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Abstract

When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape ex-
tinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals
and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within
individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number
of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the
infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain repro-
ductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and
whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks
facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale
selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clin-
ical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based
risk assessment of emergence threats.
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1. Introduction

Emerging infectious diseases are rising in frequency and impact
and are placing a growing burden on public health and world
economies (Jones et al. 2008; Howard and Fletcher 2012; Morse
et al. 2012; Woolhouse et al. 2012). Nearly all of these emergence
events involve pathogens that are exposed to novel environ-
ments such as zoonotic pathogens entering human populations
from non-human animal reservoirs, or human pathogens ex-
posed to antimicrobial drugs (Jones et al. 2008). In these novel
environments, pathogens may experience new selective forces
acting at multiple biological scales, leading to reduced replica-
tion rates within hosts or less efficient transmission between

hosts. When these novel environments are sufficiently harsh,
emergence only occurs when the pathogen adapts sufficiently
quickly to avoid extinction. As genetic sequencing of pathogens
becomes increasingly widespread, there are clear signs of such
rapid adaptation (Steel et al. 2009; Lowder et al. 2009; Xu et al.
2014; Jonges et al. 2014; Zhu and Shu 2015; Lam et al. 2015;
Xiang et al. 2018), but we lack a cohesive framework to under-
stand how this process might work across scales. Theoretical
studies have shed important insights into circumstances under
which this evolutionary emergence is possible, but either have
focused on the host-to-host transmission dynamics and treated
within-host dynamics only implicitly (Antia et al. 2003;
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Iwasa et al. 2004; André and Day 2005; Park et al. 2013), or have
accounted for explicit within-host dynamics only along a fixed
transmission chain (Peck et al. 2015; Geoghegan et al. 2016a).
Here, we introduce and analyze a model explicitly linking these
two biological scales and demonstrate how within-host viral
competition, infection duration, transmission dynamics within
a host population, and the size of transmission bottlenecks de-
termine the likelihood of evolutionary emergence. This analysis
sheds new light on factors governing pathogen emergence,
addresses long-standing questions about evolutionary aspects
of emergence, and lays the foundation for making risk assess-
ments which integrate outcomes from in vitro and in vivo experi-
ments with findings from sequence-based surveillance in the
field.

Recent empirical findings have highlighted the need for a
new generation of theory on pathogen emergence, which
addresses the current frontiers of dynamics within hosts and
across scales. For most pathogens, and certainly for RNA viruses
and single-stranded DNA viruses, individual hosts often are not
dominated by single pathogen genotypes (Grenfell et al. 2004;
Pybus and Rambaut 2009). Furthermore, at the host population
scale, pathogen allele frequencies at a given locus exhibit a
range of dynamics from rapid selective sweeps for drug resis-
tance or immune escape (Lim et al. 2007; Pennings et al. 2014;
Kijak et al. 2017) to gradually changing frequencies (Domingo
et al. 2012; Linster et al. 2014). Together, these observations lead
to the long-standing question of whether adaptive evolution of
viruses occurs within single hosts by rapid fixation of beneficial
mutants, or more slowly by a gradual shift of allele frequencies
along chains of transmission (Lemey et al. 2006; Holmes 2007).
A recent wave of studies tracking changes in within-host ge-
netic diversity through chains of transmission among hosts
(Murcia et al. 2010; Bull et al. 2012; Hughes et al. 2012; Stack
et al. 2012; Morelli et al. 2013; Orton et al. 2013; Vrancken et al.
2014, 2017) provide unique opportunities to address this ques-
tion, but a theoretical framework is needed.

Empirical studies, together with analyses at broader popula-
tion scales, have highlighted the crucial influence of the trans-
mission process—and particularly the population bottleneck
associated with transmission—in filtering viral diversity. The
existence of transmission bottlenecks has long been recognized
and is hypothesized to play a critical role in pathogen evolution
(Duarte et al. 1992; Bergstrom et al. 1999; Novella et al. 1999;
Zwart and Elena 2015; McCrone and Lauring 2018; LeClair and
Wahl 2018). Recent studies have reported that bottleneck
widths vary considerably among pathogens and routes of trans-
mission (Varble et al. 2014; Frise et al. 2016), and perhaps across
different phases of host adaptation (Moncla et al. 2016). Narrow
transmission bottleneck sizes of one to two viral genotypes are
common for HIV-1 (Keele et al. 2008; Tully et al. 2016; Kariuki
et al. 2017) and hepatitis C virus (Wang et al. 2010; Bull et al.
2011), and bottlenecks of one to three viruses are reported for
influenza in ferret respiratory droplet transmission experi-
ments (Wilker et al. 2013; Varble et al. 2014; Frise et al. 2016) and
in some studies of natural human transmission (McCrone et al.
2018; Valesano et al. 2019). Much wider bottleneck estimates, of
30 to over 100 viruses, have been reported for natural transmis-
sion of influenza in horses (Hughes et al. 2012) and swine
(Murcia et al. 2012); for ferret transmission experiments via di-
rect contact (Varble et al. 2014; Frise et al. 2016); and for trans-
mission of Ebola virus among humans (Emmett et al. 2015).
While wide bottlenecks were also reported for natural influenza
transmission among humans (Poon et al. 2016; Sobel Leonard

et al. 2017), this was determined to be a bioinformatic artifact
(Xue and Bloom 2019).

A major frontier in understanding viral adaptation is how
the transmission process influences evolution at population
scales. Past work has emphasized the potentially deleterious ef-
fect of genetic drift (Duarte et al. 1992; Novella et al. 1999;
McCrone and Lauring 2018), but a rising tide of studies reports
direct selection for transmissibility. This can arise as a strong
selection bias at the transmission bottleneck, where strains pre-
sent at low or undetectable frequencies in the donor host are
preferentially transmitted to the recipient (Boeras et al. 2011;
Wilker et al. 2013; Carlson et al. 2014; Moncla et al. 2016), or it
can be measured directly via experimental infection and trans-
mission studies (Hurt et al. 2010; McCaw et al. 2011; Imai et al.
2012; Linster et al. 2014) (though we emphasize that enhanced
transmissibility is not inevitable, and depends on availability of
suitable adaptive genotypes (Zaraket et al. 2015)). Overall trans-
mission rates can be viewed as being determined by total viral
loads, weighted by genotype-specific transmissibilities (Carlson
et al. 2014). Importantly, the transmissibility trait can vary inde-
pendently from viral replication fitness within hosts, so there is
potential for conflicts in selection across scales. Indeed, there is
clear evidence that HIV-1 has certain genotypes that transmit
more efficiently, but then the within-host population tends to
evolve toward lower-transmission strains during an infection
(Shaw and Hunter 2012; Alizon and Fraser 2013; Lythgoe et al.
2013; Carlson et al. 2014; Kariuki et al. 2017); a similar phenome-
non has been reported for H5N1 influenza (Wilker et al. 2013)
and H9N2 influenza (Sorrell et al. 2009). In an extreme example,
Plasmodium parasites were found to rapidly evolve resistance to
an antimalarial drug, but at the cost of complete loss of trans-
missibility (Goodman et al. 2016). Experimental evolution stud-
ies have highlighted how antagonistic pleiotropy can lead to
tradeoffs between viral replication and the extracellular sur-
vival that is required for transmission (De Paepe and Taddei
2006; Wasik et al. 2015), and a similar tradeoff has been postu-
lated for environmental transmission of avian influenza in the
field (Handel et al. 2013). Together these findings contribute to a
growing evidence base that cross-scale conflicts in selection
may inhibit the emergence of new viral strains in many systems
(reviewed in Park et al. 2013).

Collectively, these empirical findings highlight the need for
a theory of evolutionary emergence that accounts explicitly for
the within-host dynamics of competing viral strains, transmis-
sion bottlenecks, and host-to-host transmission dynamics (Gog
et al. 2015). To this end, we introduce and analyze a model
which integrates previous work on stochastic models of evolu-
tionary emergence and deterministic models explicitly coupling
within- and between-host dynamics (Antia et al. 2003; André
and Day 2005; Gilchrist and Coombs 2006; Coombs et al. 2007;
Mideo et al. 2008; McCaw et al. 2011; Lythgoe et al. 2013; Peck
et al. 2015; Geoghegan et al. 2016a; Childs et al. 2019). Our analy-
sis allows us to address several fundamental questions about
the emergence of novel pathogens: What factors limit evolu-
tionary emergence for pathogens with different life histories?
Why do some apparently ‘nearby’ adaptive mutants fail to
emerge? How do bottleneck sizes influence the likelihood of
emergence? Do evolutionary changes occur swiftly within indi-
vidual hosts, or gradually across chains of transmission?
Moreover, our analysis allows us to examine the relative impor-
tance of genetic diversity in zoonotic reservoirs versus the ac-
quisition of new mutations following spillover into humans
(Parrish et al. 2008; Woolhouse et al. 2012; Orr and Unckless
2014). Specifically, we address the long-standing question of
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how much emergence risk is increased if the ‘spillover inocu-
lum’ includes some genotypes bearing adaptive mutations for
the novel host? Finally, our analysis enables us to unify findings
from previous theoretical studies, and propose mechanistic
interpretations of phenomenological parameters from earlier
work.

2. Models and methods

Our stochastic multiscale model of evolutionary emergence fol-
lows a finite number of individuals in a large, susceptible host
population exposed to a pathogen from a reservoir population
(Fig. 1A). Although our framework represents many types of
pathogens and can be extended to any number of strains, we fo-
cus on the case of a viral pathogen with two strains: a wild-type
maladapted for the novel environment and a mutant strain po-
tentially adapted for the novel environment.

2.1 The cross-scale model with explicit within-host
dynamics

Formally, the cross-scale model is a continuous time, age-
dependent, multi-type branching process (Harris 2002; Athreya
and Ney 2004). The ‘type’ of individual corresponds to the com-
position of the initial virus population (i.e. the founding viral
population that initiates the infection), and the ‘age’ of an indi-
vidual corresponds to the time since their initial infection.
Within an infected host, the viral dynamics determine how the
viral load and viral composition change over time due to com-
petition between strains and mutation events. Transmission
events are determined by the viral load and composition of the

host and, consequently, are age-dependent. Below, we describe
the model at each scale and the biological processes we con-
sider in detail. The mean-field analogue of our model is an age-
structured partial differential equation model introduced by
Coombs et al. (2007).

2.1.1 Within-host scale model
Infection of a host usually starts locally at the site of viral entry
or first tissue contact. This local spread involves a small number
of viruses, their infection of host cells at the exposure interface
and possibly the innate immune response to infection (Ivashkiv
and Donlin 2014; Gallagher et al. 2018). During this period, infec-
tion is stochastic and establishment of infection is not guaran-
teed (Ivashkiv and Donlin 2014; Huang et al. 2019). When one or
more virions survive the period of initial local spread, they es-
tablish lineages that comprise the productive infection. These
virions are termed as transmitted founder viruses (Keele et al.
2008). Here, we explicitly define the number of transmitted
founder viruses that establish productive infection as the bot-
tleneck width N. This quantity can be estimated using viral ge-
netic sequencing data, for example in (Keele et al. 2008; Sobel
Leonard et al. 2017). Our within-host model starts with the
transmitted founder viruses by assuming an initial viral load N,
and hence considers the period of established productive infec-
tion only (as with other within-host models (Baccam et al.
2006a; Ribeiro et al. 2010) and cross-scale deterministic models
(Coombs et al. 2007)). The initial viral exposure and stochastic
local infection process are implicitly incorporated into the
transmission term in the population scale model as described
below, and consequently, we consider a successful

Figure 1. The cross-scale dynamic of evolutionary emergence. An individual is initially infected from the reservoir host population (A) with only the wild-type viral

strain (in blue). Within an infected individual (B), the viral load increases at an exponential rate until saturating at day Te and ending after T days. Mutations ensure

individuals typically have a mixed infection with wild-type (blue) and mutant (red) viral strains (B). The likelihood of transmission between individuals, and the com-

position of the infecting dose (C), depend on the size and composition of the infected individual’s viral load at the time of contact, and on the transmissibility of each

strain. As the infection spreads in the population (A), the frequency of the mutant virions among infected individuals varies (D) and, ultimately, determines whether

evolutionary emergence occurs. In D, each horizontal line marks the infectious period of an individual whose infection was initiated with that percentage of the mu-

tant strain and the vertical arrows represent transmission events between individuals.
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transmission event as a transmission event leading to an estab-
lished infection.

The within-host dynamics are modeled with coupled differ-
ential equations where vðtÞ ¼ ðvwðtÞ; vmðtÞÞ denotes the vector of
viral abundances

dvi

dt
¼

ð1� lÞrivi þ lrjvj else if vw þ vm � K

ð1� lÞrivi þ lrjvj �
vi

vm þ vw
rwvw þ rmvmÞð

8<
:

(1)

where i 6¼ j are either w or m, for wild type and mutant strains,
respectively, and l is the mutation rate between these strains.
At time t¼ 0, vð0Þ ¼ ðvwð0Þ; vmð0ÞÞ corresponds to the initial viral
load of an infected individual, and vwð0Þ þ vmð0Þ ¼ N. Our
within-host model is similar in structure to the quasi-species
model of Lythgoe et al. (2013).

In this model, the viral population initially increases expo-
nentially because of the availability of a large number of target
cells. The wild-type and mutant strains increase exponentially
at rates, rw and rm, respectively. These dynamics are consis-
tent with the viral dynamics predicted by standard multistrain
within-host models when target cells are abundant
(Bonhoeffer et al. 1997; Canini et al. 2014; Ke et al. 2018). The
viral load saturates at time Te with a maximal viral load K
(Fig. 1B). We assume that after Te, the viral population size
stays constant at K, and the frequencies of the wild type and
the mutant change due to their fitness differences. We further
assume that the infectious period starts when vwðtÞ þ vmðtÞ > 0
and ends after T days. For some acute infections, viral load
usually decreases rapidly after viral peak (e.g. influenza A
infections (Baccam et al. 2006b)), and thus T is close to Te. For
other acute infections, viral load remains at a high level after
peak viremia for a longer period of time, in the range of weeks.
In this case, T > Te. For chronic infections (though our work
does not necessarily consider the full range of evolutionary
processes involved in chronic infections) such as HIV and
Hepatitis C (Li et al. 2012) infections, viral loads usually reach
a set-point and can stay roughly constant for an extended pe-
riod of time, in the range of years. In this case, T is much
greater than Te. Overall, this within-host model serves as a
flexible framework to describe a range of viral dynamics from
both acute and chronic infections, while maintaining simplic-
ity to enable analysis.

2.1.2 Population scale model
At the scale of the host population, the transmission dynam-
ics are modeled using a multi-type branching process. Each
infectious individual encounters a Poisson-distributed num-
ber of susceptible individuals at a rate of b individuals per
day. Then, the number of contacts of an infected individual
during the infectious period is Poisson distributed with mean
bT. Each contact results in a successful transmission event
with probability p(E) where E is the effective viral load at the
time t of transmission (see below). Similar to the determinis-
tic model of Lythgoe et al. (2013), p(E) is an increasing func-
tion of E. Our main analyses assume that the transmission
function p(E) is linear, but nonlinear transmission functions
yield nearly identical results (Supplementary Figs Appendix-
2 through 4).

The effective viral load E is calculated as
E ¼ bwvwðtÞ þ bmvmðtÞ, where bw and bm are the transmissibil-
ities of the wild type and the mutant, respectively. Here bw

and bm account for the survival of the viruses through a range

of processes during transmission, including their likelihoods
of being shed from the donor host, surviving the environment
outside of a host, and reaching and infecting the target cells
in an uninfected host. Furthermore, as explained in the
within-host model section, these parameters also account for
the likelihoods of the viruses to survive initial local infection
and establish a productive infection in the recipient host.
Viruses may face different challenges and selection pressures
to overcome the barriers in each of these processes. Here, for
simplicity and generality, a single parameter is used to sum-
marize the transmissibility of different viruses because little is
known or measured about the ability of a virus to overcome
these barriers. More explicit models can be constructed as the
relevant data become available.

In the event of successful transmission, there are N virions
(the transmitted founder viruses) that establish the productive
infection. In the model, these N virions are sampled binomially
from the source individual’s viral load weighted by the trans-
missibilities of the viral strains. Thus, the probability of infect-
ing an individual with a viral load of ~v ¼ ð~vw; ~vmÞ with
~vw þ ~vm ¼ N equals

wðvðtÞ; ~vÞ ¼ N!

~vw!~vm!

bwvwðtÞ
bwvwðtÞ þ bmvmðtÞ

� �~vw bmvmðtÞ
bwvwðtÞ þ bmvmðtÞ

� �~vm

:

Under these assumptions, during their infectious period, an
infected individual of type v(0) infects a Poisson distributed
number of individuals with viral load ~v, and the mean of this
distribution equals

Fðvð0Þ; ~vÞ ¼
ðT

0
bwðvðtÞ; ~vÞpðbwvwðtÞ þ bmvmðtÞÞdt:

Overall, by explicitly modeling the cross-scale dynamics, our
model simultaneously tracks the number of infected hosts and
the viral loads within each infected host (Fig. 1D). The structure
of our stochastic model is similar to Peck et al. (2015)’s stochas-
tic model of molecular viral evolution along transmission
chains. However, our model accounts for stochastic transmis-
sion dynamics rather than conditioning on a chain of transmis-
sion, and explicitly accounts for the dynamics of competing
viral strains. It also has similarities with Geoghegan et al.
(2016a)’s cross-scale, stochastic model of a single transmission
event from a donor host to a recipient host. Like our model,
Geoghegan et al. (2016a)’s model has constant transmission bot-
tlenecks, multinomial sampling from donor to host, and explicit
within host dynamics with exponential growth and ceiling
phases. Their model, however, focuses on a single transmission
event and assumes that all virions are equally likely to be trans-
mitted from donor to host, i.e. it assumes no selection based on
transmissibility.

2.2 Methods

To solve the probabilities of emergence, we use the discrete-
time branching process given by censusing the infected popula-
tion at the beginning of each generation of infection. This
discrete-time process is known as the embedded process
(Harris 2002; Athreya and Ney 2004). All the statistics of this em-
bedded process are given by the probability generating map G :

½0; 1�Nþ1 ! ½0; 1�Nþ1 where Nþ 1 is the number of types of initial
viral loads i.e. all combinations of wild-type and mutant virions
for N virions (Harris 2002; Athreya and Ney 2004). We index the
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coordinates by the initial number of mutant virions 0; 1; 2; . . . ;N
within an infected individual and have

GiðsÞ ¼ exp
�X

j

Fðði;N� iÞ; ðj;N� jÞÞðsj � 1Þ
�
:

The i-th coordinate of

qðtÞ ¼ Gtð0; . . . ; 0Þ

is the probability of extinction by generation t when there is ini-
tially one infected individual with initial viral load ði;N� iÞ. The
probability of emergence is given by 1� q where q ¼ limt!1 qðtÞ
is the asymptotic extinction probability. The limit theorem of
branching processes implies that q ¼ ðq0; . . . ; qNÞ is the smallest
(with respect to the standard ordering of the positive cone),
non-negative solution of the equation q ¼ Gð0; . . . ; 0Þ: These ex-
tinction probabilities can be non-zero if and only if the domi-
nant eigenvalue of the Jacobian matrix DGð1; 1; . . . ; 1Þ is greater
than one. Equivalently, the reproductive number given by the
dominant eigenvalue of the next generation matrix of
DGð1; 1; . . . ; 1Þ is greater than one (Diekmann and Heesterbeek
2000). Note that the linear map s 7!DGð1; 1; . . . ;1Þs corresponds to
the mean-field dynamics of the embedded multi-type branch-
ing process.

For the numerical work, we used linear, logarithmic, and sat-
urating functions for the transmission probability function p.
All gave similar results but we present the linear case as most
analytical results were derived for this case. To compute the as-
ymptotic extinction probabilities, we iterated the probability
generating map G for 2,000 generations. For the individual based
simulations, we solved the within-host differential equations
using matrix exponentials and renormalizing these exponen-
tials when the viral load reached the value K. Between host
transmission events were determined by a time-dependent
Poisson process with rate function pðbwvwðtÞ þ bmvmðtÞÞ, and
multinomial sampling was used to determine the initial viral
load of an infected individual.

3. Results
3.1 The probability of evolutionary emergence

We first focus on the scenario of a single individual in the host
population getting infected by the wild-type strain. We assume
that the mean number of individuals infected by this individual
(the reproductive number Rw of the wild type) is less than one.
Hence, in the absence of mutations, there is no chance of a ma-
jor outbreak (Diekmann and Heesterbeek 2000). However, if the
wild-type strain produces a mutant strain whose reproductive
number Rm is greater than one, there is a chance for a major
outbreak. The mutant strain might have a higher reproductive
number than the wild-type strain because it replicates more
rapidly within the host or because it transmits more effectively
to new hosts (or both). We define these within-host and
between-host selective advantages as s ¼ rm � rw and
s ¼ logðbmÞ � logðbwÞ, respectively.

Consistent with theoretical expectations, a non-zero proba-
bility of evolutionary emergence requires the mutant’s repro-
ductive number Rm to be greater than one (Fig. 2). However, the
mixture of selective advantages or disadvantages of the mutant
strain that give rise to Rm > 1 depends in a complex manner on
the pathogen’s life history traits, such as the duration of the in-
fection (Fig. 2A, B vs. C, D) and the transmission bottleneck

width (Fig. 2A, C vs. B, D). Notably, for long-term infections with
a large transmission bottleneck size, the emergence probability
can be effectively zero (i.e. < 10�16) for mutant strains whose
reproductive number exceeds one (white region bounded by the
solid red curve in Fig. 2D) – a finding not explained by classical
theory. As we shall show, this outcome is predicted by a new
quantity, the cross-scale reproductive number (a) of a mutant
virion—the mean number of mutant virions transmitted to sus-
ceptible individuals by an infected individual whose initial viral
load contains 1 mutant virion and N—1 wild type virions. When
a is less than one, evolutionary emergence becomes unlikely.

To understand these complexities, we determine the condi-
tions under which the mutant’s reproductive number Rm

exceeds one, and then present analytic approximations for the
emergence probability when Rm > 1.

3.2 Cross-scale selection and the mutant reproductive
number Rm

The reproductive numbers of the wild-type strain (Rw) and mu-
tant strain (Rm) can be calculated as the product of the contact
rate, the average transmissibility of the strain during the infec-
tious period, and the infection duration (see, Coombs et al. 2007
and Supplementary Appendix). These reproductive numbers
are positively correlated with the contact rate, infection dura-
tion, transmissibility, and viral per-capita growth rates. The in-
fluence of the maximal viral load K depends on the infection
duration. For short-term infections, defined here as infections
with a relatively short saturated phase (i.e. T � Te � Te), increas-
ing K has little effect on a strain’s reproductive number. For
long-term infections, defined here as infections with a long sat-
urated phase (i.e. T � Te � Te), reproductive numbers increase
with K.

Whether a selective advantage at either scale results in the
mutant reproductive number Rm exceeding one depends on the
duration of the infection. For short-term infections, most trans-
missions occur toward the end of the infectious period T, when
the infectious load is the highest. By the end of the infectious
period, the mutant viral density has increased approximately
by a factor of esT more than the wild-type, and transmission for
each mutant virion is expðsÞmore likely than for a wild-type vi-
rion. Refining this intuition, we derive the approximation
(Supplementary Appendix)

log Rm � log Rw þ sþ sðT � 1=rwÞ: (2)

This approximation shows that a sufficiently strong selec-
tive advantage at either scale can result in the mutant repro-
ductive number exceeding one (Rm > 1) despite a selective
disadvantage at the other scale (confirmed by exact calculations
in Fig. 2A, B). For short-term infections where viral dynamics
are dominated by the exponential phase, the longer the dura-
tion of infection, the greater the influence of the within-host se-
lective advantage compared to the between-host selective
advantage (e.g. steep contours in Fig. 2A).

For long-term infections, the viral load will tend to K for both
purely wild-type or purely mutant infections. Thus, the only dif-
ference will be in transmissibility and we get the approximation
(Supplementary Appendix)

log Rm � log Rw þ s: (3)

This approximation implies that a between-host selective
advantage is required for a long-term infection to be capable of
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evolutionary emergence (confirmed by exact calculations in
Fig. 2C). When viral dynamics are dominated by the saturated
phase at fixed K, a within-host selective advantage has little im-
pact on the average viral load during the infectious period of an
individual solely infected with the mutant strain and, conse-
quently, provides a minimal increase in the mutant reproduc-
tive number.

3.3 Going beyond the mutant reproductive number

When the mutant strain has a reproductive number greater
than one, there is a non-zero probability of a major outbreak
that is well-approximated by the product of three terms (com-
pare Fig. 2 to Supplementary Fig. Appendix-6):

Sw � Iw!m � Pm (4)

where Sw is the mean size of a minor outbreak due to the wild
type, Iw!m is the mean number of individuals infected with a

mutant virion by an individual initially infected only with the
wild type, and Pm is the probability an individual infected with
one mutant virion causes a major outbreak. The magnitude of
the probability Pm depends on the mutant reproductive number,
Rm, as in previous theory; however, we show below that it is
also determined strongly by a new quantity, the cross-scale re-
productive number a of a mutant virion. Our approximation (4),
which can be viewed as a multiscale extension of earlier theory
(Antia et al. 2003; Iwasa et al. 2004), highlights three key ingre-
dients, in addition to Rm > 1, for evolutionary emergence.

First, the size of the minor outbreak produced by the wild
type determines the number of opportunities for the mutant
strain to appear within a host. The average size of this minor
outbreak equals Sw ¼ 1

1�Rw
, as noted by earlier studies (Antia

et al. 2003; Iwasa et al. 2004). If the wild strain is badly mal-
adapted, then it is expected not to spread to multiple individu-
als (e.g. if Rw < 1=2, then 1

1�Rw
< 2) and opportunities for

transmission of mutant virions are very limited. Alternatively, if
the wild strain is only slightly maladapted to the new host,

Figure 2. The joint effects of within-host and between-host selective advantage of the mutant on the probability of emergence for pathogens with short-term (A, B) and

long-term (C, D) infectious periods, and with transmission bottlenecks of size N¼1 (A, C) and N¼ 25 (B, D). Colorations correspond to log 10 of the emergence probabil-

ity. The critical value of the mutant reproductive number Rm equaling one is drawn in solid red. Black contour lines correspond to log 10 of the number of mutant viri-

ons transmitted by an individual initially only infected with the wild strain. In D, the critical value of the cross-scale reproductive number, a¼1, of a mutant virion is

shown as a red dashed line and the white circles correspond to the s and s values used in Fig. 3. Parameters: K ¼ 107; bT ¼ 30; T ¼ 7:5 < 12:9 ¼ Te (short-term infection)

and T ¼ 30 > 12:9 ¼ Te (long-term infection), bw chosen so that R0 ¼ 0:75 for wild type, rw ¼ 1:25 and l ¼ 10�7.
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then, even without any mutations, the pathogen is expected to
spread to many individuals (e.g. if Rw ¼ 0:95, then 1

1�Rw
¼ 20),

thereby providing greater opportunities for evolutionary emer-
gence. Our analysis implies that higher contact rates, within-
host viral growth rates, viral transmissibility, and maximal viral
loads (for long infectious periods) facilitate these larger repro-
ductive values.

Second, the mutant strain must be transmitted successfully
to susceptible individuals—the second term Iw!m of our approx-
imation (4). For an individual initially infected only with the
wild-type strain, Iw!m equals the product of the contact rate, the
infection duration, and the likelihood that a mutant virion is
transmitted during a contact event, averaged over the full
course of infection (Supplementary Appendix). The likelihood of
transmitting mutant virions on the tth day of infection is propor-
tional to the product of the transmission bottleneck width (N),
the within-host frequency of the mutant strain, and the trans-
missibility bm of the mutant strain. This highlights an important
distinction between short-term and long-term infections. For

short-term infections where sT is small, there is insufficient
time for the frequency of mutants to rise within a host, so trans-
mission events with mutant virions are rare (< 1=1; 000 for all
black contour lines in Fig. 2A, B). This is a key obstacle to evolu-
tionary emergence in short-term infections. In contrast, for
long-term infections where the mutant strain has a substantial
within-host selective advantage, the mutant strain is transmit-
ted frequently (e.g. the expected number of events > 1 for some
contours in Fig. 2C, D).

Finally, even if the mutant strain is successfully transmitted,
an individual infected with the mutant strain needs to give rise
to a major outbreak which occurs with probability Pm, see equa-
tion (4). This requires the mutant strain to rise in frequency in
the infected host population. A mean field analysis for larger
bottleneck sizes (N> 5 in the simulations) reveals that mutant
frequency initially grows geometrically by the cross-scale repro-
ductive number a of a mutant virion–the number of mutant viri-
ons, on average, transmitted by an individual initially infected
with a single mutant virion and N � 1 wild type virions

Figure 3. Frequency dynamics of the mutant strain in the host population. For long-term infections with moderate to large transmission bottlenecks (N> 5), individ-

ual-based simulations corresponding to three values of the cross-scale reproductive number a of a mutant virion illustrate (A) the mutant strain decreasing in fre-

quency (despite an index case initially only infected with the mutant strain) when the cross-scale reproductive number a is less than one, (B) a gradual sweep to

fixation of the mutant strain when a � 1, and (C) fast sweeps to fixation for large values of a > 1. In these individual based simulations, each horizontal line marks the

infectious period of an individual whose infection was initiated with that percentage of the mutant strain and the vertical arrows represent transmission events be-

tween individuals. In the bottom half of the figure, the mean field dynamics corresponding to each of the individual-based simulations are plotted as cobwebbing dia-

grams. The solid black curves correspond to the expected frequency of the mutant strain in the infected host population in the next generation given the frequency in

the current generation. Thin blue lines indicate how the expected frequencies change across multiple generations. The colored backgrounds represent the expected

number of individuals infected with a certain percentage of the mutant strain (vertical axis) by an individual with an initial percentage of the mutant strain (horizontal

axis). Parameter values as in Fig. 2D indicated with black asterisks.
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(Supplementary Appendix). If this cross-scale reproductive
number is greater than one, then each mutant virion replaces it-
self with more than one mutant virion in the next generation of
infection, and the frequency of mutant virions increases in the
infected host population. If the cross-scale reproductive number
a is less than one, the frequency of mutants decreases, thereby
hindering evolutionary emergence.

For short-term infections, the cross-scale reproductive num-
ber a is equal to the ratio of the basic reproductive numbers:

a ¼ Rm

Rw
(5)

Thus for short-term infections there is no additional condi-
tion required for emergence. Whenever the mutant reproduc-
tive number Rm exceeds one, there is a mean tendency for the
mutant strain to increase in frequency once it has been success-
fully transmitted to susceptible individuals (i.e. a > 1 because
Rm > 1 > Rw). The greater the ratio Rm=Rw, the more rapid the in-
crease in frequency.

For long-term infections, there is sufficient time for within-
host selection to change the frequency of the mutant strain
within a host. Larger transmission bottlenecks increase the like-
lihood that these changes in frequency are transmitted between
hosts. For these long infectious periods and larger bottlenecks, a
within-host selective disadvantage reduces the cross-scale re-
productive number a (Supplementary Appendix):

a � expðsþ sT=2Þ for s sufficiently small: (6)

Hence, the cross-scale reproductive number a may be less
than one even when the mutant reproductive number Rm is
greater than one. This phenomenon, which arises from the in-
terplay of dynamics at within-host and between-host scales,
moderated by the transmission bottleneck width, explains the
puzzling behavior about the emergence probabilities noted ear-
lier (the white region bounded by solid and dashed red lines in
Fig. 2D).

The importance of these frequency dynamics can be visual-
ized via individual-based outbreak simulations, and cobweb-
bing diagrams summarizing the mean field dynamics. When
the mutant reproductive number Rm is greater than one but its
cross-scale reproductive number a is less than one, mutant viri-
ons may be transmitted but the resulting mixed infections are
invariably taken over by purely wild-type infections (Fig. 3A).
Only pure mutant infections can escape this ‘relapse’ to wild-
type, and then only if the mutation rate l is low enough that
new wild-type virions are very slow to appear. When the
within-host selective disadvantage is weak and the between-
host selective advantage is strong, the cross-scale reproductive
number a may be slightly greater than one and the mutant
strain can drift to higher frequencies within the infected host
population (Fig. 3B). For large within-host selective advantages,
the cross-scale reproductive number a is large and the mutant
strain can sweep rapidly to fixation in the infected host popula-
tion (Fig. 3C). Thus, in addition to revealing a new condition
needed for evolutionary emergence, the cross-scale reproduc-
tive number a summarizes the conditions under which evolu-
tion occurs swiftly or gradually within chains of transmission.

3.4 The dueling effects of transmission bottlenecks

Wider bottlenecks increase the likelihood of evolutionary emer-
gence for pathogens with a short infectious period, but can

hinder or facilitate evolutionary emergence of long-term infec-
tions (Fig. 4A, B). For short-term infections, evolutionary emer-
gence is constrained primarily by the transmission of mutant
virions by individuals initially infected with only the wild strain.
Wider transmission bottlenecks alleviate this constraint, espe-
cially when the mutant strain is expected to increase rapidly
within the infected population (a� 1; Fig. 4A). When the mu-
tant strain rises slowly in the infected host population (a slightly
greater than one), the emergence probability is insensitive to
the bottleneck size, regardless of infection duration.

For long-term infections for which the mutant strain’s repro-
ductive number Rm is greater than one, but the cross-scale re-
productive number a is less than one, emergence probabilities
decrease sharply with bottleneck size (Fig. 4B and
Supplementary Appendix). Because a mutant reproductive
number Rm greater than one requires a between-host selective
advantage (s > 0) for a long-term infection, the cross-scale re-
productive number a is less than one only if there is a within-
host selective disadvantage (s< 0) so that mixed infections tend
to be taken over by the wild type. Consequently, the mutant vi-
rus can start an epidemic only when a host is infected with an
initial viral load composed of mutant particles only, an event
that becomes increasingly unlikely for larger bottleneck sizes N.

3.5 Mutant spillover events hasten evolutionary
emergence

When the mutant strain is circulating in the reservoir, the index
case can begin with a mixed infection which invariably makes
evolutionary emergence more likely (Fig. 4C, D). For short-term
infections, spillover doses that contain low or high frequencies
of mutants have a roughly equal impact on emergence, and the
magnitudes of these increases are relatively independent of the
cross-scale reproductive number a (Fig. 4C). This arises because
the initial production and transmission of the mutant strain is
the primary constraint on evolutionary emergence for short-
term infections with Rm > 1 (black contours in Fig. 2A, B).
Consequently, mutant spillover events of any size are sufficient
to overcome this constraint.

For long-term infections, the impact of mutant spillover
depends on the cross-scale reproductive number a. When a is
less than one, only spillover doses with high frequencies of
mutants have a significant effect on emergence (i.e. bottom
three curves in Fig. 4D). When the cross-scale reproductive
number a is greater than one, the effect mimics short-term
infections and mutant spillover events of any size can substan-
tially increase the chance of emergence (top three curves in
Fig. 4C, D).

4. Discussion

We presented a cross-scale model for evolutionary emergence
of novel pathogens, linking explicit representations of viral
growth and competition within host individuals to viral trans-
mission between individuals. Our work identifies four steps to
evolutionary emergence summarized in Fig. 5 and four ingre-
dients (see, equation (4)) that govern these steps: (i) the repro-
ductive number of the wild type which determines the size of a
minor outbreak of this strain, (ii) the rate at which individuals
infected initially with the wild-type strain transmit the mutant
strain, and (iii) the cross-scale reproductive number a of a mu-
tant virion which corresponds to the mean number of mutant
virions transmitted by an individual whose initial infection only
included one mutant virion, and (iv) the reproductive number of
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the mutant strain. Prior studies of evolutionary emergence
(Antia et al. 2003; Iwasa et al. 2004; André and Day 2005;
Park et al. 2013) identified the importance of the single strain re-
productive numbers, Rm and Rw, and a phenomenological ‘mu-
tation rate’, but ingredients (iii)–(iv) are new mechanistic
insights arising from the cross-scale dynamics. By analyzing
these ingredients of evolutionary emergence, we show how the
probability of emergence is governed by selection pressures at
within-host and between-host scales, the width of the trans-
mission bottleneck, and the infection duration. We also map
the conditions under which different broad-scale patterns are
observed, from rapid selective sweeps to slower diffusion of
new types. While our study has focused on within-host and
between-host scales of selection, it could be generalized readily
to other types of cross-scale dynamics where selection may act
differently at different scales, such as within-farm and
between-farm scales where genetic data have given insights
into the emergence of high-pathogenicity avian influenza
strains (Fusaro et al. 2016).

Previous theoretical studies of evolutionary emergence of
novel pathogens (Antia et al. 2003; Iwasa et al. 2004; André and
Day 2005; Park et al. 2013) have assumed infected individuals
are, at any point in time, infected primarily by a single pathogen
strain. Consequently, shifts from infection with one strain to in-
fection with another must occur abruptly, relative to other pro-
cesses. Such abrupt shifts could correspond to within-host
selective sweeps or, if mutant strains remain at low frequency,
to rare events in which only the mutant strain is transmitted.
The seminal studies (Antia et al. 2003; Iwasa et al. 2004) showed
that under these conditions the probability of emergence is pro-
portional to the frequency of these events, which they bundled
together into a phenomenological ‘mutation rate’.

Our cross-scale analysis identifies the mechanistic counter-
part to this phenomenological ‘mutation rate’, which is the
probability that an individual infected initially with the wild-
type strain ends up transmitting at least one virion of the mu-
tant strain (Step 3 in Fig. 5). This quantity, which is approxi-
mated by the black contours in Fig. 2, is governed chiefly by the

Figure 4. Effects of bottleneck size and mixed infections of the index case on evolutionary emergence of short-term and long-term infections. Different curves corre-

spond to different tendencies, as measured by the cross-scale reproductive number a, for the mutant strain to increase in frequency in the infected host population. In

(A) and (B), bottleneck size has negative effect on emergence when the cross-scale reproductive number a is less than one and a positive effect when a is greater than

one. In (C) and (D), index cases initially infected with higher percentages of the mutant strain are more likely to lead to emergence. �1 corresponds to numerical val-

ues of 10�16 or smaller. Parameters: K ¼ 107 ; bT ¼ 150, T¼ 7.5 for short-term infections and T¼ 30 for long-term infections, bw chosen so that R0 ¼ 0:75 for the wild

strain, rw ¼ 1:25, s¼ 1, s chosen to achieve the a values reported in the legend, and l ¼ 10�7. N¼25 in (C) and (D).
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ability of the mutant strain to reach an appreciable frequency
within the host over the course of an infection. This is evident
from the strong dependence on the strength of within-host se-
lection—which surprisingly is much stronger than the depen-
dence on the transmission advantage of mutant virions—and
the higher values found for larger bottleneck widths, which fa-
vor transmission of low-frequency mutants through a straight-
forward sampling effect. This sampling effect is consistent with
the theoretical work of Geoghegan et al. (2016a), and the experi-
mental study of Frise et al. (2016), who found larger bottlenecks
increased the likelihood of mutant viral strains being transmit-
ted between hosts. The duration of infection plays a crucial role,
and our analysis showed that achieving this first transmission
of the adaptive mutant is a key barrier to evolutionary emer-
gence for short-term infections (Fig. 2A, B). This finding aligns
with the recent observation that putative immune-escape
mutants of pandemic H1N1 influenza, which should have a
within-host fitness advantage, were generated readily in
infected humans but did not reach high within-host frequency
and have been detected very rarely at the consensus level (i.e.
they have failed to emerge) (Dinis et al. 2016). While more inves-
tigation is needed to determine the relevant s and s parameters
for these strains, these data are consistent with the mechanism
we identify whereby these variants may be adaptive but have
insufficient time to reach high enough frequencies to avoid be-
ing lost in transmission bottlenecks.

Our analysis highlights an additional factor, the cross-scale
reproductive number a of a mutant virion, previously unrecog-
nized in models neglecting within-host diversity and analyses
centered on R0 for pure infections. Even after the mutant strain
has been transmitted, it needs to increase in frequency at the
scale of the infected host population (Step 4 in Fig. 5).

Specifically, each transmitted mutant virion, on average, needs
to replace itself with more than one transmitted mutant virion
in the next generation of infected hosts. When this occurs, it
sets up a positive feedback along chains of infections: individu-
als with a higher frequency of the mutant strain tend to infect
more individuals, which in turn provides more opportunities to
transmit, on average, higher frequencies of the mutant strain to
the next generation. Conversely, when this between-generation
cross-scale reproductive number a is less than one, the positive
feedback leads to lower and lower frequencies of the mutant
strain within the infected host population. This positive feed-
back mechanism is stronger for wider transmission bottlenecks
(	 5 virions in our numerical explorations), which better pre-
serve the mutant frequency from one host to the next.
Interestingly, this 5 virion threshold to define a wider transmis-
sion bottleneck is consistent with an earlier modeling study,
which found that bottleneck sizes above 5 virions eliminated fit-
ness losses in serial transfers of RNA viruses between cell cul-
ture plates (LeClair and Wahl 2018).

The directionality of the positive feedback is more complex,
and depends on multiple factors including the infection dura-
tion and the presence or absence of cross-scale conflicts. For
long-term infections, mutant frequencies can drop determinis-
tically within a host, and hence prevent emergence, even if the
mutant strain has a reproductive number greater than one. This
occurs when the mutant strain has a within-host selective dis-
advantage and between-host selective advantage (upper left
quadrant of Fig. 2D); the long infectious period allows time for
the within-host disadvantage to drive the mutant strain to
lower frequency and, thereby, set up the positive feedback ef-
fectively preventing evolutionary emergence. In contrast, for
short-term infections the mutant strain tends to rise in

Figure 5. The major steps and barriers for evolutionary emergence.
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frequency whenever the mutant reproductive number is greater
than one, because there is insufficient time for any within-host
disadvantage to act. In particular, evolutionary emergence may
occur despite within-host selective disadvantages, a possibility
excluded by previous theory (Park et al. 2013). Collectively these
two results imply that, in the face of cross-scale conflict and
wide transmission bottlenecks, longer infectious periods can in-
hibit, rather than facilitate (André and Day 2005), evolutionary
emergence (Fig. 2B, D). Related to this result, Geoghegan et al.
(2016a) found that longer durations of the infectious period
would lower the probability that a donor would infect the recipi-
ent. In their case, this occurred because fitness of the mutant
was assumed to be lower in the donor host species and higher
in the recipient species. Hence, a longer infectious period could
purge any mutants arising in the donor and result in the recipi-
ent only receiving wild-type virions.

Previous theoretical studies examining the evolutionary
consequences of cross-scale conflict (e.g. Gilchrist and Coombs
2006; Coombs et al. 2007; Lythgoe et al. 2013) differ from ours in
several ways. Notably, they consider longer-term evolution for
endemic diseases using deterministic models, rather than the
inherently stochastic, shorter-term dynamics of evolutionary
emergence. Using multiscale endemic SIR models, Coombs
et al. (2007) found that pathogen strains competitively superior
at the within-host scale could be displaced by competitively
inferior strains that had higher reproductive numbers at the ep-
idemiological scale. This phenomenon was driven by non-
equilibrium within-host dynamics, where early fluctuations in
strain frequencies could have disproportionate influence if host
survival was short. Our work reveals the converse case, where
strains with lower reproductive numbers at the epidemiological
scale (in fact, less than one) can prevent evolutionary emer-
gence if they have a within-host advantage, by causing the
adapted strains to have a cross-scale reproductive number a of
less than one. Consistent with our result, Lythgoe et al. (2013)
showed found that deterministic, multistrain models could pro-
duce equilibrium states dominated by strains that were com-
petitively superior at the within-host scale, despite reducing the
reproductive number at the epidemiological scale. Parallel to
our finding that cross-scale conflict occurred only for long-term
infections, Lythgoe et al. (2013)’s short-sighted evolution was
most pronounced when within-host dynamics occurred at a
faster time-scale.

Our cross-scale analysis also enables us to address two long-
standing and interrelated questions in emerging pathogen re-
search, regarding the influence of transmission bottleneck size
on emergence probability and the importance of ‘pre-adapted’
mutations circulating in the animal reservoir (Parrish et al.
2008; Pepin et al. 2010; Woolhouse et al. 2012; Orr and Unckless
2014; Gog et al. 2015; Geoghegan et al. 2016a). In both cases, the
answer depends on the cross-scale reproductive number a of a
mutant virion that governs the frequency feedback. Under most
circumstances, wider bottlenecks boost the probability of emer-
gence (Fig. 4A, B), because they favor the onward transmission
of mutant virions when they are rare; this is particularly vital
for the first transmission of mutant virions (i.e. Step 3 in Fig. 5).
The exception is for long-term infections with a < 1, such that
the mutant tends to decline in frequency in the infected host
population. Under these circumstances, wider bottlenecks hin-
der emergence by propagating reductions in the frequency of
the mutant strain more efficiently from host to host (Step 4 in
Fig. 5). Conventional thinking about the influence of bottlenecks
on viral adaptation emphasizes fitness losses due to genetic
drift and the effects of Muller’s ratchet (Duarte et al. 1992;

Bergstrom et al. 1999; Novella et al. 1999; LeClair and Wahl 2018;
McCrone and Lauring 2018), which become more severe for nar-
rower bottlenecks. Contrary to these negative effects of narrow
bottlenecks, our findings highlight that narrower bottlenecks
can aid emergence in long-term infections with a cross-scale
conflict in selection (Fig. 4B). Here the adaptive gain in transmis-
sibility at population scales can be impeded by the selective dis-
advantage at the within-host scale, but, intriguingly, this
disadvantage is neutralized by genetic drift arising from narrow
bottlenecks. Given the evidence for cross-scale evolutionary
conflicts for HIV-1 (Shaw and Hunter 2012; Alizon and Fraser
2013; Carlson et al. 2014; Lythgoe et al. 2017), our results suggest
the possibility that HIV-1’s narrow transmission bottleneck
(Keele et al. 2008) could play a role in the emergence of novel
strains (e.g. drug resistant strains).

Similar mechanisms dictate the influence of mutant viral
strains circulating in the reservoir, particularly for long-term
infections (Fig. 4C, D). If the cross-scale reproductive number a

of a mutant virion is greater than one, so that the mutant fre-
quency rises easily in the infected host population, then even
low frequencies of mutants in the reservoir lead to substantial
risk of emergence. Indeed, for long-term infections with a > 1,
emergence becomes almost certain when there are mutants in
the initial spillover inoculum. Conversely, when the cross-scale
reproductive number a is less than one, emergence probability
scales with the proportion of mutants in the initial dose, and
when a� 1, the initial dose must consist almost entirely of the
mutant strain in order to pose any major risk. These findings
yield direct lessons for the growing enterprise of conducting ge-
netic surveillance on zoonotic pathogens in their animal reser-
voirs (Russell et al. 2012; Davis et al. 2014; Watanabe et al. 2014;
Carroll et al. 2018). A crucial requirement for effective genetic
surveillance is the ability to identify genotypes of concern; the
integration of various research approaches to address this ques-
tion, and estimate key quantities, is an on-going research chal-
lenge (Russell et al. 2014; Geoghegan et al. 2016b; Lipsitch et al.
2016). Risk to humans increases if there is any non-zero propor-
tion of mutant viruses in the spillover inoculum, so tracking the
presence of such mutants is beneficial. Surprisingly, the quanti-
tative frequency of mutants in the initial dose has little impact
on emergence probability in most scenarios, with the one ex-
ception of long-term infections with a < 1. Collectively, these
results suggest that any knowledge of the cross-scale reproduc-
tive number a and mutant reproductive numbers can help to re-
fine our goals for genetic surveillance, and that in many
circumstances presence/absence detection is sufficient.

While there are not sufficient data from past emergence
events to test our model’s conclusions, recent studies combin-
ing animal transmission experiments with deep sequencing
have exhibited many phenomena aligned with our findings.
Moncla et al. (2016) conducted deep sequencing analyses of
H1N1 influenza viruses, in the context of ferret airborne trans-
mission experiments that examined the adaptation of avian-
like viruses to the mammalian host. Their results provide in-
depth insights into selection within hosts and at transmission
bottlenecks, for a range of mutations on genetic backgrounds
that change as adaptation proceeds (i.e. equivalent to numerous
separate implementations of our model of a single mutational
step). They observe a fascinating range of dynamics: some
mutations appeared to have a moderately above 1, exhibiting
modest increases in frequency between generations, but
achieved this outcome with different traits (e.g. S113N on the
HA190D225D background exhibited strong within-host selection
and no evident transmission advantage, while D265V showed
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weak within-host selection but its frequency rises in transmis-
sion). Another mutation (I187T on the ‘Mut’ background)
appeared to have a� 1 and exhibited strong selection at both
scales; notably, this mutation is widespread in 17/17 human-
derived isolates of the post-emergence 1918 virus, consistent
with the successful and rapid emergence our model would pre-
dict. Moncla et al. (2016) also present substantial evidence of
cross-scale conflict in selection, as one mutation (G225D on
‘Mut’ background) exhibited declining frequencies within ferrets
but rose to fixation in 2/2 transmission events, while numerous
mutations in the HA2 region rose in frequency within the host
but were eliminated in transmission. Another study examined a
set of ‘gain-of-function’ mutations in H5N1 influenza in ferrets,
and reported a slow rise in frequency when the virus was pas-
saged between ferrets by intranasal inoculation, then rapid fixa-
tion of these mutations during airborne transmission (Linster
et al. 2014); the airborne transmission data are consistent with
strong between-host selection and a high a value (though we
emphasize that circulating H5N1 viruses required substantial
modification to the favorable genetic background used in those
experiments). Intriguingly, Moncla et al. (2016) synthesized their
results with those of earlier studies (Wilker et al. 2013; Varble
et al. 2014; Zaraket et al. 2015) to hypothesize that the ‘strin-
gency’ of the transmission bottleneck varies systematically dur-
ing the course of viral adaptation, with loose bottlenecks
prevailing when viruses first encounter a new host species (and
perhaps again when the virus is host-adapted), and much
tighter bottlenecks at the key juncture in host adaptation when
a genotype with greater transmissibility is available to be se-
lected. If this hypothesis is correct, then our findings can be ap-
plied to each adaptive step independently, and may help to
identify which viral traits are most crucial to adaptive steps sub-
ject to tighter or looser bottlenecks.

Our results focus on systems where there is one major
rate-limiting step to emergence, and the viral population can be
represented by one wild-type and one mutant strain. This is a
simplification of most viral emergence problems, but will apply
directly to systems where a single large-effect mutation is the
primary barrier to emergence of a supercritical strain, as for
Venezuelan equine encephalitis virus emerging from rodents to
horses (Anishchenko et al. 2006). While it is possible to extend
our exact computations and analysis of the cross-scale repro-
ductive number of a mutant virion to systems with multiple
mutational steps, the present analysis already provides insights
into more complex evolutionary scenarios. For evolutionary tra-
jectories that proceed through a fixed series of genotypes, the
probability of emergence can be approximated by extension of
our equation (4), as in previous work (Antia et al. 2003; Iwasa
et al. 2004; Park et al. 2013). If emergence requires multiple mu-
tational steps which pass through a fitness valley, then the
scale at which this valley occurs matters. A within-host fitness
valley in replication rates would hinder pathogens with long-
term infections and larger bottleneck widths, more than those
with smaller bottlenecks. A between-host fitness valley in
transmissibility could hinder evolutionary emergence of patho-
gens causing long-term infections more than those causing
short-term infections, unless the within-host landscape is suffi-
ciently favorable to allow traversing the valley within a single
host’s long-term infection. Recent studies have also highlighted
the importance of considering the broader genotype space,
which can reveal indirect paths that circumvent fitness valleys
(Wu et al. 2016), alternative genotypes that yield similar pheno-
types (Moncla et al. 2016), and the costs imposed by deleterious

mutants on higher mutation rates (Loverdo and Lloyd-Smith
2013).

Our analysis also focuses on a simple ‘logistic-like’ model for
within-host viral dynamics. This simplification allows us to
study how evolutionary emergence is limited by different fac-
tors for pathogens dominated by exponential versus saturated
phases of viral growth, while maintaining analytical tractability.
Future important extensions would be to allow within-host fit-
ness to alter the carrying capacity in the saturated phase, as
well as identifying the relative contributions of stochastic
within-host dynamics (Geoghegan et al. 2016a), immune
responses, and host heterogeneity on viral emergence. Some of
these aims would be addressed by using a more mechanistic
model for the within-host dynamics, incorporating resource
limitation (Gilchrist and Coombs 2006; Coombs et al. 2007) or
immune pressure (Antia et al. 1994). We have assumed that the
bottleneck width N is fixed for a given pathogen. This is broadly
consistent with currently available data (Keele et al. 2008; Wang
et al. 2010; Bull et al. 2011), but it will be important to explore
the consequences of variation in bottleneck width arising from
different routes of transmission, or possibly from changing viral
loads (Zwart and Elena 2015; McCrone and Lauring 2018).
Among other possible impacts, this may alter the conclusion
that emergence probability is minimally affected by the func-
tional dependence of transmission probability on viral load. The
computational and analytical framework developed here can be
extended to account for these additional complexities. Other
important extensions can explore the impact of clonal competi-
tion on emergence probabilities (Gerrish and Lenski 1998; Good
et al. 2012; Strelkowa and Lässig 2012; Ogbunugafor and
Eppstein 2017) or the potential for complementation to rescue
pathogen strains from deep fitness valleys—a mechanism that
depends on wide transmission bottlenecks (Ke et al. 2013).

Our cross-scale analysis opens the door for a new generation
of integrative risk assessment models for pathogen emergence,
which will integrate growing streams of data collected in labora-
tories and field surveillance programs (Russell et al. 2014;
Lipsitch et al. 2016; Carroll et al. 2018). At present, we rely on the
intuition of individual scientists to link together the discoveries
from targeted experiments, massively parallel phenotypic
screens, experimental evolution, clinical medicine, and field ep-
idemiology and disease ecology. Mathematical and computa-
tional models that connect biological scales using mechanistic
principles can make unique contributions to this transdisciplin-
ary enterprise, by formally integrating diverse empirical find-
ings and by identifying the crucial knowledge gaps to focus
future research. The work presented here is a step on the path
to realizing this potential.
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Supplementary data are available at Virus Evolution online.
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