Investigating Medications As An Additional Data Modality In Positive Unlabeled Learning for Predicting Alzheimer's Disease in Electronic Health Records

ABDALLAH FARES¹, Thai Tran^{2,3}, Mingzhou Fu^{2,3}, Sriram Sankararaman⁴, David A Elashoff ^{4,5}, Keith Vossel², Timothy Chang²

Sensitivity

0.473

 ± 0.041

0.455

 ± 0.041

0.812

 ± 0.036

0.554

0.512

 ± 0.051

0.396

 ± 0.049

0.790

Computational & Systems Biology

Specificity

0.79

 ± 0.005

0.965

0.978

 ± 0.008

0.988

 ± 0.006

0.952

Supervised (Risk Factors/MCC)

AUCPR

0.300

 ± 0.018

0.677

 ± 0.017

0.872

 ± 0.019

0.373

 ± 0.039

0.693

 ± 0.03

0.661

 ± 0.01

0.823

¹BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA ²Department of Neurology, David Geffen School of Medicine, UCLA ³Medical Informatics Home Area, Department of Bioinformatics, UCLA ⁴Computational Medicine, UCLA ⁵Department of Biostatistics, UCLA

BACKGROUND

- Alzheimer's Disease (AD) is underdiagnosed, particularly in underrepresented racial and ethnic groups
- Prior AD prediction studies focused on diverse groups:
 - Rely on expensive labeled data
 - Rarely address racial disparities in model performance
- Previously we proposed a semi-supervised PUL (SSPUL) framework, which couples PUL with pre- and post-processing bias mitigation approaches on diverse EHR data to accurately predict undiagnosed AD among diverse groups
- This prior framework, however, relied exclusively on demographics and diagnostic data as predictors, limiting the feature set and potentially model performance
- Here we extend the SSPUL framework to incorporate medication data alongside diagnostics, leveraging elastic net feature selection to mitigate the collinearity between the two (as diagnoses determine medications)

METHODS

Figure 1. Original study design

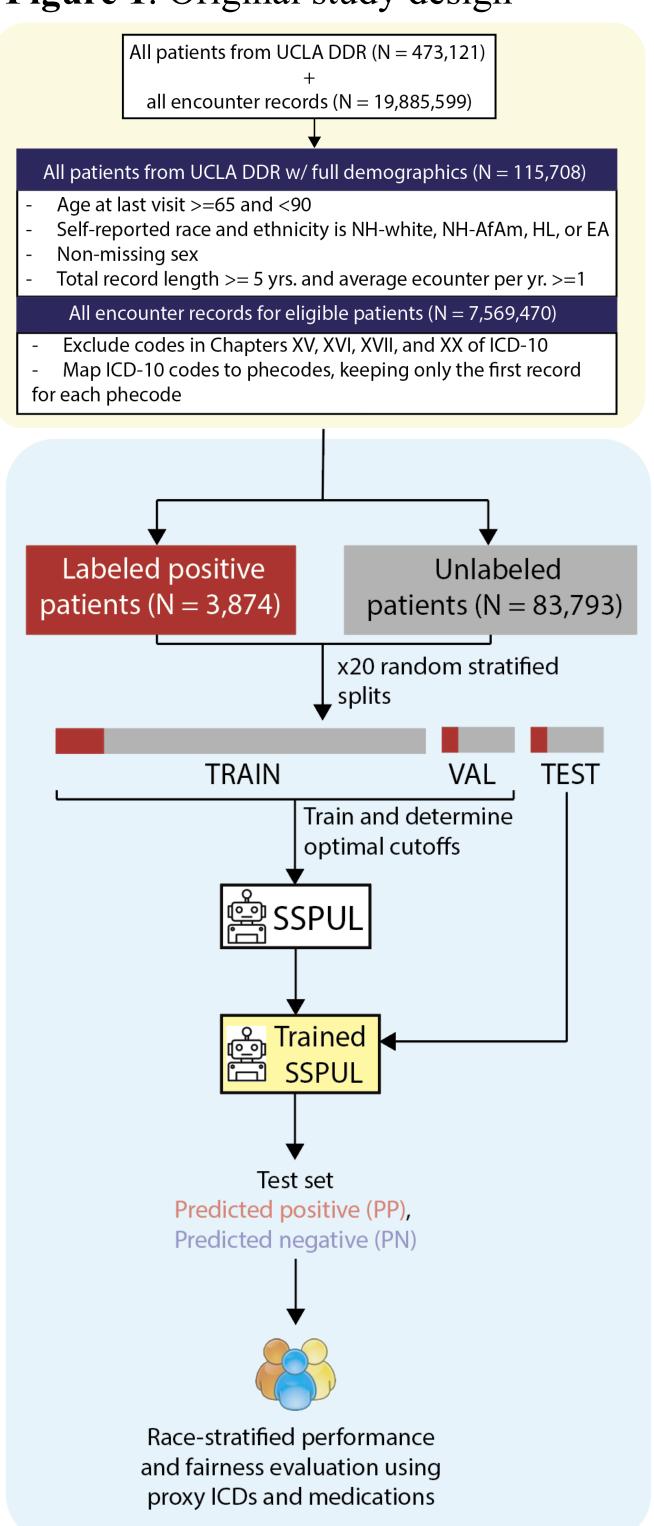
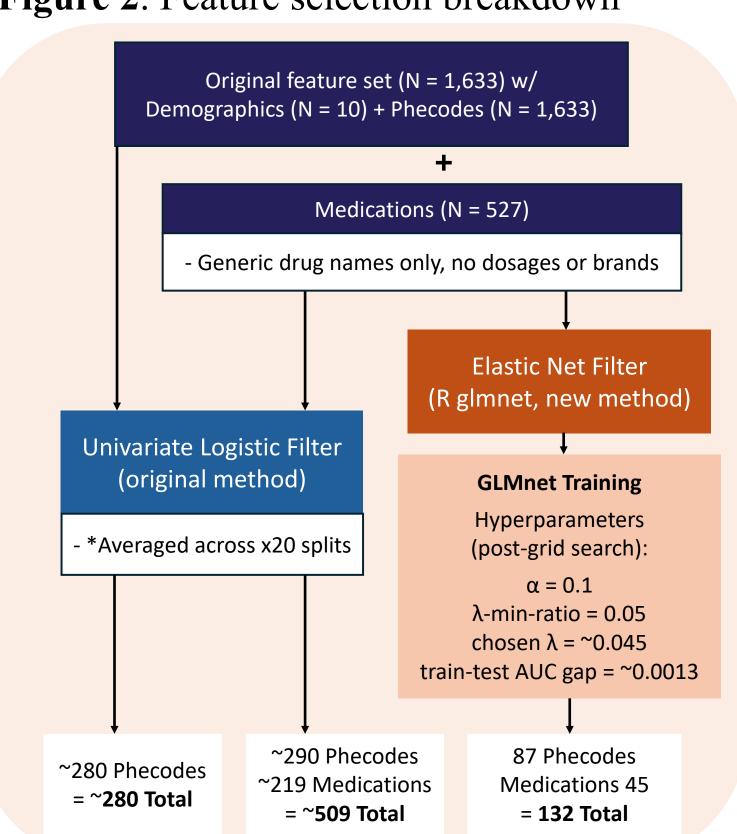
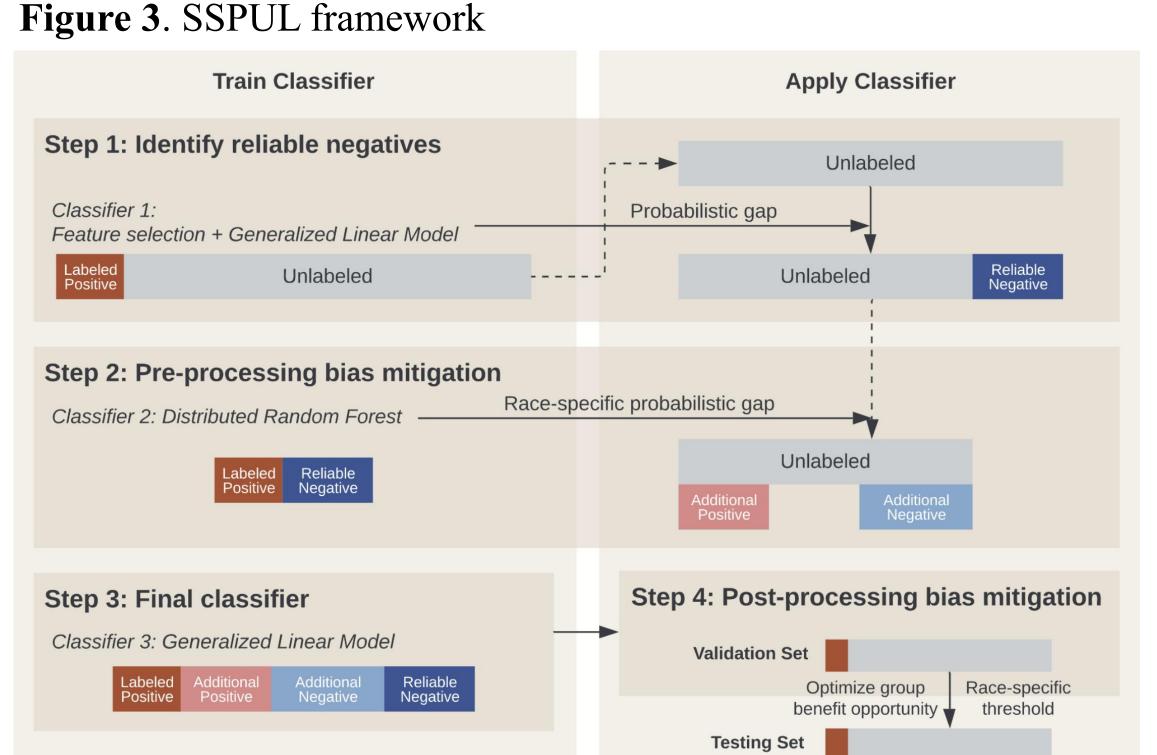


Figure 2. Feature selection breakdown





med Electrolyte-

med_OLANZapine

med_predniSONE

med_Naloxone HCl

med_Bisacodyl

Feature Set Reduction (excl. demographics)

Univariate w/ Meds: 2160 → 509 = ~76.4%

GLMnet w/ Meds: $2160 \rightarrow 132 = ~93.8\%$

Univariate: 1,633 → 280 = ~82.9%

Table 3. Top 10 1-SE Max GLMnet selected medications Description Medication Coefficient Quetiapine 0.2052 Antipsychotic **Fumarate** Alteplase Plasminogen activator Citalopram 0.1323 Antidepressant Hydrobromide Montelukast Asthma treatment Sodium **Tacrolimus** Immunosuppressant 0.0677 Vaccine Influenza Vaccine 0.0621 Antidepressant Sertraline HCl 0.0619 Antipsychotic Olanzapine Asthma treatment Immunosuppressant

Dexamethasone

RESULTS

Race /

Ethnicity

NH-white

NH-AfAm

EA

Model

Supervised (risk

factors/MCC)

Supervised

(full/MCC)

SSPUL (GBE)

Supervised (risk

factors/MCC)

Supervised

(full/MCC)

Supervised

(full/MCC)

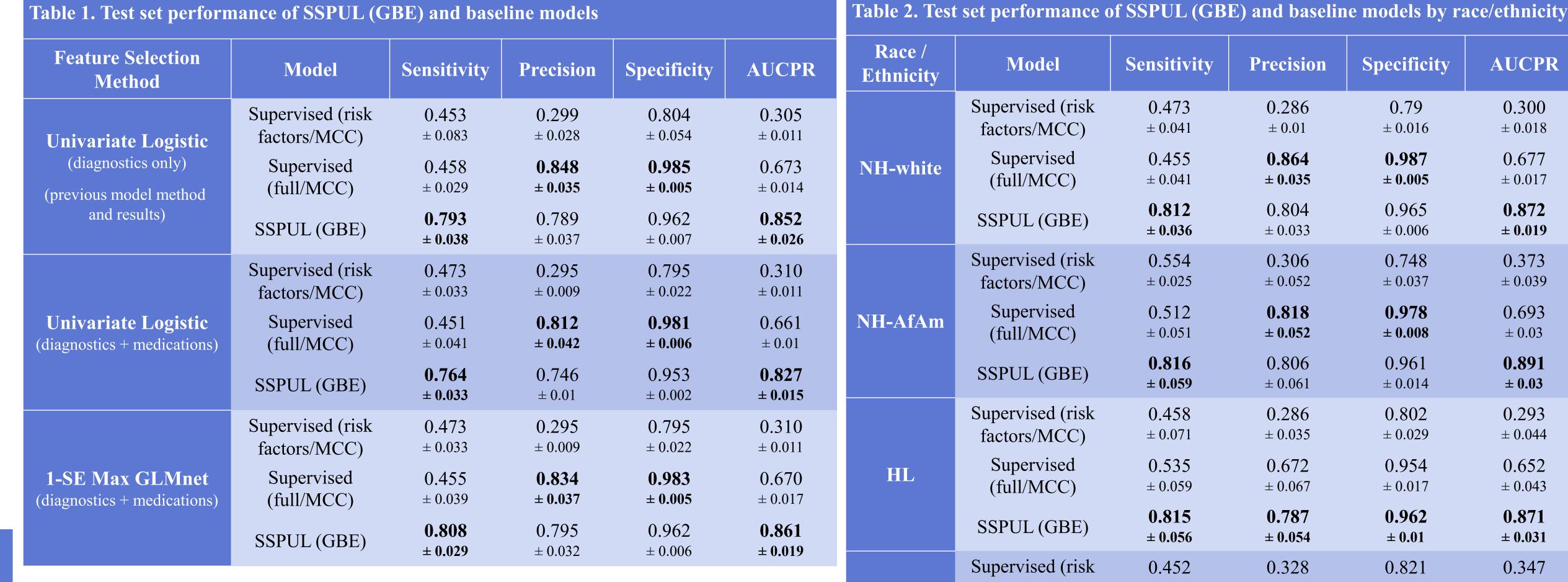
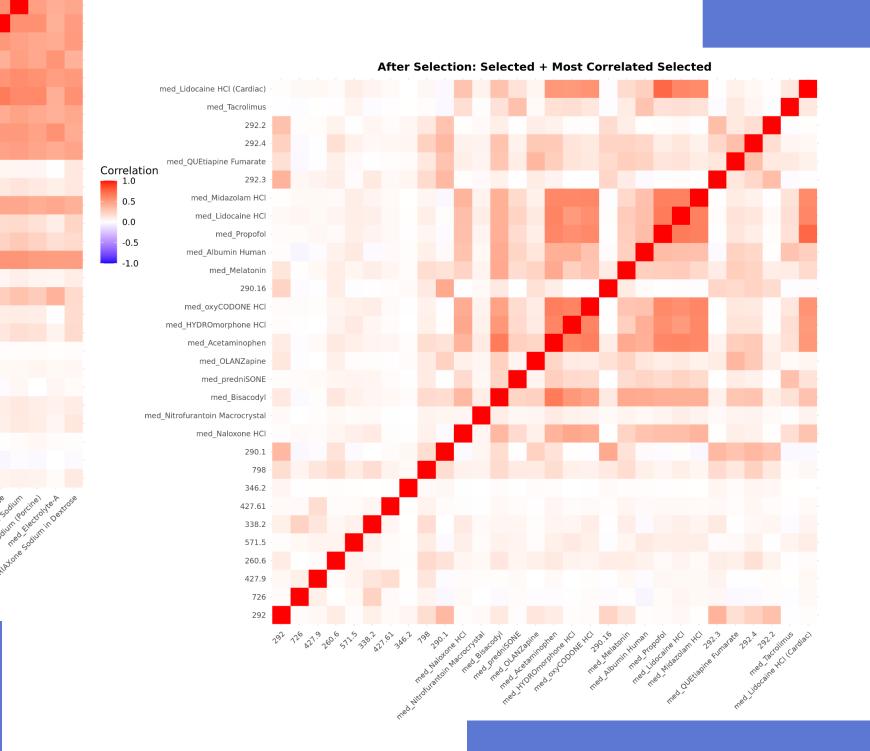


Figure 4. Heatmaps of 15 feature correlations before/after selection



0.806 0.961 0.891 0.816 SSPUL (GBE) ± 0.059 ± 0.061 ± 0.014 ± 0.03 Supervised (risk 0.458 0.286 0.802 0.293 ± 0.071 ± 0.035 ± 0.029 ± 0.044 factors/MCC) 0.535 0.672 0.954 0.652 Supervised (full/MCC) ± 0.059 ± 0.067 ± 0.017 ± 0.043 0.962 0.871 0.815 0.787 SSPUL (GBE) ± 0.056 ± 0.054 ± 0.01 ± 0.031 Supervised (risk 0.452 0.347 0.328 0.821 ± 0.003 ± 0.012 ± 0.023 factors/MCC) ± 0.031

0.869

 ± 0.055

0.765

Precision

0.286

 ± 0.01

0.864

 ± 0.035

0.804

 ± 0.033

0.306

 ± 0.052

0.818

 ± 0.052

SSPUL (GBE) ± 0.01 ± 0.019 ± 0.045 ± 0.025 Figure 5. Evaluation of fairness across models Comparing cumulative parity loss by mode Metric Specificity Precision

Supervised (Full/MCC Cutoff method

CONCLUSIONS

- Using elastic net for feature selection successfully reduced the feature set to still produce statistically similar results
- Medications and diagnoses together as features (likely due to their collinearity) do not significantly aid AD detection in this setting

SSPUL (GBE)

Elastic net feature selection could prove useful as an addition to the SSPUL pipeline, especially as more data modalities are incorporated

FUTURE DIRECTION

- Incorporating genetic and temporal data (far more separate features in terms of correlation)
- Perform validation using chart review (gold standard)
- Optimize GBE with respect to both race and ethnicity and sex