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The course of evolution is strongly shaped by interaction between mutations. Such
epistasis can yield rugged sequence–function maps and constrain the availability of
adaptive paths. While theoretical intuition is often built on global statistics of large,
homogeneous model landscapes, mutagenesis measurements necessarily probe a limited
neighborhood of a reference genotype. It is unclear to what extent local topography
of a real epistatic landscape represents its global shape. Here, we demonstrate that
epistatic landscapes can be heterogeneously rugged and this heterogeneity may render
biomolecules more evolvable. By characterizing a multipeaked fitness landscape of a
SARS-CoV-2 antibody mutant library, we show that heterogeneous ruggedness arises
from sparse epistatic hotspots, whose mutation impacts the fitness effect of numerous
sequence sites. Surprisingly, mutating an epistatic hotspot may enhance, rather than
reduce, the accessibility of the fittest genotype, while increasing the overall ruggedness.
Further, migratory constraints in real space alleviate mutational constraints in sequence
space, which not only diversify direct paths taken but may also turn a road-blocking
fitness peak into a stepping stone leading toward the global optimum. Our results
suggest that a hierarchy of epistatic hotspots may organize the fitness landscape in such
a way that path-orienting ruggedness confers global smoothness.
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A single mutation can modify the collective state of a biological system, such as the
preferred structure of a protein molecule (1), which in turn alters the effect of subsequent
mutations (2). Such nonadditivity, or epistasis, can strongly shape the course of evolution
by making the fitness landscape (i.e., sequence–function map) highly rugged, with a
multitude of distinct adaptive peaks. Understanding the structure of this map is key
to predicting and steering evolution, because the shape of the fitness landscape carries
information about viable paths and predictability of evolution, relative importance of
genetic drift and selection, likelihood of convergent evolution, and the best achievable
optimization, among others (see ref. 3 for a concise review).

Rapid advances in high-throughput methods now allow hundreds of thousands of
genotype–phenotype pairs to be assayed in a single experiment (4). Still, these deep
mutational scans (DMS) only probe a limited neighborhood of a particular parental
sequence. In addition, mutational targets are chosen ad hoc; empirical fitness landscapes
typically comprise individually identified beneficial mutations or those constituting an
observed adaptive path. As a result, landscapes thus obtained may or may not represent
the global shape. On the other hand, theoretical intuition often comes from model
landscapes whose level of ruggedness is treated as a “bulk” property based on global
statistics, assuming individual genetic bases or amino acids to be of similar epistatic
importance.

Recent studies of empirical fitness landscapes challenge our understanding of
evolutionary constraints, revealing inadequacy of existing landscape models: first, high-
order genetic interactions introduce additional functional constraints and yet make
evolution less predictable, by causing a delay of commitment to a genotypic fate (5).
Second, high ruggedness needs not to lower the accessibility of the adapted states (6, 7).
Third, epistatic involvement may vary strongly along the sequence of functional
proteins (8–10). Are these behaviors related? Which features are generic across systems
and functions? How does unequal epistatic involvement imprint landscape topography
and impact navigation?

Here, we measure and characterize a multipeak fitness landscape of a SARS-CoV-2
antibody mutant library selected for folding stability, and reveal how the structure
of landscape ruggedness influences adaptive paths and outcomes. To detect epistatic
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inequality, we infer models of specific and global epistasis, which
are found to consistently pick up epistatically important sites.
To probe heterogeneity of ruggedness, we analyze sublandscapes
of varying size and location. Combinatorial completeness of the
map allows us to uncover via simulations the role of higher-order
epistasis in shaping the ruggedness–accessibility relationship.
We finally explore how real-space migratory constraints affect
sequence-space exploration, with or without epistatic inequality.

We find that real fitness landscapes can be heterogeneously
rugged and that such heterogeneity may arise from the presence
of sparse epistatic hotspots, whose mutation impacts the fitness
effect of numerous sites. Counterintuitively, evolutionary con-
straints resulting from hotspot mutation act to promote, rather
than impede, the access to the fittest state. In fact, the induced
ruggedness appears to reorient the adaptive paths toward more
productive directions, using suboptimal peaks as guideposts.
Furthermore, spatial structure may turn an otherwise road-
blocking peak into a stepping stone, significantly enhancing the
success rate of enriching the fittest genotype. In contrast, model
landscapes with homogeneous ruggedness show limited success—
path-orienting features are generally lacking and populations
get repeatedly trapped at suboptimal peaks. Our results suggest
that heterogeneity among evolutionary degrees of freedom,
induced by a hierarchy of epistatic involvement, can organize
the fitness landscape and boost evolvability: not only that many
starting sequences permit viable paths to the global optimum
but that starting from the antibody germline, a majority of
populations can navigate effectively. Such global “funneling” of
an evolutionary fitness landscape via few epistatic hotspots may
well be a target for antibody evolution that potentiates future
evolution.

Epistatic Hotspots Shape the Sequence–
Function Map

Mapping the Antibody Stability Landscape. To dissect the func-
tional organization of biologically realistic fitness landscapes, we
map the stability landscape of a SARS-CoV-2-specific antibody,
COV107-23, that targets the receptor binding domain of the viral
spike protein and is encoded by IGHV3-53/3-66 germline genes.
To define the part of sequence space likely explored by antibody
repertoires in the course of independent immune responses, we
chose 12 most frequent somatic hypermutations (SHMs) retained
in recovered COVID-19 patients (SI Appendix, section A1 and
Fig. S1). These SHMs distribute over 10 sequence sites that span
two variable loops (HCDR1 and HCDR2) of the antibody heavy
chain (Fig. 1A) and play a variety of structural roles (SI Appendix,
Fig. S2 and Table S1).

We built a combinatorially complete plasmid library contain-
ing all combinations of the 10 mutations (treating the three
biochemically similar alternative amino acids at site 27 as the
same mutated state, hence a total of 210 = 1,024 variants).
We transformed this plasmid library into a yeast strain and
constructed a yeast display library in which each yeast cell
expresses a single antibody variant corresponding to the plasmid
in that cell. We then subjected this antibody variant library
to selection for thermodynamic stability, using yeast surface
expression as a proxy for stability. Since antibody variants that
fold stably express on the cell surface with a fluorescent tag,
we sorted cells by fluorescence. As a result of sorting, antibody-
expressing yeast cells are enriched in frequency approximately in
proportion to antibody stability. We sequenced both the unsorted
and sorted yeast display libraries and quantified antibody fitness

by logarithmic enrichment of sequence reads due to selection (see
details in SI Appendix, sections A2–A5).

Models of Epistatic Fitness Landscape. Epistatic interactions can
arise at any step in the mapping from genotype to phenotype
and fitness, reflecting different origins and organization levels of
functional coupling among constituents of a system. It is thus not
a priori clear whether the genotype–fitness map of a particular
system is better described by a model comprising specific
interactions (e.g., physical contacts between protein residues)
or would take the form of a global nonlinearity distorting an
unobserved additive trait (e.g., protein stability as a function
of folding free energy). We thus examine both (SI Appendix,
section B1).
Specific epistasis model. Considering that each sequence in the
antibody variant library contains binary sites that are either wild-
type (WT) or mutated, we express the map from genotype s to
fitness F as a sum of combinations of biallelic loci at increasing
orders:

F (s) =
L∑

i=1

hisi +
L∑

i=1

i−1∑
j=1

Jijsisj +
L∑

i=1

i−1∑
j=1

j−1∑
k=1

Kijksisjsk. [1]

We define that si = 1 if the amino acid at site i is mutated
and si = 0 otherwise, with i = 1, 2, . . . , L running over the
sequence length (L = 10). The germline sequence has all sites
being wild-type and thus has zero fitness. The local fields {hi}
represent additive effects of individual mutations, and the higher-
order terms with strengths {Jij} and {Kijk} correspond to epistatic
interactions of concurring mutations in pairs and triplets,
respectively. Combinatorial completeness of our sequence-to-
function map allows us to go beyond pairwise couplings typical
of maximum-entropy models of specific epistasis (e.g., ref. 8).
Global epistasis model. A global epistasis model (11) assumes
that an additive latent phenotype transforms nonlinearly to the
observed phenotype, or fitness:

F (s) = g

( L∑
i=1

hisi

)
. [2]

Here, {hi} denote additive effects on the underlying phenotype
and the transformation function g(·) specifies the shape of the
global nonlinearity.

InferenceandValidation. Measurement noise is primarily caused
by finite sampling in the sorting step. Although the empirical
fitness landscape based on log-enrichment of antibody expression
shows strong correlations between duplicate experiments (R2 =
0.86, SI Appendix, Fig. S3 B, Upper Left), the remaining variance
could incur overfitting and introduce spurious ruggedness. To
ensure a reliable fitness landscape model, we used two distinct
methods to infer specific epistasis and paired each with a
denoising procedure, namely, a maximum-likelihood method
paired with cross-validation and Walsh–Hadamard transform
followed by a band-pass filter (SI Appendix, section C). Two
methods consistently show that specific epistasis up to the
third order represents signal, while higher-order terms reflect
noise (SI Appendix, Fig. S3A), supporting Eq. 1. Indeed, after
denoising, duplicate experiments yield virtually identical empiri-
cal landscapes (R2 = 0.98, SI Appendix, Fig. S3 B, Upper Right).
For global epistasis, we simultaneously inferred the additive
effects and global nonlinearity using maximum likelihood (SI
Appendix, section C).
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Interpretation of Inferred Models. This network of antibody
variants and their associated enrichment levels produce a rugged
fitness landscape. Multiple genotypes constitute adaptive peaks
(SI Appendix, Table S4), where no gain or loss of a mutation is able
to increase fitness. Eight out of ten sites are mutated in the global
fitness maximum, denoted byFmax hereafter. The inferred models
of specific (Fig. 1C ) and global (Fig. 1B) epistasis show consistent
patterns of additive coefficients {hi} (vertical color strips): the sign
of all terms matches, with single mutations on site 53 and site
50 being most beneficial and deleterious, respectively, on the
germline background. While mutations G26E and Y58F—two
other mutations required for reaching Fmax—have strong fitness
effects based on the specific model, their contributions are small
in the global model.

Notably, the specific model exhibits prevalent pairwise in-
teractions with either sign, as well as widespread third-order
interactions, especially significant for site 53 (the dark blue row
in the Kij· matrix, Fig. 1C ). On the other hand, data trace the
inferred global nonlinearity very closely (Fig. 1B). The fact that
both specific and global epistasis models fit data well suggests a
strong compression of parameter space and a potentially simple
global shape of the evolutionary landscape. When data points
are colored by the mutational state of each site, only site 53
clearly divides the variance across the nonlinear shape (Fig. 1B,
segregation of the blue points with S53, lying along the slope,
from the orange points with P53 that span the plateau), consistent
with its strong positive effect on fitness (large hi) and pervasive
influence on epistatic interactions (SI Appendix, Figs. S9A andB).

Identification of an Epistatic Hotspot. To quantify the epistatic
importance of sequence sites, we use  statistics (12) to compute
the (directional) correlation of fitness effects of mutations: the
matrix of i→j quantifies to what degree the fitness effect of
mutation j is altered, on average, by the presence of mutation i
(Materials and Methods, SI Appendix, section E); mutating an
epistatic hotspot would impact many other sites’ fitness effects.
A lower  value indicates a stronger local ruggedness.

Computing i→j from both specific and global epistasis models
consistently identifies site 53 as an epistatic hotspot—the S53P
mutation influences nearly all other studied sites (Fig. 1B andC ).
Inter-loop correlations are highly asymmetric (comparing off-
diagonal blocks of the i→j matrix): mutations in HCDR2 affect
those in HCDR1, but not the reverse. Moreover, interloop and
intraloop effects are similar in magnitude.
Structure and stability. The strong heterogeneity and asymmetry
in correlation patterns revealed by  statistics motivate a closer
look at the structural role of the hotspot. Structural analysis of
the antibody shows that site 53 is physically closer to HCDR1
compared to any other HCDR2 residue studied here (Fig. 2A,
3D distances and crystal structure).

To evaluate the impact of a mutation on protein stability, we
performed simulations using Rosetta (SI Appendix, section A6) to
predict the difference in folding free energies, ΔΔG, between the
wild-type COV107-23 and the indicated single mutant (Fig. 2B).
Of note, COV107-23 has F58 instead of the germline version
Y58. Clearly, mutation S53P causes the greatest decrease in
folding free energy (most negativeΔΔG), suggesting that, among

A B
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Fig. 1. Inferring local and global epistasis in an antibody fitness landscape: topographical impact of an epistatic hotspot. (A) Sequence space is defined by
L = 10 frequently mutated residues across HCDR1 and HCDR2 (5 sites each) of SARS-CoV-2-specific antibody COV107-23. Each residue i is endowed with a spin
variable si that denotes the wild-type (si = 0) or mutated (si = 1) state. Orange sites are mutated in the global fitness maximum of the specific epistasis model
(C). (B and C) Fitness landscape models F(s) fitted to the enrichment data of all 2L possible sequences, namely a global epistasis model (B) and an Ising-type
specific epistasis model (C). For global epistasis, the latent phenotype � =

∑
i hisi (colored strip of hi ) and the global nonlinearity g(�) (black curve) are inferred

simultaneously. Sequences (points) are colored according to the state of site i = 53. For specific epistasis, inferred additive and epistatic coefficients, hi , Jij ,
and Kij· = 1

L−2
∑
k 6=i,j |Kijk |, are shown. Matrices of directed epistatic effects i→j indicate how strongly mutation i alters the fitness effect of mutation j. (D) 2D

force-directed network layout of the landscape. Each point represents one of 2L sequences, colored according to its fitness F(s). Intracluster sequences have
similar fitness, while intercluster gaps indicate fitness jumps. Pairs of mutational neighbors are connected by gray lines. Black dots mark local fitness optima
in the specific epistasis model (C). Arrows point to the germline genotype and the global fitness maximum (Fmax). (E) Superposition of 9-site sublandscapes
defined by holding the indicated site in its wild-type (blue) or mutated (orange) state. Shown are sublandscapes in the force-directed embedding with the
epistatic hotspot (i = 53) and a weakly epistatic site (i = 35) being respectively held constant in the genetic background. Crosses mark fitness optima in either
sublandscape.

PNAS 2025 Vol. 122 No. 2 e2413884122 https://doi.org/10.1073/pnas.2413884122 3 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2413884122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413884122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413884122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413884122#supplementary-materials


A

B C

Fig. 2. Structural interpretation of the epistatic hotspot. (A) Left: 3D dis-
tances (in Å) between pairs of C� positions in the antibody fold. Right: Apo
crystal structure of COV107-23 (PDB: 7LKA). Residue S53 in the variable
region of the heavy chain is colored in red. Pink: heavy chain, light blue:
light chain, orange: HCDR1, gray: HCDR2, teal: HCDR3. (B) Predicted ΔΔG for
each mutation from simulations in Rosetta. Data points from independent
replicates (orange dots) are shown, together with the mean (gray bars) ± SD
(black lines). Site 27 has three biochemically similar mutations. (C) Replicate-
averaged ΔΔG versus inferred fitness effect ΔF for each mutation in the F58
background (blue dots). A linear fit to all data points excluding site 27 crosses
the origin (dashed line).

the point mutations studied here, mutating the hotspot most
significantly stabilizes the antibody. This stabilizing effect, in
line with the large fitness gain this mutation confers (Fig. 1 B
and C ), may facilitate acquisition of new functionalities such as
binding to molecular targets (13).

To confirm that inferred fitness indeed reflects protein
stability, we plot the predicted ΔΔG against the inferred ΔF for
each mutation and found an approximately linear relationship
(Fig. 2C ), if site 27 were excluded. Overall, a destabilizing
mutation (ΔΔG > 0) tends to reduce fitness (ΔF < 0) whereas
stabilizing mutations (ΔΔG < 0) increase fitness (ΔF > 0). The
outlier site 27 has a positive ΔΔG despite having a positive ΔF .
This discrepancy could stem from epistatic coupling with residues
outside the studied set. Another source of deviation could be
the limited correlation between experimentally determined and
computationally predicted ΔΔG values (14).
Low-dimensional map. To visualize the impact of hotspot muta-
tion on landscape topography, we embed a high-dimensional
fitness surface in two dimensions using the force-directed
layout (15) (Fig. 1 D and E, Materials and Methods, and
SI Appendix, section D). In this representation, individual clusters
collect genotypes of similar fitness, whereas wide divides between
clusters indicate fitness gaps (Fig. 1D). Since clusters may coalesce
as additional constraints are introduced, the fact that the state of
the hotspot robustly sets clusters apart suggests its pivotal role
in shaping landscape topography and inducing heterogeneity
(SI Appendix, Fig. S4). To see this, we superpose the 2D
maps of 9-site sublandscapes, with the background site being
pinned in WT or mutated state (Fig. 1E, blue vs. orange dots).
While mutating a weakly epistatic site only slightly modifies the
embedding (Right panel), hotspot mutation not only reorganizes
the entire map but also reduces fitness gaps (Left panel). These
effects might enable efficient navigation.

Results

Mutation of an Epistatic Hotspot Increases Ruggedness Yet
Enhances Fmax Accessibility. While in theory, a highly rugged
landscape is hard to navigate, an increasing number of empirical
studies using combinatorial mutagenesis found that ruggedness
may not keep adapting populations from accessing high fitness
peaks in high dimensions (5, 7). To probe the relation between
ruggedness and accessibility in the antibody stability landscape,
we evaluate the ruggedness of each 9-site sublandscape when the
10th site is held in WT or mutated state, and determine the
accessibility of the global fitness optimum Fmax in each pair of
sublandscapes (SI Appendix, sections F and G).

We find wide-ranging changes in sublandscape ruggedness
upon single mutations (Fig. 3A, blue to orange). Site 53 and site
50 appear most impactful, consistent with their strong additive
effect and broad epistatic involvement (Fig. 1C ). Across all pairs,
a rise/fall in ruggedness is associated with an increase/decrease in
the number of fitness peaks (Fig. 3 A, Left vs. Right panel), except
when site 26 is pinned.

Interestingly, all mutations that individually create additional
fitness peaks are retained in Fmax. In contrast, ruggedness-
reducing mutations either are absent from Fmax (sites 50 and 57)
or occur late (sites 35 and 56) along successful trajectories
connecting the germline to Fmax (Fig. 5). This observation
suggests that ruggedness may allow preferential access to the
fittest genotype.

Accessibility of the global peak is determined as the probability
that an adaptive walk with fitness-increasing steps discovers Fmax

A

B

Fig. 3. Hotspot mutation increases ruggedness of antibody landscape yet
enhances Fmax accessibility. (A) Ruggedness of 9-site sublandscapes with the
remaining site being pinned (i.e., held constant), measured by the correlation
of fitness effects of mutations (n, d) between genotypes d mutations apart
with n pinned sites (Left) and the number of local fitness optima (Right). For
each choice of the pinned site i, a comparison is made between the wild-
type state (si = 0, blue) and the mutated state (si = 1, orange). Also see
SI Appendix, Fig. S5 A and B. (B) Accessibility of the global fitness optimum
Fmax in 9-site sublandscapes when site 50 or site 53 is pinned, measured by
the distribution of absorbing probabilities under Monte-Carlo evolutionary
dynamics. The histograms show the fraction of starting genotypes that lead
to a certain absorbing probability at the global optimum; the vertical lines
indicate starting from the germline genotype. Results for other choices of the
pinned site are shown in SI Appendix, Fig. S5C.
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before encountering any local peak (Materials and Methods;
SI Appendix, section G). Necessary for a multipeaked fitness
landscape, nonreciprocal sign epistasis (by which two deleterious
mutations produce a fitness gain) is known to create fitness valleys
and block direct paths (along which mutations add one by one).
Yet, high-order epistasis can open indirect paths (via adaptive loss
or conversion of mutations) that bypass fitness valleys (5, 16).
Surprisingly, within the antibody stability landscape presented
here, an increase in ruggedness—due to mutation of an epistatic
hotspot—can lead to a greater accessibility of the most stable fold
via direct paths.

As shown in Fig. 3 B, Right panel, increased accessibility of
Fmax due to hotspot mutation, S53P, manifests in two ways: first,
the likelihood of reaching Fmax from the germline via an adaptive
walk increases (vertical lines, blue to orange). Second, without
this mutation, very few starting genotypes can find an accessible
pathway (blue histogram, strongly peaked near zero absorbing
probability). As the hotspot mutates, nearly all starting genotypes
get access to Fmax, and around half of them do so more often
than not (orange histogram). In contrast, a ruggedness-decreasing
mutation, V50L, closes off pathways accessible under stronger
ruggedness (Fig. 3 B, Left panel). Combined with a large delete-
rious effect, this could explain the absence of V50L from Fmax.

Such positive correlations between ruggedness and accessibility
are not expected from fitness landscapes with homogeneous statis-
tical properties. They suggest, instead, that the presence of sparse
loci of high epistatic importance can strongly shape landscape
topography such that local behaviors differ substantially from
global patterns. In other words, a realistic epistatic landscape
may well be heterogeneously rugged.

Epistatic Hotspot Induces Heterogeneous Ruggedness. Widely
used models of rugged fitness landscapes (e.g. the NK model
and the rough Mt. Fuji model) seldom account for variation in
epistatic importance among sequence loci. If present, however,
such variation may strongly influence the speed and predictability
of evolution. Does an uneven degree of epistatic involvement
translate to heterogeneous ruggedness across the fitness land-
scape? To probe heterogeneity, we determine whether, and how,
ruggedness varies with the size and location of sublandscapes;
these sublandscapes result from projecting the full landscape into

(L − n)-dimensional sequence subspaces, that is, pinning n out
of L sites in WT or mutated state (SI Appendix, section F). We
compare our antibody landscape to NK landscapes, because the
latter exhibit statistically homogeneous ruggedness at a tunable
level (SI Appendix, section B2).

Fig. 4A presents the distribution of sublandscape ruggedness
due to a varying location for both the antibody and the NK
model. First, when the epistatic hotspot is pinned among the
n sites in the background (orange violin), a stronger variation
in ruggedness is observed for antibody sublandscapes compared
to that in NK models (gray violins, lighter shade for larger
K hence stronger ruggedness). By contrast, when the hotspot
is excluded from the pinned background (blue violin), no
such distinction is seen. Moreover, unlike the NK model that
showed symmetric distributions, antibody sublandscapes exhibit
skewed distributions—low-lying  values correspond to pinning
the hotspot in the mutated state. Both contrasting behaviors
stem from epistatic inequivalence among loci that is present in
the antibody landscape but not in homogeneous models. This
divergence between data and model grows more pronounced
in smaller sublandscapes (larger n) because it becomes more
likely that the hotspot enters the background and shapes the
sublandscapes, making them more rugged.

We next evaluate how the presence of an epistatic hotspot
impacts path repeatability—a weak form of evolutionary pre-
dictability. We simulated an ensemble of adaptive paths con-
necting the germline to Fmax using Monte Carlo dynamics and
computed path entropy (Gibbs-Shannon entropy) from path
weights (Materials and Methods and SI Appendix, section G).

Fig. 4B shows that path entropy varies considerably across
9-site sublandscapes (with the 10th site pinned to its state in
Fmax, blue symbols). These variations correspond to a range
of ruggedness spanning a multitude of K values in the NK
model (gray lines). In particular, mutating site 53 or site 58
strongly restricts the realized path diversity, concentrating most
weight to few direct paths and thus increasing the retrospective
predictability. Yet, as a whole, the antibody landscape appears
rather smooth (blue horizontal line); its path entropy is close to
that of modestly rugged NK landscapes (with K = 1–2).

Therefore, both landscape topography and path diversity
suggest that this protein stability landscape behaves as if it were

A B

Fig. 4. Epistatic hotspot induces heterogeneous ruggedness and restricts path diversity. (A) Strong variation of ruggedness with respect to the size and
location of the antibody sublandscape. To quantify heterogeneity, we vary the number (n) and identity (in total (Ln) choices) of the pinned sites and compute the
ruggedness of the resulting (L − n)-dimensional sublandscapes. Colored violins at each choice of n represents the range of ruggedness values due to varying
locations, when the hotspot (site 53) is included in the pinned background (orange) or excluded from it (blue). The antibody landscape appears more rugged
(low-lying  values) when the hotspot is held in its mutated state. The corresponding distributions in the NK landscape are shown for comparison (gray violins).
Note that the range of  values is independent of the degree of ruggedness controlled by K , indicating statistical homogeneity. (B) Scaled path entropy S�
measures the diversity of adaptive paths from the germline to the global optimum under Markov-chain Monte-Carlo evolutionary dynamics. Results are shown
for the full antibody landscape (blue horizontal line) and 9-site sublandscapes (symbols). Hotspot mutation is strongly path-constraining. Gray lines show the
expectations from NK landscapes with moderate ruggedness.
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comprising NK sublandscapes at differentK . That is, an adaptive
landscape, shaped by a handful of epistatically impactful sequence
loci, may exhibit a varying degree of ruggedness when observed
at different locations and scales.

While natural proteins must be globally stable to fold, they
often need to be locally unstable to function. Such localized
instability typically arises from conflicting interactions, i.e., frus-
tration (17–19), that allow specific movements around the native
fold. We find it striking that the ability to fold promotes an
efficient search of sequence space rather than hinder it (Fig. 3),
and that it does so through concentrating mutational constraints
to a small number of organizing centers (hotspots) from which
epistatic interactions emanate. It is therefore intriguing to see
whether the productive role of heterogeneous ruggedness links
to localized frustration (20). Frustration analysis on wild-type
and mutated versions of three sites (S53P, S35T, and F27X) in
the heavy chain of COV107-23 reveals considerable variation in
frustration levels among sites of different epistatic importance
(SI Appendix, section A7). Specifically, hotspot mutation S53P
increases local frustration (SI Appendix, Figs. S11 and S12) while
rigidifying the HCDR2 loop and facilitating antibody binding
to viral spike (SI Appendix, Fig. S13). On the contrary, mutating
site 27 reduces frustration (SI Appendix, Figs. S11 and S12) while
weakening antibody–spike interaction (SI Appendix, Fig. S13).
This potential connection between heterogeneous ruggedness
and localized frustration warrants future investigation.

Spatial Structure Relaxes Mutational Constraints and Pro-
motes Path Diversity. Long-term adaptation is determined by
the distribution of fitness effect of possible mutations and
the stochastic processes that lead to fixation. As mutations
arise and fix one by one along a direct path, an adapting
population explores sublandscapes with varying ruggedness.
From the results above, it seems paradoxical that hotspot
mutation S53P increases the accessibility of Fmax (Fig. 3B) while
reducing the diversity of viable paths connecting the germline

to Fmax (Fig. 4B). With this paradox comes a hypothesis: a
successful path might start in a relatively rugged landscape,
where epistatic constraints incurred by hotspot mutation play a
beneficial role in orienting the path toward productive directions.
This intuition is backed by the observation that a posteriori
approaches are unlikely to find much sign epistasis, especially
at the later stage of adaptation, because realized mutations have
collectively been tested by evolution. Successful paths found by
in silico evolution following Wright–Fisher dynamics appear to
support our proposal (Fig. 5 A and B): ruggedness-increasing
mutations (esp. S53P) tend to precede ruggedness-reducing ones
(e.g., S56T).

Fig. 5A displays examples of successful trajectories in a two-
dimensional embedding (Materials & Methods; SI Appendix,
section D); arrows along the path indicate mutational steps. We
highlight the first occurrence of two mutations that are required
to reach Fmax: S53P (purple arrow) increases ruggedness for
subsequent adaptive steps, whereas S56T (green arrow) reduces
sublandscape ruggedness. In most of the realized trajectories,
S53P occurs within the first few steps, whereas S56T appears
near the end (e.g., trajectories in the lower panel).

Fig. 5B presents the pairwise order of occurrence among
the 8 required mutations along successful paths. We compute
the probability that mutation i occurs ahead of mutation
j, P[t(i) < t(j)], from a large ensemble of simulated populations
obeying Wright–Fisher dynamics (SI Appendix, section G). In
a well-mixed population, immediately beneficial mutations can
rapidly sweep through. As a result, certain mutations occur in
a strict order. As shown in the left column, S53P arises and
fixes earlier than any other required mutation in essentially all
cases (dark column) whereas S56T occurs later than any other
mutation (light column). When collecting the matrix entries
into a histogram of ordering probability (Fig. 5 B, Lower Left),
we observed a bimodal distribution that peaks at 1 and 0, where
entries of site 53 (purple bars) and site 56 (green bars) reside,
respectively.

A B C

Fig. 5. Spatial structure relaxes mutational constraints and diversifies direct paths taken. (A) Representative paths taken by an adapting population in the
antibody landscape, evolving from the germline to the global fitness maximum Fmax under Wright–Fisher dynamics. Consecutive arrows indicate mutational
steps in the t-SNE layout of sequence space (with darker shade reflecting path overlap). In the well-mixed condition (black), mutation S53P (purple arrow)
occurs ahead of any other mutation, while S56T (green arrow) occurs toward the end. In spatially structured populations (red), S53P may occur at later steps
(lower path) and occasionally, S53P and S56T swap their order (upper path as an example). (B) Order constraints between pairs of mutations required to
reach Fmax, shown by the matrix of probabilities P[t(i) < t(j)] that mutation i precedes mutation j (upper row) and the corresponding histogram of matrix
entries (lower row), under well-mixed (Left) and structured (Right) conditions. Purple (green) bars highlight the entries corresponding to mutation at site i = 53
(i = 56). (C) Diversity and abundances of successful paths (reaching Fmax) depend on the path step at which hotspot mutation occurs. Successful paths are
sorted by the path step of mutation 53. In each category, a realized path weight w� (dot) is colored by the number of unique paths taken by a fraction of w�
evolving populations; the solid lines trace the cumulative path weight across the categories. In comparison with the well-mixed condition (Left), spatial structure
diversifies viable paths (Right), yielding a larger overall path entropy (Lower panels).
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Spatial structure in general slows the spreading of beneficial
mutations, temporarily shielding genetic variation. A greater
variation, in turn, allows for a broader search of the genotype
space, giving time for beneficial combinations to arise and
overtake the population. Guided by this intuition, we study how
spatial structure affects the mutational order along successful
paths and alters path diversity. We account for spatial structure
in a minimal setting where migration only occurs between nodes
within a neighborhood of size r on a ring lattice (Materials and
Methods and SI Appendix, section G). Thus, a mutation can at
most spread by r nodes in one generation.

In our antibody landscape, spatial structure is found to relax
epistatic constraints: The distribution of ordering probability
has a larger weight near 1/2, indicating similar chances of
observing either order for most mutations (Fig. 5 B, Lower
Right). For the two extreme cases (S53P and S56T), the timing
of occurrence now shows a wider spread and, occasionally, their
order swaps (top path in Fig. 5A). Intuitively, one would expect
that relaxation of mutational-order constraints implies an increase
in path diversity. This is indeed the case in terms of the overall
path entropy (Fig. 5 C, Lower panels).

To see whether the timing of hotspot mutation would matter
for success, we sort successful paths by the step at which hotspot
mutation occurs and, in each class, we present the number
of unique paths (color coded) associated with each realized
path weight (dot); see Fig. 5 C, Upper panels. In well-mixed
populations, few high-weight paths where site 53 mutates in the
first step dominate, indicating the importance of early hotspot
mutation for reaching Fmax within a given period of time.
With spatial structure, different path classes contribute more
evenly (red vs black outline). Moreover, a large variety of low-
weight paths now open (yellow dots) in which S53P occurs
within the first few steps, suggesting that the beneficial role of
hotspot mutation in steering landscape navigation remains in
effect.

Heterogeneous Ruggedness Can Boost Evolvability. Evolvabil-
ity of proteins or cells refers to the adaptive potential to meet
future challenges. For proteins, the ability to evolve a stable fold
potentiates evolution of new functions; in the case of antibodies,
this includes binding to a new variety of target antigens and
improved binding affinity to previously encountered antigens.
Thus, one proxy for antibody evolvability is the success rate at
which the most stable fold (i.e., Fmax) is enriched within a limited
amount of time. To illuminate how heterogeneous ruggedness in-
fluences evolvability, we study dynamics of landscape navigation
by finite populations (following Wright–Fisher dynamics), where
success rate is defined as the fraction of replicate populations in
which Fmax, as opposed to any local optimum, first reaches an
occupancy threshold (Materials and Methods and SI Appendix,
section G). We expect that, by varying this threshold, the trend
of change in success rate will distinguish the antibody landscape
from homogeneous model landscapes.

Fig. 6 A and B present the success rate as a function of
occupancy threshold in the absence and presence of spatial
structure (black vs. red). We compare the antibody landscape
to NK landscapes in which each sequence site has an identical
epistatic involvement (with exactly K coupled neighbors). In
a smooth landscape (K = 0, Fig. 6 B, Left), success rate
remains high until reaching a threshold close to 1; the steep
drop reflects mutational load around the single fitness peak.
Spatial structure results in monotonically decreasing success, as
it slows spreading of beneficial mutations across the population.
Antibody landscape exhibits a contrasting trend (Fig. 6A). First,

success rate increases with occupancy threshold over a wide
range, signaling transient occupancy of intermediate peaks.
Second, spatial structure strongly boosts success at intermediate
thresholds, suggesting a beneficial interplay of mutational and
migratory constraints.

Attempting to generate antibody-like topography from rugged
NK landscapes, we construct an NK ensemble (K = 2)
constrained to have the same number of fitness peaks and the
same germline-to-Fmax distance as the antibody landscape, such
that only the location and height of local optima may differ
(Fig. 6 B, Right). While the ensemble-averaged success rate shows
a qualitatively similar trend as the antibody landscape, both the
level of success and the degree of enhancement due to spatial
structure are much lower (note the log scale). We find that, among
50 independent realizations of constrained NK landscapes, only
half support any success and very few show comparable success to
the antibody landscape (SI Appendix, Fig. S6A). In addition, the
threshold dependence varies considerably from one realization to
another (SI Appendix, Fig. S6B). Hence, only rare instances of
heterogeneous ruggedness enable efficient navigation.

To identify distinctive features of antibody landscape relevant
to evolvability, we plot the stepwise distribution of fitness effect
(DFE) of mutations, ΔF , along successful paths (Fig. 6C ).
Adaptation in constrained NK landscapes shows a similar DFE
at every path step, reflecting homogeneous ruggedness across the
landscape (DFE being independent of the genetic background).
Interestingly, successful trajectories in the antibody landscape
exhibit a strong fitness gain at the first step, followed by a
rapid fall to small fitness increases, suggesting that heterogeneous
ruggedness both supports, and steers toward, smooth adaptive
paths to the global optimum—via diminishing-return epistasis.
Spatial structure permits longer indirect paths.

To determine how heterogeneous ruggedness gives rise to
smooth adaptive paths, we visualize the top-3 successful paths
(with largest path weights), follow the occupancy of fitness peaks
over time, and extract the stepwise ΔF along these paths (Fig. 6
D–F ). An unexpected picture emerges: without spatial structure
(Fig. 6 D and E, Upper panels), successful populations bypass the
local peaks (colored dots) and only enrich Fmax to a considerable
level (black curves in panel E). Migration constraints, however,
speed population escape from local optima, making it possible
to turn a road block into a stepping stone; 2D trajectories and
stepwise fitness changes clearly show that all top paths first occupy
then escape the stepping-stone fitness peak (orange dot) en route
to Fmax (Fig. 6 D–F, Lower panels). In contrast, constrained NK
landscapes lack smooth paths; populations are repeatedly trapped
at local optima, resulting in a delayed arrival at Fmax and a low
occupancy (SI Appendix, Fig. S6C ).

The strong boost of antibody evolvability due to spatial
structure is attributable to an asymmetry between dominant
paths under structured and well-mixed conditions (SI Appendix,
Fig. S7): stepping-stone crossing paths successful in structured
populations are highly prone to failure without structure.
Conversely, road-block bypassing paths favorable in well-mixed
conditions often remain viable to structured populations. From
the viewpoint of competing attractors along the path, this boost
can be understood from the maximum occupancy of local peaks
vs. Fmax (SI Appendix, Fig. S8). When migration constraints
are applied, a high density of viable paths open at intermediate
occupancy, where the enrichment of Fmax exceeds the threshold
whereas the maximum occupancy of local optima falls below
(SI Appendix, Fig. S8B, orange region andD,Middle panel). This
explains why intermediate occupancy thresholds yield maximum
success rates when populations are spatially structured.
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D E F

Fig. 6. Heterogeneously rugged antibody landscape supports smooth adaptive paths and efficient navigation. (A) Success rate at which replicate populations
evolving in the antibody landscape under Wright–Fisher dynamics first enrich the global optimum, as opposed to any local optimum, to a certain occupancy
threshold (criterion of success). Spatial structure (red) enhances success at intermediate values of the occupancy threshold over the well-mixed condition
(black). (B) Success rate as a function of occupancy threshold in smooth (K = 0) and rugged (K = 2) NK landscapes, without (black) and with (red) spatial
structure. The curves for K = 2 are an ensemble average over 50 independent realizations of the landscape, constrained to have the same number of fitness
optima and the same mutational distance from the germline to Fmax as the antibody landscape. (C) Distribution of fitness effects of mutations, ΔF , along
successful paths collected from replicate populations evolving in the antibody (Left) and constrained NK (Right) landscapes, without (black) and with (red) spatial
structure. (D–F ) Characteristics of top-3 successful paths at occupancy threshold 0.5, without (upper row) and with (lower row) spatial structure. (D) Mutational
paths in t-SNE representation. Line width is proportional to the path weight. Dots indicate 7 fitness optima. The orange dot represents the local optimum that
is a road block bypassed by successful well-mixed populations but may serve as a stepping stone to structured populations taking a direct path. (E) Temporal
occupancy of the fitness optima along the paths shown in (D). Each curve is an average over successful populations taking that path, with the same color codes
as the fitness optima in (D). (F ) Fitness effect of mutations out of each genotype along the paths shown in (D). The stepping-stone genotype is marked with an
orange dot. Line width is proportional to the path weight.

Taken together, this epistatic landscape of antibody stability
represents an instance of heterogeneous ruggedness shaped by an
epistatic hotspot. An early mutation of the hotspot confers a large
fitness gain which drives the population into effectively smooth
paths of adaptation. Along these paths, suboptimal fitness peaks
may serve as stepping stones that steer evolution toward the global
optimum—the most stable antibody fold potentiated to evolve
new functions.

Discussion

The physics and evolution of proteins are inseparable. The syner-
gistic changes in conformation by which proteins find the folded
structure are a result of natural selection and atypical of random
heteropolymers. Taking the converse view, the requirement of
remaining foldable necessarily influences molecular evolution.
Here, we attempt to quantify such influence by generating an

empirical protein stability landscape and exploring the role of
epistasis in shaping local and global trends of sequence evolution
on this landscape.

When describing fitness landscapes in terms of peaks and
valleys, we invoke an intuitive low-dimensional analogue of
the high-dimensional genotype space. A major prediction orig-
inally formulated by Sewall Wright (21) is that, with an
increasing genotypic dimensionality, the proliferation of local
fitness maxima presents obstacles to adaptation and reduces
accessibility of the global optimum. Yet, much recent progress
made by considering empirical fitness landscapes, especially for
biomolecules and microbial cells, highlights the role of high
dimensionality in promoting accessibility (22–24), depicting
biologically realistic fitness landscapes as being both rugged and
navigable (6, 7). Despite increasing evidence and intriguing
proposals, a theoretical understanding consistent with data is
not yet gelling.
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Here, we make a first step toward a mechanistic explanation
for the concurring high ruggedness and high navigability in
real genotype–fitness maps. Through mapping a combinatorially
complete SARS-CoV-2 antibody folding-stability landscape, we
draw a connection between global epistasis and evolvability via
epistatic inequality among sequence sites. We find that sparse
epistatic hotspots (whose state captures the global nonlinearity
of an additive latent phenotype) give rise to heterogeneous
ruggedness that, in turn, creates effectively smooth adaptive paths
and enables efficient navigation toward the global optimum.

Our 10-site epistatic landscape reveals strong heterogeneity in
topography, that is, local features are not representative of global
patterns. Strikingly, such heterogeneity in ruggedness arises from
inequality of epistatic importance among sequence sites. The data
show that, in spite of pervasive epistatic interactions between
mutations, correlations between fitness effects are both directed
and remarkably sparse; an epistatic hotspot stands out as exerting
influences on all other mutations without being reversely affected.
Importantly, mutation of the hotspot simultaneously increases
landscape ruggedness and enhances Fmax accessibility.

To seek an explanation, we examine whether the hotspot
mutation makes the adaptive paths taken more or less repeatable.
Interestingly, a majority of successful paths that reach Fmax
within a limited time have the hotspot mutated at the first step
and this ruggedness-increasing mutation reduces path diversity.
Furthermore, path-focusing ruggedness steers populations to
smooth directions, signaled by a rapid reduction in fitness
gain in approach to the maximum fitness. This diminishing-
return epistasis observed in the antibody landscape is absent
from homogeneous model landscapes. These results suggest an
organizing role of the epistatic hotspot; it shapes the high-
dimensional landscape in such a way that exploits local constraints
for global navigability. Indeed, since the hotspot dominates both
the specific and global epistasis, its mutation may act like a switch
for path-orienting topography.

A funneled energy landscape of protein folding provides
a resolution to the Levinthal paradox (25, 26), allowing an
efficient search of the vast configuration space to locate the native
conformation, sometimes in microseconds. Here, we show that a
heterogeneously rugged fitness landscape may enable productive
navigation of sequence space to reach the global optimum. It is
interesting to ask whether constructive epistasis resulting from a
hotspot can organize fitness landscape into an inverted funnel-
like shape. The global degree of funneling of a folding landscape
has been quantified by the ratio of the folding temperature Tf to
the glass transition temperature Tg (27–29), which compares the
energy gap between the native state and compact misfolded states
to the energy variance or ruggedness. A large Tf /Tg indicates
a strong funnel. An analogous metric characterizing epistatic
landscapes is the slope-to-roughness ratio, s/r (Materials and
Methods). A large s/r indicates a smooth, Mt. Fuji-like global
shape, i.e., an inverted funnel. We find that antibody landscape
has a larger s/r than any constrained NK landscape (SI Appendix,
Fig. S10A), implying that heterogeneous ruggedness induced
by the hotspot confers a funneling gradient. Further, hotspot
mutation causes a large drop in s/r (SI Appendix, Fig. S10B),
indicating the commencement of diminishing return in fitness
gain. We sketch the physical picture in Fig. 7, contrasting
heterogeneous with homogeneous ruggedness.

Our data suggest an alternative explanation for why global
epistasis promotes evolvability. On one hand, statistical models
often interpret the simple trend of dependence of fitness gain
on the background fitness as a result of widespread modest
interactions (30). Our results show that, global epistasis can also

Fig. 7. Summary sketch: Epistatic hotspot induces heterogeneous rugged-
ness that confers a funnel-like shape to fitness landscape. Left: An early
mutation of the hotspot grants a large fitness gain and turns on path-
orienting heterogeneous ruggedness. The dominant adaptive paths to the
global optimum Fmax are effectively smooth and characterized by diminishing
return in fitness gain. Right: Homogeneous ruggedness, in contrast, would
cause repeated trapping at local optima, hindering navigation toward Fmax.
Fitness increases top–down.

arise from sparse idiosyncratic interactions, if they were properly
organized. On the other hand, more stable proteins are more
evolvable because they are better able to tolerate destabilizing
mutations that confer functional benefits (31). In this sense, as
the hotspot mutation makes the most stable fold (Fmax) easier
to access, it renders the antibody more evolvable. One way to
test this connection is to study the folding-stability and binding-
affinity landscapes of the same antibody, and see whether the
hotspot, which governs the global shape of the stability landscape,
promotes evolution of improved affinity for one or more target
antigens. An epistatic landscape of antibody–antigen binding free
energy was found to exhibit positive epistasis that enlarges the set
of viable paths leading to high affinity antibodies (32). Finally,
our analysis predicts that spatial structure that limits the range
of competition may boost evolvability even further. This may
rationalize why B lymphocytes form spatially segregated modest
populations for antibody evolution (33)—as a means to balancing
potency, diversity, and evolvability.

Prior research has suggested that pervasive epistatic interactions
constrain protein evolution. A recent analysis of a DMS dataset
on a transcription factor provided a counter example (34).
Metzger and coworkers showed that pairwise epistasis facilitates
the evolution of a new function (DNA specificity) by bringing
variants with different functions close together in sequence space.
Our work likewise identifies a productive role of epistasis in
shaping the sequence–function map, with the following essential
differences. First, changes in DNA specificity appeared to be
largely captured by pairwise rather than higher-order interactions.
In contrast, constructive organization of the antibody landscape
relies on higher-order epistasis; without triplet interactions,
the concomitant increase in ruggedness and navigability is
lost (SI Appendix, Fig. S9 and section C5). Because it is
the higher-order interactions that simplify the global shape
through the creation of path-orienting ruggedness. Further,
sparse hotspots induce heterogeneous ruggedness—key to the
diminishing-return epistasis underlying the global smoothness.
A reduced genetic distance between fitness peaks, however, can
be achieved by an increase in homogeneous ruggedness (e.g., a
larger K in NK landscapes) (35). More fundamentally, different
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physics underlie how epistasis is structured. Specific binding is
relatively local in space. Correspondingly, a cluster of residues
encoded by a large alphabet pairwise interact to form a dense
net and produce a highly degenerate sequence–function map.
Folding, however, is highly nonlocal. A hierarchy of hotspots
concentrating the majority of mutational constraints may enable
global coordination. As we saw, mutating a single hotspot residue
stabilizes the antibody fold as a whole. Altogether, we propose an
alternative physical underpinning of protein evolvability: sparse
hierarchical epistatic hotspots organize easy-to-navigate protein
stability landscapes; an enhanced ability to fold, in turn, facilitates
the evolutionary search for new functional states. Antibodies may
offer ample examples.

The scale-dependent ruggedness observed in the antibody
landscape is reminiscent of a recent theoretical study of metabolic
networks (36). When studying how epistasis propagates across
scales, Kryazhimskiy found that, upon coarsening of subpath-
ways, negative epistasis at smaller scales remains negative on larger
scales, whereas positive epistasis may change sign. An immediate
future direction is to construct a new family of epistatic models
that exhibits high ruggedness and high accessibility. This will
allow to address from bottom–up the minimal ingredients
necessary for recapitulating the observed connection between
heterogeneous ruggedness, global epistasis, and evolvability.
While a variety of means exist for implementing hierarchical
epistatic importance, contact with natural or laboratory systems
will help direct modeling efforts.

Practically, the identification of epistatic hotspots (or more
generally, highly epistatic regions) may guide the choice of
targets in mutagenesis approaches: focusing mutations to strongly
epistatic regions may yield adaptive paths otherwise too rare to be
observed with a limited number of experiments. If present, the
sparsity of epistatically important sites will allow a rapid assess-
ment of a system’s complexity by nonexhaustive combinatorial
mutagenesis, as suggested by Poelwijk et al. (37). This, in turn,
provides an estimate for the number of phenotypic measurements
necessary for a sufficiently accurate parameterization of the
mapping.

Conceptually, an epistatic hotspot amid weakly epistatic sites
can be viewed as a special case of a hierarchy with two levels.
Given the ubiquity of hierarchical organization in biological
systems, one can seek analogous impacts of the hotspot in
broader contexts. Phillips et al. found that influenza antibodies
can evolve breadth by acquiring hierarchical sets of epistatic
interactions (38). This observation lends support for vaccina-
tion with sequential doses of sufficiently distinct but related
antigen variants, a proposal made earlier from computational
modeling of affinity maturation to elicit broadly neutralizing
antibodies (39–41) and experimentally shown using SARS-
CoV-2 spike antigens as an example (42). For exploratory
adaptation of cells via phenotypic plasticity, a numerical study
of gene regulatory networks showed that successful conver-
gence of exploratory dynamics in high dimensions requires
outgoing network hubs (43), in very much the same way
that an outgoing epistatic hotspot organizes a complex yet
navigable fitness landscape. Signaling networks of colonic stem
cells provide evidence for the global impact of such hubs on
cell-fate plasticity. Through mutational (cell-intrinsic) or mi-
croenvironmental (cell-extrinsic) perturbations, (dys)regulation
of core signaling hubs may reshape the differentiation landscape
and drive alternative cell fates (44). Future work will seek to
establish a broader role of hierarchical epistatic hotspots in
organizing high-dimensional solution spaces that permit efficient
exploration.

Materials and Methods

Metrics of Landscape Ruggedness. Ruggedness in a fitness landscape is a
consequence of epistatic interaction between mutations. In a perfectly smooth
landscape, individual mutations affect fitness in an additive manner. Thus, an
intuitive metric of ruggedness would quantify the deviation from additivity
through the loss in correlation of fitness effects of mutations;  statistics (12)
provide one way to do so (see details in SI Appendix, section E).

In its local form, i→j = Corr[Δj(s),Δj(s[i])], which measures to what
degree the fitness effect of mutation j, Δj(s) = F(s[j])− F(s), is altered due
to the presence of mutation i, Δj(s[i]) = F(s[ij]) − F(s[i]), averaged over
all genetic backgrounds. Here, s[... ] denotes the genotype with mutations at
sites given in the brackets relative to s. i→j → 1 corresponds to additivity
hence smoothness, whereas i→j ≤ 0 signals sign flip of fitness effects and,
in turn, ruggedness. Thus, the matrix of i→j constitutes a directed map of
pairwise correlations. Since the  metric averages over genetic backgrounds for
each pair, the i→j matrix can be relatively sparse despite a dense Jij matrix.
Compared to {Jij} that depict genetic architecture (symmetric connectivity),
{i→j} reveal patterns of directional phenotypic impact and are thus well suited
for identifying epistatic hotspots. To probe heterogeneity in ruggedness, we
define a generalized measure, (n, d), to calculate the correlation in fitness
effects of mutations between genotypes d mutations apart with n pinned sites,
i.e., in (L− n)-dimensional sequence subspaces.

Evolutionary Dynamics. We simulated two types of dynamics, Markov chain
Monte Carlo (MCMC) and Wright–Fisher (WF) dynamics, to emphasize the
importance of landscape topography and paths taken by finite populations,
respectively. See details in SI Appendix, section G1.
MCMC dynamics. In the strong-selection weak-mutation (SSWM) limit, a
population remains largely monomorphic and adaptation follows a series of
fitness-increasing mutations until reaching a fitness peak. In this regime,
adaptive dynamics can be characterized by an absorbing Markov chain with
absorbing states at fitness optima. This simplification due to separation of
timescales between mutation and selection allows an efficient evaluation of
Fmax accessibility and path entropy (see below): one can simulate evolutionary
trajectories by sampling the mutational steps according to a 2L × 2L transition
matrix P, whose entries specify the probabilities of evolving from any given
genotype to any single-residue mutant, determined solely by changes in fitness.
One can represent P as a block matrix:

P =

(
Q R
0 I

)
, [3]

whereQ connects the transient states,R links any transient state to any absorbing
state, and the zero and identity matrices define the absorbing states.
WF dynamics. This is a more realistic scheme that permits fitness-valley crossing
and clonal interference. Moreover, it allows to conveniently study how spatial
structure affects evolutionary paths and outcomes. Inspired by Bergman et
al. (45), we implement a minimal spatial structure by placing a population
of size Npop = 500 on a ring lattice of Npop nodes. We advance an initially
monomorphic population by iterating between i) selection and migration and
ii) mutation. i) Denote by sti the genotype of the individual occupying node
i at time t. At time t + 1, it is replaced by a genotype stj in its r-neighborhood
(j ∈ [i− r, i + r]) with the probability

P
(
st+1
i = stj

)
=

exp(F(stj))∑i+r
k=i−r exp(F(stk))

, [4]

that is, a fitter individual is more likely to produce offspring which then migrate
into a neighborhood of size r. Thus, r controls the spatial range of competition
and dispersal in one generation. We set r = 2 for a structured population and
r = Npop for a well-mixed population. ii) A lattice sweep of mutation in which
each sequence locus of each individual is mutated (bit-flipped) with a probability
� = 10−3. Hence, a mutation can at most spread r nodes in one generation.
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Evolutionary Paths. We define the path taken by an adapting population
according to the evolutionary dynamics it follows. For MCMC dynamics, a path
is clearly defined by the order in which the set of mutations connecting the
germline to Fmax reach fixation. For WF dynamics, we adapted the definition of
“lines of descent” (46) which represent the lineages that first arrive at the target
genotype. This definition associates a unique path to each successful population
that discovers Fmax within a given time starting from the germline. In practice,
we keep track of all mutation events in the forward simulations. Once Fmax is
reached, we trace the reverse sequence of mutations back to the germline and
retrieve the path. Under both dynamics, we define the path weight w� as the
frequency of path � in a simulated ensemble of replicate populations on the
antibody landscape or the NK landscapes. To quantify path diversity, we calculate
the Gibbs-Shannon entropy S� = −

∑
� w� lnw� , where

∑
� w� = 1. We

scale S� by the maximum entropy that is attained when all distinct paths have
an equal weight. See details in SI Appendix, section G2.

Accessibility of the Global Fitness Optimum Fmax. Evolutionary accessibil-
ity of a target genotype depends both on the availability of viable paths and
on the chance by which each viable path is realized by an evolving population.
While the former is primarily set by landscape topography as probed by MCMC
dynamics, the latter is further influenced by the dynamics of landscapenavigation
as captured by WF dynamics. Accordingly, we devised two measures to quantify
Fmax accessibility (see details in SI Appendix, section G3).
Static accessibility. Under MCMC dynamics, the absorbing probability of Fmax
can be calculated from Markov theory using the transition matrix (Eq. 3); it
measures to what extent the fitness landscape supports an adaptive walk from
the germline to Fmax without encountering any of the local optima. This metric is
used to generate the histograms in Fig. 3B and SI Appendix, Figs. S5C and S9D.
Dynamic accessibility. Under WF dynamics of finite populations, genetic drift
becomes possible. We now characterize the navigation performance by the
success rate at which a population first enriches Fmax to an occupancy threshold
as opposed to any local optimum within a given time tmax = 2,000. We estimate
the success rate from a large number of replicate simulations starting from an
isogenic population carrying the germline genotype. This metric is used in Fig. 6
A and B and SI Appendix, Fig. S6B.

2D Visualization of Landscapes and Paths. Methods of dimensionality
reduction allow to visualize a high-dimensional surface or trajectory in a low-
dimensional embedding. To visualize the landscape topography such that
genotypes of similar fitness are kept in proximity in embedding space, we
use the force-directed graph layout. Specifically, we construct a network in
which nodes represent genotypes and edges are drawn between mutational
neighbors with a weight being inversely related to their fitness difference,
wss′ = (0.001 + |F(s) − F(s′)|)−1, and then apply the force-directed
layout (using function layout_drl from Python’s igraph package). To ensure

that the embeddings for a pair of landscapes are comparable, we fix the inherent
randomness by setting an identical random seed, and then perform a translation-
rotation operation to maximize the overlap between embeddings, such that the
remaining mismatch would reflect the actual difference in landscape topography
(see examples in Fig. 1E). We use t-SNE to visualize the mutational paths realized
in simulations, where Hamming distance serves as a natural metric of genotypic
proximity. We use Python’s sklearn package (function sklearn.manifold.TSNE)
to perform sequence-space embedding in two dimensions.

Global Smoothness. The roughness-to-slope ratio r/shas been introduced (47)
to measure global ruggedness of an epistatic fitness landscape. We take its
inverse, s/r, to draw an analogy to the ratio Tf/Tg that characterizes the global
degree of funneling in an energy landscape of protein folding (28). The idea
is to fit the fitness landscape of interest F(s) by the closest smooth landscape

describedbyanadditivemodelF(a)(s) =
∑L

i=1 h
(a)
i si. Thenthemean“slope”

s = L−1 ∑L
i=1 |h

(a)
i | from the linear model is compared to the “roughness”

r = 2−L/2
√∑

s

(
F(s)− F(a)(s)

)2
due to residual fitness effects (i.e., the

overall nonadditivity) to quantify the global smoothness of F(s). A landscape
with a greater s/r would be more navigable by evolution. We obtain the linear

coefficients {h(a)i } through a least-square fit that minimizes the square error

between the actual landscape F(s) and the smooth landscape F(a)(s). For
the antibody landscape, we use the inferred specific model (Eq. 1). For each
realization of the constrained NK landscapes, we ensure that the wild-type
genotype has zero fitness before performing the fit.

Data, Materials, and Software Availability. Raw deep sequencing data and
custom code have been deposited in NIH Sequence Read Archive and GitHub
PRJNA755438 (48), https://github.com/nicwulab/COV107-23_fitness_
landscape (49), and https://github.com/st-sch/landscape_inference (50)).
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