help determine

how comprehensive these direct measurements of IgG fucosylation are. We found a high

degree of variation in IgG fucosylation by antigen across subjects (Fig 6E), indicating that anti-

gen-specific IgG fucosylation cannot be inferred using the IgG fucosylation for another anti-

gen from the same pathogen. This difference is most pronounced between antigens from

different structural units of the virus but is also present between antigens from the same struc-

tural unit and different viral strains.

Binding model enables the optimization of future systems serology assays

We also used the model to explore how systems serology protocols might be reduced in experi-

mental workload while capturing the same information. Recall that one of our model valida-

tion strategies was to impute missing detection signals in systems serology data, even when

that detection is completely absent in the dataset. We can repurpose this mechanism to infer

the signal of a detection which was never present in the dataset and thus theoretically forgo the

need to collect that measurement.

We sought to find a minimal subset of detections from which the signals of all other detec-

tions of interest can be inferred. α-hIgG1 IgG and α-hIgG3 IgG cannot be inferred at 100%

missingness due to their learned parameters, so we always included these in the subset of mea-

surements seen by the model. Using the SARS-CoV-2 dataset [11], we explored all possible

pairwise combinations of FcRs. For each pair, we dropped their corresponding measurements

and measured the model’s capability to impute these quantities (Fig 7A, 7C and 7E–7H). As

we saw previously (Fig 3), the Pearson correlation was often higher than the coefficient of

determination, indicating a bias. In practice, this bias might not be a severe issue, as relative

differences between subjects and antigens are still preserved. Under these criteria, the model

can impute most of these combinations quite well. The imputation performance, measured by

the Pearson correlation, is notably worse for (FcγRIIA, FcγRIIB) and (FcγRIIIA, FcγRIIIB).

Because FcγRIIIA and FcγRIIIB are fucosylation-responsive while FcγRIIA and FcγRIIB are

not, these results indicate that accurate inference requires the inclusion of at least one fucosyla-

tion-responsive FcR and one fucosylation-unresponsive FcR.

We then hoped to minimize the measured subset of detections further by dropping three

FcRs at a time (Fig 7B and 7D). While this generally leads to lower imputation performance

than with two FcRs, the combination of (FcγRIIB, FcγRIIIA, FcγRIIIB) can still be imputed

moderately well. In this scenario, excluding these detections would reduce the number of

detections from six (α-hIgG1 IgG, α-hIgG3 IgG, FcγRIIA, FcγRIIB, FcγRIIIA, FcγRIIIB) to

three (α-hIgG1 IgG, α-hIgG3 IgG, FcγRIIB).

Fig 6. Inferred IgG fucosylation correlates with HIV severity and is lower for membrane-associated antigens. (a), (b) Inferred IgG fucosylation by target antigen and

patient status for HIV-infected subjects. (c) Inferred IgG fucosylation by antigen type. (d) Inferred IgG fucosylation by antigen type and patient status. (e) IgG

fucosylation was inferred for each sample and antigen. The fucosylation inferences for each antigen were compared across samples and used to compute a Pearson

correlation coefficient. The pairwise correlation in IgG fucosylation between each antigen is shown. A Mann–Whitney U-test was used to define differences and the

Benjamini–Hochberg method was used to adjust for multiple comparisons, with an adjusted PðPadjÞ : ∗∗∗∗P � 1� 10� 4; ∗∗∗P � 1� 10� 3; ∗∗P � 0:01; ∗P � 0:05.

https://doi.org/10.1371/journal.pcbi.1012663.g006

PLOS COMPUTATIONAL BIOLOGY Inferring antibody Fc species in systems serology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012663 December 23, 2024 14 / 27

https://doi.org/10.1371/journal.pcbi.1012663.g006
https://doi.org/10.1371/journal.pcbi.1012663


Fig 7. Identifying a minimal set of detections. Combinations of two FcRs are dropped, and their signals are imputed. The (a) Pearson correlation and (c) coefficient of

determination between the log10 of the imputed and measured values. (e), (f) Imputed vs measured values for FcγRIIB and FcγRIIIB respectively, when they are left out

together. ‘r’ signifies the Pearson correlation and ‘R2’ signifies the coefficient of determination. (g), (h) Imputed vs measured values for FcγRIIIA and FcγRIIIB

respectively, when they are left out together. (b) (d) The same metrics as (a) and (c) when three FcRs are imputed. An ‘x’ indicates that one of the specified values exceeds

the lower y-axis limit.

https://doi.org/10.1371/journal.pcbi.1012663.g007
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Discussion

Here, we show that a mechanistic binding model complements systems serology by quantify-

ing Fc structural features of antibodies, and by defining which types of measurements are most

informative. This approach models the microscopic binding mechanics in the assay itself (Fig

1) and uses this fact to infer the abundances of each antibody Fc species. While the model’s

antibody inferences are difficult to validate directly, we used several approaches to indirectly

support their accuracy (Figs 2, 3, and 4). With this capability, we then characterized antibody-

mediated immune responses better than could be done using the existing systems serology

data alone—specifically, by inferring the proportion of fucosylated antibodies (Figs 5 and 6).

Notably, this characterization provides unique opportunities for engineering of antibody-

based therapies by virtue of its direct description of antibody Fc structural features, rather than

only the immune interaction profiles which arise from them (Fig 5D). Finally, we use the

model to describe the information content of different detections typically used in systems

serology and discover optimizations that could be used to make future systems serology assays

more efficient (Fig 7).

The antibody Fc information that we obtained with the binding model aligns with and

extends existing understanding of antibody-mediated protection against SARS-CoV-2. The

model’s inferences of IgG fucosylation are particularly useful because these quantities are

more difficult to measure than other properties such as subclass composition. Our fucosylation

inferences are further validated by their recapitulation of previously measured fucosylation

patterns. For one, the larger degree of fucosylation with N-targeting IgG relative to S-targeting

IgG is consistent with a previously established relationship that membrane-associated antigens

elicit IgG with lower fucosylation [27]. Additionally, the lower degree of S-targeting IgG fuco-

sylation among patients with ARDS compared to those without ARDS replicates a previous

finding [27]. We also discover new relationships based on our model’s fucosylation inferences.

For one, we extend the ARDS relationship from S-targeting IgG to IgG targeting other SARS-

CoV-2 antigens. We also find that S2-targeting IgG is less fucosylated than S1-targeting IgG.

As these proteins form subunits of the same protein (S) on the viral surface, this difference in

fucosylation could lend specificity to the theory that membrane-associated antigens induce

afucosylated IgG. S1 contains the receptor-binding domain (RBD), which recognizes and

binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane

[28]. Subsequently, S2 mediates viral fusion with the host cell membrane and remains embed-

ded in the host membrane after fusion [28–30]. S1, on the other hand, commonly dissociates

after viral fusion [29,30]. Therefore, S2 is likely more abundant on the host cell membrane

than S1 [29,30]. Given this background, our results may point toward the significance of the

host context in the relationship between membrane antigens and afucosylated antibody pro-

duction, whereby afucosylated IgG production is stimulated by co-signaling between B cell

and antigen-presenting host cell in parallel to B cell receptor (BCR) activation, as originally

proposed by Larsen et al. [27]. Our inferences also indicate that COVID-19 vaccination is asso-

ciated with the induction of afucosylated S-targeting IgG (Fig 5D). This finding explains previ-

ously observed differences in antibody effector profiles between protected and unprotected

vaccinees. Namely, in the study that we extracted this IgG fucosylation information from, the

authors observed that FcγRIIIB binding was highly predictive of vaccine protection [14]. Our

finding further emphasizes the need for an understanding of how to tune IgG glycosylation in

vaccination [31,32].

We also gained IgG fucosylation information for an unprecedented breadth of HIV anti-

gens, which expands and questions our understanding of antibody-mediated protection

against HIV. We found that IgG targeting a range of HIV antigens were more fucosylated for
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ECs (Fig 6A and 6B). This could arise from a similar mechanism as that which distinguishes

COVID-19 patients with ARDS; namely, a more advanced infection results in the production

of afucosylated IgG. However, this relationship does not appear for all antigens, and the under-

lying determinant for those antigens with IgG fucosylation differences across disease severity is

not entirely clear. These antigens against which IgG fucosylation depends on disease severity

seem to be limited to the Env trimer (Fig 6D), but not all Env trimer antigens have this property,

such as gp120.SF162 (Fig 6B). Further investigation may be warranted to explain these differ-

ences. We also see a significant degree of independence of IgG fucosylation across HIV antigen

types (Fig 6E). This independence may help explain the apparent contrast of our observed rela-

tionship between IgG afucosylation and HIV severity with a previous finding where HIV-spe-

cific IgG afucosylation was greater for controllers than progressors [33]. It is plausible that the

single HIV antigen they examined had little correlation to other relevant HIV antigens, such as

the ones we examined here. On a related note, this independence of IgG fucosylation across

antigens emphasizes the value of our model’s ability to infer IgG fucosylation for many antigens,

as these results are ultimately distinct from an IgG fucosylation analysis for one or two antigens

offered by CE or LC-MS. We also discovered a relationship between IgG fucosylation and anti-

gen context in HIV (Fig 6C) which largely resembles what we found for COVID-19; afucosy-

lated IgG is produced against membrane-associated antigens. pr55Gag is a polyprotein

containing units for intra-envelope structures [34], while Env exists on the viral envelope [35],

and thus the increased fucosylation of IgG targeting pr55Gag reflects this relationship. However,

it is somewhat surprising that IgG targeting p24 are afucosylated, as this is a component of the

viral capsid and thus is not expected to be found on the host cell membrane or viral envelope.

Our finding indicates that the p24 antigen is vulnerable to antibody targeting on the viral or

host cell membrane. This aligns with previous findings that p24 is expressed on a fraction of

HIV-infected T cells and that anti-p24 antibodies effectively halt viral replication in vitro [36].

This quantitative analysis of systems serology brings our attention to measurement redun-

dancies commonly found in these assays. On one hand, by profiling the information content

of commonly used detections from the assay, we found that certain detections could be omit-

ted from future experiments. Ultimately, the overlap in information content between measure-

ments arises from similar profiles of antibody binding affinities between detections [22]. On

the other hand, Fc species with similar binding affinities to the detections are difficult to

resolve even with all measurements, suggesting the need for new detection reagents to resolve

these Fc species. In either case, the model can help to reason about what conclusions can be

drawn given the detections and Fc species present.

We envision several other directions in which this approach could be taken. While we ana-

lyzed IgG fucosylation extensively, other variation in antibody glycosylation, such as galactosy-

lation and sialylation, have previously been implicated in a range of diseases [33,37–43].

Because it is difficult to directly measure glycosylation, and because we lack detections which

can quantify these features in a deconvoluted manner, analysis in this area is lacking. The

binding model could help quantify these features. There are also opportunities to solidify and

expand the inferences made available by the model. First, the quantitative effect of IgG glyco-

sylation on binding affinity is not well-known mainly because it is difficult to create pure solu-

tions of specific antibody glycoforms [22,44]. Enhanced estimates of these affinities could

refine the model’s inferences. Second, the binding model would become more effective with

increased homogeneity in systems serology protocols both between detections and studies. For

example, as mentioned earlier, we chose to use a more flexible modeling approach for the sub-

class detections because of the varying serum concentrations used with them. Finally, other

data modalities from systems serology, such as effector function and glycosylation measure-

ments, could also be integrated into this approach, for example, by modeling FcR crosslinking
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and effector cell activation [19] or by constraining the model’s antibody inferences based on

known Fc glycosylation compositions.

Antibody effector functions are an important aspect of immunity. Systems serology can mea-

sure immune receptor engagement one step upstream of effector responses, as well as effector

responses directly, at an unparalleled breadth and throughput. An important next step is a mecha-

nistic understanding of how effector responses directly relate to antibody Fc features as well as

how the immune system naturally chooses these Fc features to control effector response in vivo.

This understanding could help us artificially program effector responses that have shown success

in providing natural immunity. However, this understanding requires advancements in our capa-

bility to profile effector-relevant antibody Fc features. The application of a binding model to sys-

tems serology that we present here is one approach to improving this capability.

Methods

Multivalent binding model for systems serology

We start by considering beads coated with a single antigen species. These beads are mixed

with patient serum containing antibodies, and the antibodies bind to the antigen on the bead

via their Fab region. We assume that the antibodies and beads are mixed homogenously such

that each bead is bound by the same composition of NR antibody Fc species, R1;R2; . . . ;RNR

with abundances Rtot;1;Rtot;2; . . . ;Rtot;NR
¼ Rtot
�!

. These bead-antigen-antibody complexes are

separated into distinct wells, one for each type of detection. In well Wi, multivalent detection

Li of valency f is introduced to this well at a concentration of L0. At steady state, the total num-

ber of detection molecules bound to the bead, Lboound,i, can be expressed as [45]:

Lbound;i ¼
L0

K∗
x

1þ
XNR

j¼1

Req;jKa;ijK
∗
x

0

@

1

A

f

� 1

2

6
4

3

7
5 ð1Þ

Where K∗
x is the crosslinking constant, which quantifies the difference between free mono-

valent binding and binding of a subunit which is part of a multivalent complex that already

has another bound subunit. This constant thus captures steric effects and local receptor

clustering. Ka,ij is the binding affinity between species Rj and detection Li. Req,j is the num-

ber of unbound antibodies of species Rj at equilibrium. Our objective is to express Lbound,i in

terms of Rtot
�!

, rather than Req;1;Req;2; . . . ;Req;NR
¼ Req
�!

. Therefore, we seek a relationship

between Rtot
�!

and Req
�!

. In fact, it suffices to find Fi �
PNR

j¼1
Req;jKa;ijK∗

x in terms of Rtot
�!

. We

also define φi;j � Req;jKa;ijK
∗
x. With these new variables defined, Eq (1) becomes

Lbound;i ¼
L0

K∗
x

ð1þ FiÞ
f
� 1

h i
: ð2Þ

We use conservation of mass:

Rtot;j ¼ Req;j þ Rbound;j; ð3Þ

where Rbound,j is the number of antibodies of species Rj bound to detection at equilibrium. We

can express Rbound,j in terms of Req,j as [45]

Rbound;j ¼
L0f
K∗

x

φijð1þ FiÞ
f � 1
:
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Inserting this into Eq (2), specifying Req,j in terms of φij, and rearranging, we have:

Rtot;j ¼ Req;j þ
L0f
K∗

x

φijð1þ FiÞ
f � 1

Rtot;j ¼
φij

Ka;ijK∗
x

þ
L0f
K∗

x

φijð1þ FiÞ
f � 1

Rtot;jK
∗
x ¼

φij

Ka;ij
þ L0fφijð1þ FiÞ

f � 1

Rtot;jK
∗
x ¼ φij

1

Ka;ij
þ L0fð1þ FiÞ

f � 1

" #

φij ¼
Rtot;jK∗

x

1

Ka;ij
þ L0f ð1þ FiÞ

f � 1

Replacing φij with Fi by summing over j:

XNR

j¼1

φij ¼
XNR

j¼1

Rtot;jK∗
x

1

Ka;ij
þ L0f ð1þ FiÞ

f � 1

Fi ¼
XNR

j¼1

Rtot;jK∗
x

1

Ka;ij
þ L0f ð1þ FiÞ

f � 1
: ð4Þ

We solve forFi in Eq (3) using the Newton-Raphson method as implemented in SciPy.

Equipped with these relationships, we can compute Lbound,i from Rtot
�!

by first solving forFi

in Eq (4) and then plugging this into Eq (2). We have focused on just one well and detection,

but this process is repeated in NL wells, each of which contains beads from the same original

mixture, and thus beads with identical bead-bound antibody abundances, Rtot
�!

. We can com-

pute the number of bound molecules of each detection type and combine them into a vector:

Lbound;1; Lbound;2; . . . ; Lbound;NL
¼ Lbound
���!

. This entire process implements the function fL R :

RNR ! RNL where Lbound
���!

¼ fL RðRtot
�!
Þ: fL R is also referred to as the antibody-to-signal

function.

Each detection molecule is fluorescently tagged, and this fluorescence is measured for each

well, yielding a vector L
!
2 RNL . If we assume that each detection molecule contributes equally

to the fluorescence, i.e., the detection abundance and fluorescence are linearly related as

Lbound
���!

¼ gL
!

, for some constant γ, then the fluorescence measurements are also indirect mea-

surements of the number of detection molecules bound to the bead. Therefore, with Lbound
���!

available from the assay data, we seek a way to compute Rtot
�!

as Rtot
�!
¼ fR LðLbound

���!
Þ where

fR L ¼ f � 1
L R. fR L is also referred to as the signal-to-antibody function.
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To implement f � 1
L R, we use numerical optimization. Namely, we solve

argmin
Rtot
�!

klog
10
fL RðRtot

�!
Þ � log

10
Lbound
���!

k
2

¼ argmin
Rtot
�!

klog
10
fL RðRtot

�!
Þ � log

10
gL
!
k

2
: ð5Þ

In other words, we are finding the vector R∗tot
�!

that minimizes the squared residuals between

log
10
fL RðRtot

�!
Þ and log

10
gL
!

, where the log is added because the data spans many orders of

magnitude.

At first, we attempted to fit γ, but this made the fitting too flexible, resulting in unrealistic

values of Rtot
�!

. Specifically, we would sometimes see that the average inferred number of anti-

bodies bound to each bead was many orders of magnitude larger than we would realistically

assume. To avoid this issue, we chose to set γ = 1, in which case the measured fluorescence is

the detection abundance. While this assumption is almost certainly inaccurate, we surmised

that it was acceptable after validating the model. Future assays to which this model is applied

would be benefited by a calibration step, where the mean fluorescence per detection molecule

is measured, thus providing γ.

Eq (5) describes the assay and fitting process for one serum sample and one antigen, where

there are NL fluorescence measurements. In the assay, these experimental steps are conducted

for NS samples and NA antigens, resulting in NS×NA×NL total fluorescence measurements, NL

measurements for each sample and antigen. This model performs the same computation on

each sample and antigen, and thus it is natural to arrange the input data into a matrix of shape

(NS×NA, NL). The model then computes Eq (5) for each row of the input, and outputs the anti-

body abundances for each sample and antigen, a matrix of shape (NS×NA, NR). We use the

least_squares function implemented in the SciPy python package for optimization.

One additional consideration is that in some systems serology assays, a different set of dilu-

tions was used for each subclass quantification [11]. Due to differences in antibody-antigen

affinities, this likely leads to differing bound antibody compositions. Consequently, the

assumptions of the binding model would not hold for these experiments. To account for this

in the model, we opted to change fL R to be more flexible for the subclass-specific detections

by using a 4-parameter logistic curve, in effect restricting that the order of the subclass abun-

dances across samples is preserved. Specifically,

Lbound;i
���!

¼ bi;1 þ
bi;0 � bi;1

1þ

P
j2Ii

Rtot;j

bi;2

� �bi;3
;

where Ii is the set of indices that correspond to antibodies that detection Li selectively binds to.

We assume that a subclass detection binds all glycoforms of its target subclass and no other

species, so if Li were an α-hIgG1 detection, then fRtot;jjj 2 Iig would be all of the glycoforms of

hIgG1. The parameters of the logistic curve, βi,0,. . .,βi,3 are fit along with the antibody abun-

dances. Unlike the antibody abundances, the logistic curve parameters are shared across sam-

ples and antigens. Therefore, in our fitting process, we minimize the sum of the squared

residual term specified in (5), which we call Γ, for all samples and antigens simultaneously.

We regularize the logistic curve slope parameters (i.e., Hill coefficients), βi,3, to penalize

deviations above 1 based on the assumption that there is minimal cooperative binding between
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the subclass detections and their target species. This regularization is achieved by adding the

following penalty term to Γ:

X

i2I‘

½maxðbi;3 � 1; 0Þ�
2
� NS � NA � NL

jI‘j

 !2

where Iℓ is the set of indices that correspond to ligands that are modeled with a logistic curve.

The factor of NS×NA is added to ensure that the relative weight of this penalty term is invariant

to the number of complexes being fit, and the factor of NL/|Iℓ| is added to ensure that the rela-

tive weight of this term is invariant to the relative number of ligands fit with a logistic curve.

We apply this strategy to all datasets analyzed in the paper.

All software tools that we used for the model implementation and analysis are listed in

Table 2.

Antibody Fc species selection

The chosen set of antibody Fc species must reflect the molecular features that lead to differential

binding. We chose to exclude IgG2 and IgG4 because of their relatively low affinity to Fcγ
receptors and low abundance in the analyzed studies. Fucosylated and afucosylated forms were

considered because this glycan modification has substantial effects on FcγRIIIA interaction.

Parameter selection

Ka,ij is the matrix of binding affinities between each Fc species and detection (Table 1). Allelic

variants are specified in the suffix for FcγRIIA and FcγRIIIA.

Fucosylation has been found to reduce the binding affinity of human IgG1 to FcγRIIIA and

FcγRIIIB to undetectable levels [22]. L0 is the concentration of each detection in solution

which was defined as 1 μg/mL in the HIV study [10]. The other studies did not state the con-

centrations they used, and so we assumed a concentration 1 μg/mL. K∗
x , the crosslinking con-

stant, was quantified in our previous work to be around 10−12 for immune complexes

consisting of anti-TNP IgG bound to a BSA and TNP scaffold. We assumed that the difference

in K∗
x between these immune complexes and the multivalent detections formed with streptavi-

din tetramerization analyzed in this work was acceptable, and thus took K∗
x ¼ 10� 12. f, the

detection valency, was 4 for every Fcγ receptor in every dataset analyzed here.

Datasets

We used three systems serology datasets in this work. The first contains measurements from

COVID-19 patients [11], and we used the detection measurements α-hIgG1 IgG, α-IgG3 IgG,

Table 2. Software tools.

Source Reference Identifier

NumPy Python package https://numpy.org/ v1.24.3

Xarray Python package https://xarray.dev/ v2022.12.0

SciPy Python package https://www.scipy.org/ v1.10.1

Pandas Python package https://pandas.pydata.org/ v1.5.3

Seaborn Python package https://seaborn.pydata.org/ v0.11.2

scikit-learn Python package https://scikit-learn.org/ v1.2.2

statsmodels Python package https://www.statsmodels.org/ v0.14.0

statannotations Python package [46] https://github.com/trevismd/statannotations v0.5.0

Python https://www.python.org v3.11.1

https://doi.org/10.1371/journal.pcbi.1012663.t002
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FcγRIIA, FcγRIIB, FcγRIIIA, and FcγRIIIB. Because the allele of FcγRIIA and FcγRIIIA were

not provided, we used the affinities for FcγRIIA-131H and FcγRIIIA-158V, respectively. This

dataset was used for the imputation analysis, the comparison of inferred IgG fucosylation with

FcγRIIIA / FcγRIIA and ADCC, and the analysis of SARS-CoV-2-targeting IgG fucosylation

across patient features. The second dataset contains measurements from HIV patients [10],

and we used the detection measurements α-hIgG1 IgG, α-hIgG3 IgG, FcγRIIA-131H,

FcγRIIA-131R, FcγRIIB, FcγRIIIA-158V, FcγRIIIA-158F, and FcγRIIIB. This dataset was used

for validating fucose inferences against CE and for analyzing IgG fucosylation across HIV

antigens. The final dataset contains measurements from SARS-CoV-2 vaccine recipients [14],

and we used the detection measurements α-hIgG1 IgG, α-hIgG3 IgG, FcγRIIA, FcγRIIB,

FcγRIIIA, and FcγRIIIB. This dataset also did not include alleles for FcγRIIA and FcγRIIIA,

and we handled this in the same way as we did the other SARS-CoV-2 dataset. We dropped all

subjects in each dataset that contained any missing values for the detections we selected.

Where the baseline for each detection and antigen pair was provided, we subtracted the base-

line. If this subtraction resulted in negative values, we instead subtracted off the minimum

measured value.

Validation with synthetic data

We initialized random combinations of subclasses IgG1–4 by sampling from a log10 normal

distribution with a log10-mean of 2 antibodies per complex and a log10-standard deviation of

0.4 antibodies per complex. We then inferred the signals of detections α-hIgG1 IgG, α-hIgG2

IgG, α-hIgG3 IgG, α-hIgG4 IgG, FcγRIIA-131R, FcγRIIB-232I, FcγRIIIA-158V, and FcγRIIIB

using fL R as described above. We fitted the abundance of each species from these detection

signals in fR L and compared these fitted abundances to the initial abundances. Noise was

added as:

xnoisy ¼ x�max½N ðm ¼ 1; sÞ; 0�

x contains either the detection abundances or the binding affinities. N indicates a Gaussian-

distributed random number.

Binding affinity sensitivity analysis

We initialized random combinations of subclasses IgG1–4 by sampling from the same distri-

bution as above. We perturbed each binding affinity by moving it up 30% and down 30% sepa-

rately and inferring the detection signals (as previously described) using that perturbed affinity

and with the canonical values for the remaining affinities. These inferred detection signals

were then used to infer the antibody abundances using the unperturbed affinities, which were

compared with the original antibody abundances. The coefficient of determination was com-

puted for each subclass separately using the original and inferred antibody abundances, and

this was reported by subclass and affinity.

Imputation

We inferred the abundance of each Fc species using fR L but hiding a portion of the values

corresponding to one detection. For each sample and antigen for which the detection was hid-

den, we then use fL R to infer the missing detection abundance from the antibody abun-

dances. We introduced missingness and imputed in the same way for PCA.
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Prediction of IgG fucosylation

To infer IgG fucosylation with the binding model, we first inferred the abundances of species

IgG1, IgG1f, IgG3, and IgG3f. We then computed the fucosylation fraction as:

F ¼
Rtot;IgG1f þ Rtot;IgG3f

Rtot;IgG1 þ Rtot;IgG1f þ Rtot;IgG3 þ Rtot;IgG3f

Optimization of future assays

In this section we ran imputation tests in the same way as we described earlier, except that we

hid all values from one or more detections. We then compared our model’s imputation capa-

bility across combinations of detections.

Supporting information

S1 Text. Further explanation of S1 Fig. Reasoning behind chosen distributions of synthetic

Fc species abundances.

(DOCX)

S2 Text. Further explanation of S5 Fig. Comparison of fucosylation inferences from the bind-

ing model with fucosylation measurements from capillary electrophoresis.

(DOCX)

S1 Fig. Synthetic antibody Fc species abundances are sampled from a distribution based

on subclass-specific detection measurements from systems serology datasets. (a-h) Distri-

butions of measured signals (baseline-subtracted) for subclass-specific detections for each of

the three datasets we used in this paper (rows) and each subclass (columns). The Kaplonek

dataset did not have data for α-IgG2 IgG. (i) The log-normal distribution from which we gen-

erated synthetic Fc species abundances. (j) Comparison of our synthetic distribution with the

aggregate distribution of measurements for all datasets and subclass detections (composed of

the data shown in panels a-h). In (j), all the log distributions are mean divided before being

plotted so that we can directly compare the shapes of the distributions.

(EPS)

S2 Fig. Binding model maintains antibody Fc prediction performance from synthetic data

despite significant errors in the crosslinking constant. Here, we examined the effect of inac-

curate estimates of K∗
x on model prediction accuracy. To do this, we established ground truth

initial antibody Fc abundances and K∗
x and then used the antibody-to-signal function to gener-

ate synthetic detection signals, as previously described. The key difference in this test is that we

provided a deliberately inaccurate K∗
x to the signal-to-antibody function when inferring the

antibody Fc abundances. We generated inaccurate K∗
x by multiplying the ground truth K∗

x by a

perturbation coefficient. The agreement between the ground truth antibody abundances and

the model’s inferences from the synthetic data are shown for various perturbation coefficients.

(EPS)

S3 Fig. A rank of 1 provides the best imputation performance for PCA. To determine the

optimal rank for PCA imputation, 10% of values for a chosen detection were masked in the

Zohar et al dataset and PCA was used to impute the missing values[11]. (a), (c) Imputation

accuracy measured by the (a) coefficient of determination and (c) Pearson correlation, sepa-

rated by detection. (b), (d) Total Imputation accuracy across all detections measured by (a)

PLOS COMPUTATIONAL BIOLOGY Inferring antibody Fc species in systems serology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012663 December 23, 2024 23 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012663.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012663.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012663.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012663.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012663.s005
https://doi.org/10.1371/journal.pcbi.1012663


coefficient of determination and (c) Pearson correlation.

(EPS)

S4 Fig. Imputation performance is largely invariant to dataset size. We examine how the

imputation performance of the binding model is affected by the total size of the dataset by

removing entire rows in the dataset at different ratios, and then passing this reduced dataset to

the same imputation pipeline we detailed earlier. At each dataset size, we use the model to

impute 50% of the values corresponding to a single column (detection type) and measured the

agreement between these inferences and the ground truth. (a), (b) Imputation accuracy mea-

sured by the (a) Pearson correlation and (b) coefficient of determination, separated by detec-

tion.

(EPS)

S5 Fig. Direct fucosylation measurements are inconsistent with FcR interaction and effec-

tor function measurements. (a) In Alter et al [10], both detection signals and direct CE IgG

fucosylation measurements for IgG targeting one antigen exist. We use our model to infer the

IgG fucosylation from the detection signals and then compare these to the CE measurements.

(b) IgG fucosylation measured by CE versus that inferred by binding model. (c), (d) gp120.

SF162-targeting IgG fucosylation measured by CE versus detection signal ratios (c) FcγRIIIA /

α-HIgG1 and (d) FcγRIIIA / FcγRIIA. (e), (f) gp120.SF162-targeting IgG fucosylation inferred

by binding model versus detection signal ratios (e) FcγRIIIA / α-HIgG1 and (f) FcγRIIIA /

FcγRIIA. (g) gp120.SF162-targeting IgG detection signal of FcγRIIIA versus gp120.SF162-tar-

geting IgG antibody-dependent natural killer cell activation (ADNKA) measured by MIP1β
expression. (h) gp120.SF162-targeting IgG detection signal of FcγRIIA versus gp120.

SF162-targeting IgG antibody-dependent neutrophil phagocytosis (ADNP). (i) CE-measured

gp120.SF162-targeting IgG fucosylation versus bisection. The correlation metrics shown are

spearman rank correlations, denoted as rS.

(EPS)
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